Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The present review deals with different synthetic methods of isothiocyanates, including alcohols, aryl chlorides, primary amines, carboxylic acid or carboxylic acid derivatives, cleavage of heterocyclic compounds, and alkene derivatives as a starting material. Furthermore, the thermal rearrangement of thiocyanate, decomposition of thiourea derivatives, and natural isothiocyanates are discussed. It also includes the chemical reaction of isothiocyanates derivatives, such as reaction with alkenes and aromatic compounds, addition of water and amine derivatives, reaction with amino alcohol derivatives, reaction with amino acids and their derivatives, reaction with hydrazine and acid hydrazide derivatives, and miscellaneous reactions. In addition, this review summarizes different pharmaceutical applications of isothiocyanate derivatives, such as anticancer, antimicrobial, antioxidant, and anti-inflammatory activities.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298328213240904051112
2024-09-24
2025-09-09
Loading full text...

Full text loading...

References

  1. Abdel-KaderM.S. AlamP. KamalY.T. AlkharfyK.M. FoudahA.I. AlqasoumiS.I. Optimization of the extraction condition for benzyl isothiocyanate contents in Salvadora persica roots Siwak.Saudi Pharm. J.201927675375510.1016/j.jsps.2019.04.011 31516317
    [Google Scholar]
  2. ThiruvangothS. ThayyilM.S. A comparative study of bacterial activity of allyl isothiocyanate, phenyl isothiocyanate, and 2- (4- hydroxy phenyl) ethyl isothiocyanate using density functional theory.Mater. Today Proc.20225510210810.1016/j.matpr.2021.12.401
    [Google Scholar]
  3. PopovS.A. QiZ. WangC. ShultsE.E. Synthesis of ursane-derived isothiocyanates and study of their reactions with series of amines and ammonia.J. Sulfur Chem.202344552354110.1080/17415993.2023.2193669
    [Google Scholar]
  4. WeiG. SunY. ZhengD. QiuS. ChenZ. WuX-F. Catalyst‐free, heating‐induced desulfurization annulation of CF 3 ‐imidoyl sulfoxonium ylides with isothiocyanates for the synthesis of 2‐trifluoromethyl‐4‐aminoquinolines.Eur. J. Org. Chem.20232610e20230009010.1002/ejoc.202300090
    [Google Scholar]
  5. TranD.T. HuynhT.N. NguyenP.C. PhanN.T.S. NguyenT.T. Synthesis of 2-aminobenzoxazoles from elemental sulfur mediated cyclization of 2-aminophenols and aryl isothiocyanates.Tetrahedron Lett.2023122615451010.1016/j.tetlet.2023.154510
    [Google Scholar]
  6. WangQ. BaoY. Nanodelivery of natural isothiocyanates as a cancer therapeutic.Free Radic. Biol. Med.2021167112514010.1016/j.freeradbiomed.2021.02.044 33711418
    [Google Scholar]
  7. PanZ. MengZ. TanM. DuanH. RamaswamyH.S. QiuX. WangC. Optimization the conversion of glucosinolate to isothiocyanate in yellow mustard seeds (Sinapis alba) by response surface methodology.Appl. Food Res.20222210020710021610.1016/j.afres.2022.100207
    [Google Scholar]
  8. HoffmannH. AndernachL. KanzlerC. HanschenF.S. Novel transformation products from glucosinolate-derived thioglucose and isothiocyanates formed during cooking.Food Res. Int.202215711123711124510.1016/j.foodres.2022.111237 35761548
    [Google Scholar]
  9. KimS.Y. SeoH.Y. HaJ.H. A colorimetric sensor array for the discrimination of glucosinolates.Food Chem.202032812714910.1016/j.foodchem.2020.127149 32480264
    [Google Scholar]
  10. MostafaM.S. RadiniI.A.M. El-RahmanN.M.A. KhidreR.E. Synthetic methods and pharmacological potentials of triazolothiadiazines: A review.Molecules2024296132610.3390/molecules29061326 38542962
    [Google Scholar]
  11. BorikR.M. MostafaM.S. BehaloM.S. KhidreR.E. Recent progress in the synthetic methods of pyrazoloquinoline derivatives.Curr. Org. Chem.202428211713310.2174/0113852728285959240108060645
    [Google Scholar]
  12. ElmansyM.F. BorikR.M. KhidreR.E. Synthetic approaches towards Taxol; from Holton to Chida.Curr. Org. Chem.202327544445910.2174/1385272827666230512114730
    [Google Scholar]
  13. KhidreR.E. SalemM.A. AmeenT.A. AbdelgawadA.A.M. Triazoloquinolines II: synthesis, Reactions, and pharmacological properties of [1,2,4]triazoloquinoline and 1,2,4-triazoloisoquinoline derivatives.Polycycl. Aromat. Compd.2023431135310.1080/10406638.2021.2008457
    [Google Scholar]
  14. KhidreR.E. MostafaM.S. MukhrishY.E. SalemM.A. BehaloM.S. Synthetic methods of 1H-pyrazolo[1,2-b]phthalazine derivatives.Curr. Org. Chem.202326222055206910.2174/1385272827666230124145625
    [Google Scholar]
  15. KhidreR.E. RadiniI.M.A. AmeenT.A. AbdelgawadA.A.M. TriazoloquinolinesI. Synthetic methods and pharmacological properties of [1,2,3] triazoloquinoline derivatives.Curr. Org. Chem.202125887689310.2174/1385272825666210202122645
    [Google Scholar]
  16. KniežoL. BernátJ. A convenient synthesis of tertiary isothiocyanates and acyl isothiocyanates using phosphoryl isothiocyanate.Synth. Commun.199020450951310.1080/00397919008244898
    [Google Scholar]
  17. KarimiZ.M.A. TabatabaeiB.A. Synthesis of alkyl thiocyanates from alcohols using a polymer-supported thiocyanate ion promoted by cyanuric chloride/dimethylformamide.J. Sulfur Chem.201536440341210.1080/17415993.2015.1035273
    [Google Scholar]
  18. IranpoorN. FirouzabadiH. AzadiR. A new diphenylphosphinite ionic liquid (IL-OPPh2) as reagent and solvent for highly selective bromination, thiocyanation or isothiocyanation of alcohols and trimethylsilyl and tetrahydropyranyl ethers.Tetrahedron Lett.200647315531553410.1016/j.tetlet.2006.05.145
    [Google Scholar]
  19. MiyakeH. NakaoY. SasakiM. Facile and chemo-selective synthesis of tertiary alkyl isothiocyanates from alcohols.Tetrahedron20076342104331043610.1016/j.tet.2007.08.014
    [Google Scholar]
  20. WasfyA.F. AlyA.A. BehaloM.S. SobhiN.M. Synthesis of novel series of phthalazine derivatives as potential antitumor agents.Chem. Proc. Eng. Res.2013102130
    [Google Scholar]
  21. ZhongB. Al-AwarR.S. ShihC. GrimesJ.H.Jr ViethM. HamdouchiC. Novel route to the synthesis of 4-quinolyl isothiocyanates.Tetrahedron Lett.200647132161216410.1016/j.tetlet.2006.01.119
    [Google Scholar]
  22. SunN. LiB. ShaoJ. MoW. HuB. ShenZ. HuX. A general and facile one-pot process of isothiocyanates from amines under aqueous conditions.Beilstein J. Org. Chem.20128617010.3762/bjoc.8.6 22423272
    [Google Scholar]
  23. BehaloM.S. Synthesis and antimicrobial activities of some novel pyrido[2,3-d]pyrimidine derivatives.Phosphorus Sulfur Silicon Relat. Elem.2008184120621910.1080/10426500802095764
    [Google Scholar]
  24. AlyA.A. BehaloM.S. Efficient synthesis of thieno[2,3-d]pyrimidines and related fused systems.J. Chem. Res.2010341057157510.3184/030823410X12863009209478
    [Google Scholar]
  25. SayighA.A.R. UlrichH. PottsJ.S. The reaction of arylamines with diethylthiocarbamoyl chloride. A new synthesis of aryl isothiocyanates.J. Org. Chem.19653072465246610.1021/jo01018a511
    [Google Scholar]
  26. HodgkinsJ. EttlingerM.G. The synthesis of isothiocyanates from amines.J. Org. Chem.195621440440510.1021/jo01110a006
    [Google Scholar]
  27. RacheetiP.B. GunturuR.B. PinapatiS.R. KowthalamA. TamminanaR. RudrarajuR. Hypervalent iodine(III) promoted synthesis of isothiocyanates in water.Synth. Commun.2023531233110.1080/00397911.2022.2148222
    [Google Scholar]
  28. TechapanalaiS. AnnuurR.M. SukwattanasinittM. WacharasindhuS. One‐pot synthesis of isothiocyanates from amines mediated by carbon tetrabromide.Chem. Select202382610.1002/slct.202302045
    [Google Scholar]
  29. LiuX. LiH. YinX. NaOH-promoted one-pot aryl isothiocyanate synthesis under mild benchtop conditions.Phosphorus Sulfur Silicon Relat. Elem.2021196983984410.1080/10426507.2021.1927031
    [Google Scholar]
  30. WilsonL.J. KlopfensteinS.R. LiM. A traceless linker approach to the solid phase synthesis of substituted guanidines utilizing a novel acyl isothiocyanate resin.Tetrahedron Lett.199940213999400210.1016/S0040‑4039(99)00663‑2
    [Google Scholar]
  31. WangC. SongQ. XiZ. Reactions of 1,4-dilithiobutadienes with isothiocyanates: Preparation of iminocyclopentadiene derivatives via cleavage of the C S double bond of a RN C S molecule.Tetrahedron200460245207521410.1016/j.tet.2004.04.045
    [Google Scholar]
  32. WeiT.B. LinQ. ZhangY.M. WeiW. Microwave promoted efficient synthesis of N‐aryl‐N′‐aroyl thioureas under solvent‐free and phase transfer catalysis conditions.Synth. Commun.200434118118610.1081/SCC‑120027251
    [Google Scholar]
  33. El-HelwE.A.E. AbdelrahmanA.M. FahmiA.A. RizkS.A. Synthesis, density functional theory, insecticidal activity, and molecular docking of some N-heterocycles derived from 2-((1,3-diphenyl-1H-pyrazol-4-yl)methylene)malonyl diisothiocyanate.Polycyclic Aromat. Compd.20224398265828110.1080/10406638.2022.2149565
    [Google Scholar]
  34. TomaliaD.A. 1‐(Aziridine)thiocarbonyl chlorides. Isomerization to 2‐(chloroalkyl)isothiocyanates.J. Heterocycl. Chem.19663338438610.1002/jhet.5570030339
    [Google Scholar]
  35. XinJ. ChenT. TangP. Direct trifluoromethylthiolation of aziridines: Cation-controlled diverse synthesis of trifluoromethylthiolated isothiocyanates and amines.Org. Lett.202224102035203910.1021/acs.orglett.2c00558 35261244
    [Google Scholar]
  36. HullR. SedenT.P. The preparation of vinylene diisothiocyanate.Synth. Commun.198010648949310.1080/00397918008064273
    [Google Scholar]
  37. TrofimovB.A. BelyaevaK.V. AndriyankovaL.V. NikitinaL.P. Mal’kinaA.G. Ring-opening of pyridines and imidazoles with electron-deficient acetylenes: En route to metal-free organic synthesis.Mendeleev Commun.201727210911510.1016/j.mencom.2017.03.001
    [Google Scholar]
  38. Somi ReddyM. NarenderM. NageswarY.V.D. RaoK.R. Regioselective ring-opening of aziridines with potassium thiocyanate in the presence of β-cyclodextrin in water.Tetrahedron Lett.200546386437643910.1016/j.tetlet.2005.07.114
    [Google Scholar]
  39. HusseinA.Q. Abu-TahaA. JochimsJ.C. Preparation of vinyl isothiocyanates by sulfur elimination from Δ3-1,3-thiazoline-2-thions.Chem. Ber.1978111375010.1002/cber.19781111122
    [Google Scholar]
  40. BessonT. GuillardJ. ReesC.W. ThiéryV. New syntheses of aryl isothiocyanates.J. Chem. Soc., Perkin Trans. 1199888989210.1039/A707801C
    [Google Scholar]
  41. ScattolinT. KleinA. SchoenebeckF. Synthesis of isothiocyanates and unsymmetrical thioureas with the bench-stable solid reagent.Org. Lett.2017191831183310.1021/acs.orglett.7b00689 28357864
    [Google Scholar]
  42. GondaJ. MartinkováM. ZadrošováA. ŠotekováM. RaschmanováJ. ČonkaP. GajdošíkováE. KappeC.O. Microwave accelerated aza-Claisen rearrangements.Tetrahedron Lett.200748396912691510.1016/j.tetlet.2007.07.157
    [Google Scholar]
  43. GondaJ. BednárikovaM. Stereocontrol by intrinsic antiparallel double repulsion on diacetone-D-glucose template. Diastereoselective synthesis of 3(S)-isothiocyanato-3-deoxy-3-C-vinyl glucose via (3,3)-sigmatropic rearrangement of allylic thiocyanates.Tetrahedron Lett.199738315569557210.1016/S0040‑4039(97)01246‑X
    [Google Scholar]
  44. LexA. TrimmelG. KernW. StelzerF. Photosensitive polynorbornene containing the benzyl thiocyanate group—Synthesis and patterning.J. Mol. Catal. Chem.20062541-217417910.1016/j.molcata.2006.03.024
    [Google Scholar]
  45. JuY. KumarD. VarmaR.S. Revisiting nucleophilic substitution reactions: Microwave-assisted synthesis of azides, thiocyanates, and sulfones in an aqueous medium.J. Org. Chem.200671176697670010.1021/jo061114h 16901176
    [Google Scholar]
  46. RajappaS. RajagopalanT.G. SreenivasanR. KanalS. Isothiocyanate transposition through a retro-ene reaction: Pyrolysis of acylthioureas.J. Chem. Soc., Perkin Trans.19792001200410.1039/p19790002001
    [Google Scholar]
  47. HarishaM.B. DhanalakshmiP. SureshR. KumarR.R. MuthusubramanianS. Access to highly substituted oxazoles by the reaction of α-azidochalcone with potassium thiocyanate.Beilstein J. Org. Chem.2020162108211810.3762/bjoc.16.178 32952727
    [Google Scholar]
  48. CsomósP. BernáthG. SohárP. CsámpaiA. De KimpeN. FülöpF. Synthesis and transformations of 2-(phenylhydroxymethyl)cyclohexylamines.Tetrahedron200157153175318310.1016/S0040‑4020(01)00176‑4
    [Google Scholar]
  49. PetrovV.A. MarshallW. Synthesis of trifluoromethylated heterocycles using partially fluorinated epoxides.J. Fluor. Chem.20111321415110.1016/j.jfluchem.2010.11.003
    [Google Scholar]
  50. FaheyJ.W. ZalcmannA.T. TalalayP. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.Phytochemistry200156155110.1016/S0031‑9422(00)00316‑2 11198818
    [Google Scholar]
  51. HalkierB.A. GershenzonJ. Biology and biochemistry of glucosinolates.Annu. Rev. Plant Biol.200657130333310.1146/annurev.arplant.57.032905.105228 16669764
    [Google Scholar]
  52. HiraniA.H. LiG. ZelmerC.D. McVettyP.B.E. AsifM. GoyalA. Molecular genetics of glucosinolate biosynthesis in Brassicas: Genetic manipulation and application aspects.Crop Plant. GoyalA. LondonIntechOpen201210.5772/45646
    [Google Scholar]
  53. KimS.J. MatsuoT. WatanabeM. WatanabeY. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.).Soil Sci. Plant Nutr.2002481434910.1080/00380768.2002.10409169
    [Google Scholar]
  54. MithenR.F. DekkerM. VerkerkR. RabotS. JohnsonI.T. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods.J. Sci. Food Agric.2000807967984
    [Google Scholar]
  55. IshidaM. HaraM. FukinoN. KakizakiT. MorimitsuY. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables.Breed. Sci.2014641485910.1270/jsbbs.64.48 24987290
    [Google Scholar]
  56. RomeoV. ZiinoM. GiuffridaD. CondursoC. VerzeraA. Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC–MS.Food Chem.200710131272127810.1016/j.foodchem.2005.12.029
    [Google Scholar]
  57. BehaloM.S. AlyA.A. Synthesis of nitrogen heterocycles from ethyl 3-(6-dibenzothiophen-2-yl-pyridazin-3-ylamino)-3-oxopro-panoate.Eur. J. Chem.20112329529910.5155/eurjchem.2.3.295‑299.376
    [Google Scholar]
  58. KhazaeiA. AlizadehA. VagheiR.G. Preparation of arylthiocyanates using N,N′-dibromo-N,N′-bis(2,5-dimethylbenzenesul-phonyl) ethylenediamine and N,ndibromo-2,5-dimethylbenzenesul-phonamide in the presence of KSCN as a novel thiocyanating reagent.Molecules20016325325710.3390/60300253
    [Google Scholar]
  59. QinH. ChenF. DuJ. YangX. HuangY. ZhuK. YueC. FangZ. GuoK. Thiocyanate promoted difunctionalization and cyclization of unsaturated C–C bonds to construct 1-sulfur-2-nitrogen-functionalized alkenes and 2-thiocyanate indolines.Org. & Biomol. Chem.20242261213121810.1039/d3ob01864d
    [Google Scholar]
  60. CejpekK. UrbanJ. VelíšekJ. HrabcováH. Effect of sulphite treatment on allyl isothiocyanate in mustard paste.Food Chem.1998621535710.1016/S0308‑8146(97)00181‑7
    [Google Scholar]
  61. Looney-DeanV. LindamoodB.S. PapadopoulosE.P. Synthesis of derivatives of pyrrole using methyl 2-isothiocyanatobenzoate.Synthesis198419841687110.1055/s‑1984‑30735
    [Google Scholar]
  62. FlaigR. HartmannH. On the formation and reactivity of N (2), N (2′)‐tetrasubstituted 2,4‐diamino‐5‐(2‐amino‐4‐thiazolyl)thiazoles.J. Heterocycl. Chem.19973441291129510.1002/jhet.5570340433
    [Google Scholar]
  63. RajappaS. Nitroenamines.Tetrahedron19813781453148010.1016/S0040‑4020(01)92085‑X
    [Google Scholar]
  64. CoccoM.T. CongiuC. OnnisV. BernardA.M. PirasP.P. A facile synthesis of 3,5‐diaminopyrazole‐4‐carbothioamides and 3,5‐diaminopyrazole‐4‐carboxylates.J. Heterocycl. Chem.19993651183118810.1002/jhet.5570360512
    [Google Scholar]
  65. SenguptaP.K. RayM.R. ChakravortiS.S. Synthesis of some new fused 1,3,4-thiadiazole derivatives and study of their antimicrobial activity.Indian J. Chem.197816B231
    [Google Scholar]
  66. LeeC.R. GuivarchF. Nguyen Van DauC. TessierD. KrstulovicA.M. Determination of polar alkylating agents as thiocyanate/isothiocyanate derivatives by reaction headspace gas chromatography.Analyst (Lond.)2003128785786310.1039/b300721a
    [Google Scholar]
  67. MahajanA. YehS. NellM. van RensburgC.E.J. ChibaleK. Synthesis of new 7-chloroquinolinyl thioureas and their biological investigation as potential antimalarial and anticancer agents.Bioorg. Med. Chem. Lett.200717205683568510.1016/j.bmcl.2007.07.049 17768052
    [Google Scholar]
  68. SadawarteG.P. HalikarN.K. KaleA.D. JagrutV.B. Sodium oxalate-mediated synthesis and α-amylase inhibition assay of 5-substituted-3-phenyl-2-thioxoimidazolidin-4-ones.Polycycl. Aromat. Compd.20234398265828110.1080/10406638.2023.2177681
    [Google Scholar]
  69. AbdelfattahA.M. SanadS.M.H. MekkyA.E.M. Regioselective synthesis and antibacterial screening of new thiazol-2(3 H)-imines linked to arene or chromene units.Synth. Commun.202353171398141110.1080/00397911.2023.2228946
    [Google Scholar]
  70. Strzyga-ŁachP. ChrzanowskaA. Kiernozek-KalińskaE. Żyżyńska-GranicaB. PodsadniK. PodsadniP. BielenicaA. Proapoptotic effects of halogenated bis‐phenylthiourea derivatives in cancer cells.Arch. Pharm. (Weinheim)20233569230010510.1002/ardp.202300105 37401845
    [Google Scholar]
  71. SaeedA. ErbenM.F. FlörkeU. Effect of fluorine substitution on the crystal structures and vibrational properties of phenylthiourea isomers.J. Mol. Struct.20109821-3919910.1016/j.molstruc.2010.08.012
    [Google Scholar]
  72. ShamanthS. NagarakereS.C. SagarK.S. NarayanaY. MamathaM. RangappaK.S. KempegowdaM. T3P mediated intramolecular rearrangement of o-aminobenzamide to o-ureidobenzonitrile using isothiocyanates.Synth. Commun.20215181910.1080/00397911.2021.1873384
    [Google Scholar]
  73. UrlebU. The reactions of heterocyclic isothiocyanates bearing an ortho ester group with aminoalcohols.J. Heterocycl. Chem.199835369369710.1002/jhet.5570350331
    [Google Scholar]
  74. PuttaV.P.R.K. VodnalaN. GujjarappaR. TyagiU. GargA. GuptaS. PujarP.P. MalakarC.C. Reagent-controlled divergent synthesis of 2-amino-1,3-benzoxazines and 2-amino-1,3-benzothiazines.J. Org. Chem.202085238039610.1021/acs.joc.9b02384 31825620
    [Google Scholar]
  75. CohenS.A. StrydomD.J. Amino acid analysis utilizing phenylisothiocyanate derivatives.Anal. Biochem.1988174111610.1016/0003‑2697(88)90512‑X 3064649
    [Google Scholar]
  76. OhashiN. TashimaK. NamikiT. HorieS. Allyl isothiocyanate, an activator of TRPA1, increases gastric mucosal blood flow through calcitonin gene-related peptide and adrenomedullin in anesthetized rats.J. Pharmacol. Sci.2023151418719410.1016/j.jphs.2023.02.002 36925217
    [Google Scholar]
  77. BehaloM.S. Gad El-karim, I.A.; Issac, Y.A.; Farag, M.A. Synthesis of novel pyridazine derivatives as potential antimicrobial agents.J. Sulfur Chem.201435666167310.1080/17415993.2014.950661
    [Google Scholar]
  78. BehaloM.S. MeleG. Synthesis and evaluation of pyrido[2,3‐d]pyrimidine and 1,8‐naphthyridine derivatives as potential antitumor agents.J. Heterocycl. Chem.201754129530010.1002/jhet.2581
    [Google Scholar]
  79. KurzerF. SeekerJ.L. Addition‐cyclisations of ethoxycarbonyl isothiocyanate with hydrazine derivatives as a source of thiadiazoles and triazoles.J. Heterocycl. Chem.198926235536010.1002/jhet.5570260216
    [Google Scholar]
  80. PhuongT. Khac-MinhT. VanH.N.T. NgocP.H.T. Synthesis and antifungal activities of phenylenedithioureas.Bioorg. Med. Chem. Lett.200414365365610.1016/j.bmcl.2003.11.044 14741262
    [Google Scholar]
  81. PolinaS. PuttaV.P.R.K. GujjarappaR. SinghV. PujarP.P. MalakarC.C.P. (III)‐mediated cascade C‐N/C‐S bond formation: A protocol towards the synthesis of N, S ‐Heterocycles and spiro compounds.Adv. Synth. Catal.2021363243144510.1002/adsc.202001149
    [Google Scholar]
  82. Rama Kishore PuttaV.P. PolinaS. GujjarappaR. KishoreP.S. MalakarC.C. PujarP.P. Synthesis of 4 H -3,1-benzothiazin-4-ones via C-N/C-S bond forming reactions.Polycycl. Aromat. Compd.20234387416742510.1080/10406638.2022.2136220
    [Google Scholar]
  83. FlochL. OremusV. KovacM. Synthetical application of alkyl 2-isothiocyanatocarboxylates. A simple synthesis of 5-substituted-3-amino-2-thioxo-4-imidazolidinones (3-amino-2-thiohydantoins).Molecules199941027928610.3390/41000279
    [Google Scholar]
  84. ElmoghayarM.R.H. ElghandourA.H.H. Reactions with β-cyanoethylhydrazine, III. A new approach for the synthesis of substituted 3,5-diaminopyrazole and 1,2,4-triazoles.Monatsh. Chem.1986117220120410.1007/BF00809440
    [Google Scholar]
  85. CoppoF.T. EvansK.A. GraybillT.L. BurtonG. Efficient one-pot preparation of 5-substituted-2-amino-1,3,4-oxadiazoles using resin-bound reagents.Tetrahedron Lett.200445163257326010.1016/j.tetlet.2004.02.119
    [Google Scholar]
  86. MolnarM. PerišI. KomarM. Choline chloride based deep eutectic solvents as a tuneable medium for synthesis of coumarinyl 1, 2, 4‐triazoles: Effect of solvent type and temperature.Eur. J. Org. Chem.20192019152688269410.1002/ejoc.201900249
    [Google Scholar]
  87. ShafieeA. NaimiE. MansobiP. ForoumadiA. ShekariM. Syntheses of substituted‐oxazolo‐1,3,4‐thiadiazoles, 1,3,4‐oxadiazoles, and 1,2,4‐triazoles.J. Heterocycl. Chem.19953241235123910.1002/jhet.5570320424
    [Google Scholar]
  88. LiuC. IwanowiczE.J. A novel one-pot synthesis of 1,2,4-triazole-3,5-diamine derivatives from isothiocyanates and mono-substituted hydrazines.Tetrahedron Lett.20034471409141110.1016/S0040‑4039(02)02871‑X
    [Google Scholar]
  89. GomaaM.S. AbdulghanyH.A.A. El RayesS.M. AliI.A.I. FathallaW. AlturkiM.S. Al KhzemA.H. AlmalkiA.H. AldawsariM.F. PottooF.H. KhanF.A. AmirM. Synthesis and antiproliferative activity of 2-oxo-3-phenylquinoxaline derivatives and related compounds against colon cancer.RSC Advances20241448356793569510.1039/d4ra06822j
    [Google Scholar]
  90. VicentiniC.B. ManfriniM. VeroneseA.C. GuarneriM. Synthesis of 4‐(pyrazol‐5‐yl)‐1,2,4‐triazole‐3‐thiones.J. Heterocycl. Chem.1998351293210.1002/jhet.5570350106
    [Google Scholar]
  91. PiteaM. MarieA. AriesanV. MargineanuC. Investigations on some p-substituted phenylsulfonamido-derivatives (author’s transl).Arch. Pharm. (Weinheim)1976309758659110.1002/ardp.19763090710 1021037
    [Google Scholar]
  92. GrzywaR. OleksyszynJ. First synthesis of α-aminoalkyl-(N-substituted)thiocarbamoyl-phosphinates: Inhibitors of aminopeptidase N (APN/CD13) with the new zinc-binding group.Bioorg. Med. Chem. Lett.200818133734373610.1016/j.bmcl.2008.05.050 18524593
    [Google Scholar]
  93. ShafaeiF. SharafianS. Green synthesis of imidazole derivatives via Fe3O4‐MNPs as reusable catalyst.J. Heterocycl. Chem.20195692644265010.1002/jhet.3678
    [Google Scholar]
  94. KhalilzadehM.A. YavariI. HossainiZ. SadeghifarH. N-Methylimidazole-promoted efficient synthesis of 1,3-oxazine-4-thiones under solvent-free conditions.Monatsh. Chem.2009140446747110.1007/s00706‑008‑0042‑1
    [Google Scholar]
  95. PalsuledesaiC.C. MurruS. SahooS.K. PatelB.K. Acyl-isothiocyanates as efficient thiocyanate transfer reagents.Org. Lett.200911153382338510.1021/ol901561j 19606819
    [Google Scholar]
  96. Afon’kinA.A. KostrikinM.L. ShumeikoA.E. PopovA.F. 6,7-Dimethoxy-3,4-dihydroisoquinolin-1(2H)-ylidenoacetonitrile in some fusion reactions.Russ. J. Org. Chem.201147573174510.1134/S1070428011050137
    [Google Scholar]
  97. AbbaouiB. LucasC.R. RiedlK.M. ClintonS.K. MortazaviA. Cruciferous vegetables, isothiocyanates, and bladder cancer prevention.Mol. Nutr. Food Res.20186218180007910.1002/mnfr.201800079 30079608
    [Google Scholar]
  98. WuX. ZhouQ. XuK. Are isothiocyanates potential anti-cancer drugs?Acta Pharmacol. Sin.200930550151210.1038/aps.2009.50 19417730
    [Google Scholar]
  99. TrachoothamD. ZhangH. ZhangW. FengL. DuM. ZhouY. ChenZ. PelicanoH. PlunkettW. WierdaW.G. KeatingM.J. HuangP. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism.Blood200811251912192210.1182/blood‑2008‑04‑149815 18574029
    [Google Scholar]
  100. LeeJ.W. ChoM.K. Phenethyl isothiocyanate induced apoptosis via down regulation of Bcl-2/XIAP and triggering of the mitochondrial pathway in MCF-7 cells.Arch. Pharm. Res.200831121604161210.1007/s12272‑001‑2158‑2 19099231
    [Google Scholar]
  101. ZhangQ. CaoW. YangC. HongL. GengS. HanH. ZhongC. Isothiocyanates attenuate immune checkpoint blockage therapy in gastric cancer via induction of PD-L1 expression.J. Nutr. Biochem.202311210922610.1016/j.jnutbio.2022.109226 36435292
    [Google Scholar]
  102. SharmaA.K. SharmaA. DesaiD. MadhunapantulaS.V. HuhS.J. RobertsonG.P. AminS. Synthesis and anticancer activity comparison of phenylalkyl isoselenocyanates with corresponding naturally occurring and synthetic isothiocyanates.J. Med. Chem.200851247820782610.1021/jm800993r 19053750
    [Google Scholar]
  103. JiY. MorrisM.E. Determination of phenethyl isothiocyanate in human plasma and urine by ammonia derivatization and liquid chromatography-Tandem mass spectrometry.Anal. Biochem.20033231394710.1016/j.ab.2003.08.011 14622957
    [Google Scholar]
  104. LiX. NiM. XuX. ChenW. Characterisation of naturally occurring isothiocyanates as glutathione reductase inhibitors.J. Enzyme Inhib. Med. Chem.20203511773178010.1080/14756366.2020.1822828 32951477
    [Google Scholar]
  105. WangS. LiuS. HaoG. ZhaoL. LüX. WangH. WangL. ZhangJ. GeW. Antimicrobial activity and mechanism of isothiocyanate from Moringa oleifera seeds against Bacillus cereus and Cronobacter sakazakii and its application in goat milk.Food Control202213910906710.1016/j.foodcont.2022.109067
    [Google Scholar]
  106. LoC.W. YenC.C. ChenC.Y. ChenH.W. LiiC.K. Benzyl isothiocyanate attenuates activation of the NLRP3 inflammasome in Kupffer cells and improves diet-induced steatohepatitis.Toxicol. Appl. Pharmacol.202346211642410.1016/j.taap.2023.116424 36775252
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298328213240904051112
Loading
/content/journals/mroc/10.2174/0118756298328213240904051112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test