Mini Reviews in Medicinal Chemistry - Volume 25, Issue 22, 2025
Volume 25, Issue 22, 2025
-
-
Polysaccharide-Based Magnetic Nanoparticles in Brain Cancer: A Review on the Diagnostic and Therapeutic Potential of Ferumoxytol
More LessAuthors: Christian Chapa Gonzalez and Pamela Ocampo ValverdePolysaccharide-based iron oxide nanoparticles, particularly PSC-iron oxide nanoparticles, have emerged as promising agents for brain cancer diagnosis and therapy. Originally approved for anemia treatment, PSC-iron oxide nanoparticles leverage extended circulation time, biocompatibility, and MRI contrast capabilities to serve dual diagnostic and therapeutic roles. This review highlights its application in brain tumor management, focusing on enhanced MRI visualization of tumor vascularization and macrophage activity compared to gadolinium-based agents, which improve tumor delineation and treatment monitoring. Additionally, PSC-iron oxide nanoparticles exhibit immune-modulating properties that promote anti-tumor macrophage responses. Preclinical evidence supports the synergistic effects of this approach with existing therapies and its potential in hyperthermia applications. Challenges in clinical translation, including dosage optimization and safety, require further investigation. This review highlights the potential of PSC-iron oxide nanoparticles in current findings to advance precision medicine or nanomedicine approaches for brain tumors.
-
-
-
COPD Treatment with Beta 2-Adrenoreceptor Agonists: Medicinal Perspectives and Recent Advances
More LessAuthors: Neha Rana, Shalini Sharma, Hridayanand Singh and Sameer RastogiChronic Obstructive Pulmonary Disease (COPD) is a respiratory condition defined by persistent bronchitis, emphysema, and structural remodelling. The number of cases has risen globally; however, limited viable remedies exist. It is linked to airway blockage, oxidative stress, chronic conditions, inflammation, excessive mucus production, and increased autophagy and cellular senescence. Beta-2 adrenergic receptors (β2-ARs) play a significant role in both the aetiology and management of COPD. Beta-2 agonists (particularly long-acting beta-agonists, or LABAs) are preferable in COPD therapy due to their powerful bronchodilation, rapid onset, prolonged duration, and potential synergistic effects with other medications. They are well-tolerated and effective in improving the quality of life and reducing exacerbations, making them an essential component of COPD treatment. Currently, there are fewer bronchodilators that have been found to be effective. This leads to an exploration of novel, long-acting, and ultra-long-acting drugs for the management of COPD.
This article provides an extensive overview of natural β2 agonists. The current study emphasizes the rational development of lead candidates, including trantinterol, isopropyl, tert-butyl, and heterocyclic ring 2-amino-2-phenylethanol derivatives, 8-(2-amino-1-hydroxyethyl)-6-hydroxy-1,4-benzoxazine-3(4H)-one derivatives (non-substituted, methyl-substituted, dimethyl-substituted), 5-(2-amino-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one analogues, indacaterol analogues, saligenin antedrugs, and saligenin alkoxyalkylphenyl sulfonamide derivatives, accompanied by molecular docking studies. This paper also highlights numerous structure-activity relationship investigations and various novel β2 agonists currently in clinical trials and patents. The present review will significantly aid in fostering the research of COPD.
-
-
-
Natural Product-based Therapies for Inflammatory Bowel Disease: Targeting Key Signaling Pathways
More LessAuthors: Shifali Gupta, Sunny Kumar and Diksha SharmaInflammatory Bowel Disease (IBD), which includes ulcerative colitis and Crohn’s disease, accounts for chronic inflammation in the entire gastrointestinal tract. Conventional treatments, such as amino salicylates, corticosteroids, immunomodulators, and biologics, can all alleviate symptoms; however, they may cause unwanted side effects and are extremely expensive. Most of the time, long-term treatment is also less effective. This review aims to discuss natural products (NPs) with therapeutic potential for IBD, emphasizing flavonoids, terpenoids, polysaccharides, and alkaloids. The compounds have been chosen based on literature reporting anti-inflammatory, antioxidative, and immunomodulatory activities that relate to IBD pathophysiology. Preclinical evidence using in vivo and in vitro models and available clinical data provides the basis for the main pharmacological effects, mechanisms of action, and safety profiles of these NPs. The key molecular pathways that are targeted include the NF-κB, MAPK, and JAK/STAT signaling pathways, as well as the establishment of the gut microbiota and intestinal barrier functions. Standardization, bioavailability, and maximal dosing remain challenging issues even when experimental models show promising results for various NPs. Hence, this review stresses the urgency for well-designed clinical trials and suitable formulation approaches to translate these observations into efficacious and evidence-based therapies. Being a natural remedy option, NPs could be considered complementary or alternative treatments for IBD, demanding further interrogation within an integrated therapeutic paradigm.
-
-
-
New Insights from Toxinology in Mammalian Reproduction: A Systematic Review
More LessIntroductionAssisted reproductive techniques still have limitations regarding embryonic development and the achievement of clinical pregnancy. Animal venoms represent a biological library with the potential to trigger relevant cellular mechanisms. This study aimed to evaluate, through a literature review and computational screening, the activity of natural venoms and their derivatives on germ cells.
Materials and MethodsA literature review was conducted in PubMed, Embase, Scopus, and Web of Science databases. Inclusion criteria: experimental studies involving oocytes, spermatozoa, or embryos in vitro/in vivo. Exclusion criteria: review articles, letters to the editor, abstracts, books, and studies outside the scope. Extracted data included the type of venom, source species, experimental model, effects, mechanisms, and administration routes.
Methodological quality was assessed using funnel plots, forest plots, and the SYRCLE tool. Computational screening was performed targeting hormonal receptors.
ResultsOf the 584 articles analyzed, only 19 met the eligibility criteria. Among these, 57% investigated snake venom, 16% spider venom, 16% bee venom, and 10% sea anemone/scorpion venom. High heterogeneity was observed in the effects on sperm motility (I2 = 97%) and sperm concentration (I2 = 95%), although a positive effect on concentration was detected. All molecules showed activity on estrogen receptors.
DiscussionThe findings suggest that venoms and their derivatives can modulate gamete functions, with effects influenced by the chemical diversity of toxins and variations in experimental models. Computational screening highlights potential molecular interactions with hormonal pathways, reinforcing their relevance as modulators of reproductive processes.
ConclusionAnimal venoms and their derivatives can exert biological activity on germ cells (oocytes, spermatozoa, and embryos).
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month