Skip to content
2000
image of COPD Treatment with Beta 2-Adrenoreceptor Agonists: Medicinal Perspectives and Recent Advances

Abstract

Chronic Obstructive Pulmonary Disease (COPD) is a respiratory condition defined by persistent bronchitis, emphysema, and structural remodelling. The number of cases has risen globally; however, limited viable remedies exist. It is linked to airway blockage, oxidative stress, chronic conditions, inflammation, excessive mucus production, and increased autophagy and cellular senescence. Beta-2 adrenergic receptors (β-ARs) play a significant role in both the aetiology and management of COPD. Beta-2 agonists (particularly long-acting beta-agonists, or LABAs) are preferable in COPD therapy due to their powerful bronchodilation, rapid onset, prolonged duration, and potential synergistic effects with other medications. They are well-tolerated and effective in improving the quality of life and reducing exacerbations, making them an essential component of COPD treatment. Currently, there are fewer bronchodilators that have been found to be effective. This leads to an exploration of novel, long-acting, and ultra-long-acting drugs for the management of COPD.

This article provides an extensive overview of natural β agonists. The current study emphasizes the rational development of lead candidates, including trantinterol, isopropyl, tert-butyl, and heterocyclic ring 2-amino-2-phenylethanol derivatives, 8-(2-amino-1-hydroxyethyl)-6-hydroxy-1,4-benzoxazine-3(4)-one derivatives (non-substituted, methyl-substituted, dimethyl-substituted), 5-(2-amino-1-hydroxyethyl)-8-hydroxyquinolin-2(1)-one analogues, indacaterol analogues, saligenin antedrugs, and saligenin alkoxyalkylphenyl sulfonamide derivatives, accompanied by molecular docking studies. This paper also highlights numerous structure-activity relationship investigations and various novel β agonists currently in clinical trials and patents. The present review will significantly aid in fostering the research of COPD.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575398230251001073434
2025-10-21
2025-11-08
Loading full text...

Full text loading...

References

  1. Devine J.F. Chronic obstructive pulmonary disease: An overview. Am. Health Drug Benefits 2008 1 7 34 42 25126252
    [Google Scholar]
  2. Murray C.J.L. Lopez A.D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997 349 9064 1498 1504 10.1016/S0140‑6736(96)07492‑2 9167458
    [Google Scholar]
  3. Mannino D.M. COPD: Epidemiology, prevalence, morbidity and mortality, and disease heterogeneity. Chest 2002 121 5 121S 126S 10.1378/chest.121.5_suppl.121S 12010839
    [Google Scholar]
  4. Barnes P.J. Small airways in COPD. N. Engl. J. Med. 2004 350 26 2635 2637 10.1056/NEJMp048102 15215476
    [Google Scholar]
  5. Stoller J.K. Fromer L. Brantly M. Stocks J. Strange C. Primary care diagnosis of alpha-1 antitrypsin deficiency: Issues and opportunities. Cleve. Clin. J. Med. 2007 74 12 869 874 10.3949/ccjm.74.12.869 18183837
    [Google Scholar]
  6. Azad M.B. Coneys J.G. Kozyrskyj A.L. Field C.J. Ramsey C.D. Becker A.B. Friesen C. Abou-Setta A.M. Zarychanski R. Probiotic supplementation during pregnancy or infancy for the prevention of asthma and wheeze: Systematic review and metaanalysis. BMJ 2013 347 (dec04 12) f6471-f6471 10.1136/bmj.f6471 24304677
    [Google Scholar]
  7. Fitzgerald M. Fox J. Emerging trends in the therapy of COPD: Bronchodilators as mono- and combination therapies. Drug Discov. Today 2007 12 11-12 472 478 10.1016/j.drudis.2007.04.003 17532532
    [Google Scholar]
  8. Viegi G. Pistelli F. Sherrill D.L. Maio S. Baldacci S. Carrozzi L. Definition, epidemiology and natural history of COPD. Eur. Respir. J. 2007 30 5 993 1013 10.1183/09031936.00082507 17978157
    [Google Scholar]
  9. Barnes P.J. Mediators of chronic obstructive pulmonary disease. Pharmacol. Rev. 2004 56 4 515 548 10.1124/pr.56.4.2 15602009
    [Google Scholar]
  10. Barnes P.J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2016 138 1 16 27 10.1016/j.jaci.2016.05.011 27373322
    [Google Scholar]
  11. O’Donnell D.E. Laveneziana P. Webb K. Neder J.A. Chronic obstructive pulmonary disease: Clinical integrative physiology. Clin. Chest Med. 2014 35 1 51 69 10.1016/j.ccm.2013.09.008 24507837
    [Google Scholar]
  12. Jeong J.S. Kim J.S. You Y.S. Yeom S.W. Lee Y.C. COPD is a risk factor for COVID-19, but does not confer increased severity of the disease. Respir. Med. 2021 189 106640 10.1016/j.rmed.2021.106640 34627008
    [Google Scholar]
  13. Kim Y. Lee H. Lee S-K. Yang B. Choi H. Park D.W. Park T.S. Moon J-Y. Kim T-H. Sohn J.W. Yoon H.J. Kim S-H. Chronic obstructive pulmonary disease is associated with a more symptomatic burden and severe presentation of COVID-19: A korean national covid-19 cohort study. Tohoku J. Exp. Med. 2022 256 3 209 214 10.1620/tjem.256.209 35314528
    [Google Scholar]
  14. Johansen M.D. Mahbub R.M. Idrees S. Nguyen D.H. Miemczyk S. Pathinayake P. Nichol K. Hansbro N.G. Gearing L.J. Hertzog P.J. Gallego-Ortega D. Britton W.J. Saunders B.M. Wark P.A. Faiz A. Hansbro P.M. Increased SARS-CoV-2 infection, protease, and inflammatory responses in chronic obstructive pulmonary disease primary bronchial epithelial cells defined with single-cell RNA sequencing. Am. J. Respir. Crit. Care Med. 2022 206 6 712 729 10.1164/rccm.202108‑1901OC 35549656
    [Google Scholar]
  15. Rabbani G. Shariful Islam S.M. Rahman M.A. Amin N. Marzan B. Robin R.C. Alif S.M. Pre-existing COPD is associated with an increased risk of mortality and severity in COVID-19: A rapid systematic review and meta-analysis. Expert Rev. Respir. Med. 2021 15 5 705 716 10.1080/17476348.2021.1866547 33334189
    [Google Scholar]
  16. Alqahtani J.S. Oyelade T. Aldhahir A.M. Alghamdi S.M. Almehmadi M. Alqahtani A.S. Quaderi S. Mandal S. Hurst J.R. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: A rapid systematic review and meta-analysis. PLoS One 2020 15 5 e0233147 10.1371/journal.pone.0233147 32392262
    [Google Scholar]
  17. Meza D. Khuder B. Bailey J.I. Rosenberg S.R. Kalhan R. Reyfman P.A. Mortality from COVID-19 in patients with COPD: A US study in the N3C data enclave. Int. J. Chron. Obstruct. Pulmon. Dis. 2021 16 2323 2326 10.2147/COPD.S318000 34413640
    [Google Scholar]
  18. Bollmeier S.G. Hartmann A.P. Management of chronic obstructive pulmonary disease: A review focusing on exacerbations. Am. J. Health Syst. Pharm. 2020 77 4 259 268 10.1093/ajhp/zxz306 31930287
    [Google Scholar]
  19. Zhong N. Wang C. Zhou X. Zhang N. Humphries M. Wang L. Thach C. Patalano F. Banerji D. Zhong N.S. LANTERN: A randomized study of QVA149 versus salmeterol/fluticasone combination in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2015 10 1015 1026 10.2147/COPD.S84436 26082625
    [Google Scholar]
  20. Janson C. Wiklund F. Telg G. Stratelis G. Sandelowsky H. High use of short-acting β2-agonists in COPD is associated with an increased risk of exacerbations and mortality. ERJ Open Res. 2023 9 3 00722 02022 10.1183/23120541.00722‑2022 37342089
    [Google Scholar]
  21. Miravitlles M. Kawayama T. Dreher M. LABA/LAMA as first-line therapy for COPD: A summary of the evidence and guideline recommendations. J. Clin. Med. 2022 11 22 6623 10.3390/jcm11226623 36431099
    [Google Scholar]
  22. Lipson D.A. Barnacle H. Birk R. Brealey N. Locantore N. Lomas D.A. Ludwig-Sengpiel A. Mohindra R. Tabberer M. Zhu C.Q. Pascoe S.J. FULFIL trial: Once-daily triple therapy for patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2017 196 4 438 446 10.1164/rccm.201703‑0449OC 28375647
    [Google Scholar]
  23. Burkes R.M. Panos R.J. Ultra long-acting β-agonists in chronic obstructive pulmonary disease. J. Exp. Pharmacol. 2020 12 589 602 10.2147/JEP.S259328 33364854
    [Google Scholar]
  24. Cydulka R. Davison R. Grammer L. Parker M. Mathews J. The use of epinephrine in the treatment of older adult asthmatics. Ann. Emerg. Med. 1988 17 4 322 326 10.1016/S0196‑0644(88)80772‑8 3354935
    [Google Scholar]
  25. Stein J.F. Widdicombe J.G. Nervously-mediated changes in tracheal volume on medullary stimulation of dogs. Respir. Physiol. 1970 9 3 348 355 10.1016/0034‑5687(70)90091‑5 5425198
    [Google Scholar]
  26. Chen K.K. Schmidt C.F. The action of ephedrine, the active principle of the chinese drug ma huang. J. Pharmacol. Exp. Ther. 1924 24 5 339 357 10.1016/S0022‑3565(25)05630‑7
    [Google Scholar]
  27. Trendelenburg U. de la Sierra B.G.A. Muskus A. Modification by reserpine of the response of the atrial pacemaker to sympathomimetic amines. J. Pharmacol. Exp. Ther. 1963 141 3 301 309 10.1016/S0022‑3565(25)26615‑0 14064191
    [Google Scholar]
  28. Bierman C.W. Adrenergic drugs. Clin. Rev. Allergy 1983 1 1 87 104 10.1007/BF02991319 6142760
    [Google Scholar]
  29. Sipkema D. Franssen M.C.R. Osinga R. Tramper J. Wijffels R.H. Marine sponges as pharmacy. Mar. Biotechnol. (NY) 2005 7 3 142 162 10.1007/s10126‑004‑0405‑5 15776313
    [Google Scholar]
  30. Suzuki H. Ueno A. Takei M. Sindo K. Miura T. Sakakibara M. Higa T. Fukamachi H. Tracheal relaxing effects and β2 adrenoceptor selectivity of S1319, a novel sponge‐derived bronchodilator agent, in isolated guinea‐pig tissues. Br. J. Pharmacol. 1999 128 3 716 720 10.1038/sj.bjp.0702839 10516653
    [Google Scholar]
  31. Suzuki H. Ueno A. Takei M. Shindo K. Higa T. Fukamachi H. The effects of S1319, a novel marine sponge-derived β2-adrenoceptor agonist, on IgE-mediated activation of human cultured mast cells. Inflamm. Res. 2000 49 2 86 94 10.1007/s000110050563 10738947
    [Google Scholar]
  32. Waldeck B. β-Adrenoceptor agonists and asthma—100 years of development. Eur. J. Pharmacol. 2002 445 1-2 1 12 10.1016/S0014‑2999(02)01728‑4 12065188
    [Google Scholar]
  33. Xing G. Li Z. Zhi Z. Yi C. Zhang R. Yang H. Zhang Y. Lin B. Liu Y. Pan L. Cheng M. Discovery and identification of novel 5-hydroxy-4 H -benzo[1,4]oxazin-3-one derivatives as potent β 2 -adrenoceptor agonists through structure-based design, synthesis, and biological evaluation. J. Med. Chem. 2024 67 4 2986 3003 10.1021/acs.jmedchem.3c02074 38347756
    [Google Scholar]
  34. Diderichsen P.M. Cox E. Martin S.W. Cleton A. Ribbing J. Predicted heart rate effect of inhaled PF‐00610355, a long acting β‐adrenoceptor agonist, in volunteers and patients with chronic obstructive pulmonary disease. Br. J. Clin. Pharmacol. 2013 76 5 752 762 10.1111/bcp.12080 23323609
    [Google Scholar]
  35. Bonnert R.V. Brown R.C. Chapman D. Cheshire D.R. Dixon J. Ince F. Kinchin E.C. Lyons A.J. Davis A.M. Hallam C. Harper S.T. Unitt J.F. Dougall I.G. Jackson D.M. McKechnie K. Young A. Simpson W.T. Dual D2-receptor and β2-adrenoceptor agonists for the treatment of airway diseases. 1. Discovery and biological evaluation of some 7-(2-aminoethyl)-4-hydroxybenzothiazol-2(3 H)-one analogues. J. Med. Chem. 1998 41 25 4915 4917 10.1021/jm980421f 9836607
    [Google Scholar]
  36. Jacobsen J.R. Aggen J.B. Church T.J. Klein U. Pfeiffer J.W. Pulido-Rios T.M. Thomas G.R. Yu C. Moran E.J. Multivalent design of long-acting β2-adrenoceptor agonists incorporating biarylamines. Bioorg. Med. Chem. Lett. 2014 24 12 2625 2630 10.1016/j.bmcl.2014.04.069 24813741
    [Google Scholar]
  37. McKinnell R.M. Klein U. Linsell M.S. Moran E.J. Nodwell M.B. Pfeiffer J.W. Thomas G.R. Yu C. Jacobsen J.R. Discovery of TD-4306, a long-acting β2-agonist for the treatment of asthma and COPD. Bioorg. Med. Chem. Lett. 2014 24 13 2871 2876 10.1016/j.bmcl.2014.04.095 24835980
    [Google Scholar]
  38. Aparici M. Carcasona C. Ramos I. Montero J.L. Otal R. Ortiz J.L. Cortijo J. Puig C. Vilella D. De Alba J. Doe C. Gavaldà A. Miralpeix M. Pharmacological profile of AZD8871 (LAS191351), a novel inhaled dual M3 receptor antagonist/β2 -adrenoceptor agonist molecule with long-lasting effects and favorable safety profile. J. Pharmacol. Exp. Ther. 2019 370 1 127 136 10.1124/jpet.118.255620 31085697
    [Google Scholar]
  39. Jacobsen J.R. Choi S.K. Combs J. Fournier E.J.L. Klein U. Pfeiffer J.W. Thomas G.R. Yu C. Moran E.J. A multivalent approach to the discovery of long-acting β2-adrenoceptor agonists for the treatment of asthma and COPD. Bioorg. Med. Chem. Lett. 2012 22 2 1213 1218 10.1016/j.bmcl.2011.11.072 22178551
    [Google Scholar]
  40. Gan L.L. Wang M.W. Cheng M.S. Pan L. Trachea relaxing effects and beta2-selectivity of SPFF, a newly developed bronchodilating agent, in guinea pigs and rabbits. Biol. Pharm. Bull. 2003 26 3 323 328 10.1248/bpb.26.323 12612441
    [Google Scholar]
  41. Li Y. Jin H. Li Q. Shi L. Mao Y. Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol. Cancer 2024 23 1 130 10.1186/s12943‑024‑02041‑8 38902779
    [Google Scholar]
  42. Benoy C.J. El-Fellah M.S. Schneider R. Wade O.L. Tolerance to sympathomimetic bronchodilators in guinea‐pig isolated lungs following chronic administration in vivo. Br. J. Pharmacol. 1975 55 4 547 554 10.1111/j.1476‑5381.1975.tb07431.x 1212562
    [Google Scholar]
  43. Schaumann O. Über Oxy-Ephedrine. Naunyn Schmiedebergs Arch. Pharmacol. 1931 160 2 127 176 10.1007/BF01863747
    [Google Scholar]
  44. Biel J.H. Schwarz E.G. Sprengeler E.P. Leiser H.A. Friedman H.L. Bronchodilators, N-substituted derivatives of 1-(3′,4′-dihydroxyphenyl)-2-aminoethanol (Arterenol). J. Am. Chem. Soc. 1954 76 12 3149 3153 10.1021/ja01641a010
    [Google Scholar]
  45. Moore P.F. Constantine J.W. Barth W.E. Pirbuterol, a selecttve beta2 adrenergic bronchodilator. J. Pharmacol. Exp. Ther. 1978 207 2 410 418 10.1016/S0022‑3565(25)31437‑0 712629
    [Google Scholar]
  46. Chiarino D. Fantucci M. Carenzi A. Della Bella D. Frigeni V. Sala R. New isoxazole derivatives with a potent and selective beta 2-adrenergic activity. Farmaco, Sci. 1986 41 6 440 453 2874994
    [Google Scholar]
  47. Hidaka H. Inagaki M. Kawamoto S. Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide-dependent protein kinase and protein kinase C. Biochemistry 1984 23 21 5036 5041 10.1021/bi00316a032 6238627
    [Google Scholar]
  48. Johansson L.H. Persson H. β2-Adrenoceptors in guinea-pig atria. J. Pharm. Pharmacol. 1983 35 12 804 807 10.1111/j.2042‑7158.1983.tb02900.x 6141243
    [Google Scholar]
  49. Crowe M.J. Counihan H.E. O’Malley K. A comparative study of a new selective beta 2‐adrenoceptor agonist, procaterol and salbutamol in asthma. Br. J. Clin. Pharmacol. 1985 19 6 787 791 10.1111/j.1365‑2125.1985.tb02715.x 2862893
    [Google Scholar]
  50. Xing G. Pan L. Yi C. Li X. Ge X. Zhao Y. Liu Y. Li J. Woo A. Lin B. Zhang Y. Cheng M. Design, synthesis and biological evaluation of 5-(2-amino-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one derivatives as potent β2 -adrenoceptor agonists. Bioorg. Med. Chem. 2019 27 12 2306 2314 10.1016/j.bmc.2018.10.043 30392952
    [Google Scholar]
  51. Yi C. Xing G. Wang S. Li X. Liu Y. Li J. Lin B. Woo A.Y.H. Zhang Y. Pan L. Cheng M. Design, synthesis and biological evaluation of 8-(2-amino-1-hydroxyethyl)-6-hydroxy-1,4-benzoxazine-3(4H)-one derivatives as potent β2-adrenoceptor agonists. Bioorg. Med. Chem. 2020 28 1 115178 10.1016/j.bmc.2019.115178 31753798
    [Google Scholar]
  52. Xing G. Zhi Z. Yi C. Zou J. Jing X. Yiu-Ho Woo A. Lin B. Pan L. Zhang Y. Cheng M. 8-Hydroxyquinolin-2(1H)-one analogues as potential β2-agonists: Design, synthesis and activity study. Eur. J. Med. Chem. 2021 224 113697 10.1016/j.ejmech.2021.113697 34273662
    [Google Scholar]
  53. Mllligan G. Svoboda P. Brown C.M. Why are there so many adrenoceptor subtypes? Biochem. Pharmacol. 1994 48 6 1059 1071 10.1016/0006‑2952(94)90141‑4 7945399
    [Google Scholar]
  54. Taylor M.R.G. Pharmacogenetics of the human beta-adrenergic receptors. Pharmacogenomics J. 2007 7 1 29 37 10.1038/sj.tpj.6500393 16636683
    [Google Scholar]
  55. Cazzola M. Page C.P. Rogliani P. Matera M.G. β2-agonist therapy in lung disease. Am. J. Respir. Crit. Care Med. 2013 187 7 690 696 10.1164/rccm.201209‑1739PP 23348973
    [Google Scholar]
  56. Mandal S. Bhuyan S. Jana S. Hossain J. Chhetri K. Roy B.G. Efficient visible light mediated synthesis of quinolin-2(1 H)-ones from quinoline N -oxides. Green Chem. 2021 23 14 5049 5055 10.1039/D1GC01460A
    [Google Scholar]
  57. Jozwiak K. Woo A.Y.H. Tanga M.J. Toll L. Jimenez L. Kozocas J.A. Plazinska A. Xiao R.P. Wainer I.W. Comparative molecular field analysis of fenoterol derivatives: A platform towards highly selective and effective β2-adrenergic receptor agonists. Bioorg. Med. Chem. 2010 18 2 728 736 10.1016/j.bmc.2009.11.062 20036561
    [Google Scholar]
  58. Trofast J. Steric aspects of agonism and antagonism at B‐adrenoceptors: Synthesis of and pharmacological experiments with the enantiomers of formoterol and their diastereomers. Chirality 1991 3 443 450 10.1002/chir.530030606 1687501
    [Google Scholar]
  59. Hoenke C. Bouyssou T. Tautermann C.S. Rudolf K. Schnapp A. Konetzki I. Use of 5-hydroxy-4 H -benzo[1,4]oxazin-3-ones as β 2 -adrenoceptor agonists. Bioorg. Med. Chem. Lett. 2009 19 23 6640 6644 10.1016/j.bmcl.2009.10.013 19875286
    [Google Scholar]
  60. Bouyssou T. Hoenke C. Rudolf K. Lustenberger P. Pestel S. Sieger P. Lotz R. Heine C. Büttner F.H. Schnapp A. Konetzki I. Discovery of olodaterol, a novel inhaled β 2 -adrenoceptor agonist with a 24 h bronchodilatory efficacy. Bioorg. Med. Chem. Lett. 2010 20 4 1410 1414 10.1016/j.bmcl.2009.12.087 20096576
    [Google Scholar]
  61. Kurt S. Anton M. Ernst-Otto R. Armin F. (1-Hydroxy-2-amino-alkyl) substituted benzoxazinones and benzoxazolinones U.S. Patent 4,460,581, 1984
  62. Ge X. Mo Y. Xing G. Ji L. Zhao H. Chen J. He B. Chen X. Xing R. Li X. Zhao Y. Li J. Yan H. Woo A.Y.H. Zhang Y. Lin B. Pan L. Cheng M. Synthesis, biological evaluation and molecular modeling of 2-amino-2-phenylethanol derivatives as novel β2-adrenoceptor agonists. Bioorg. Chem. 2018 79 155 162 10.1016/j.bioorg.2018.04.017 29751321
    [Google Scholar]
  63. Baur F. Beattie D. Beer D. Bentley D. Bradley M. Bruce I. Charlton S.J. Cuenoud B. Ernst R. Fairhurst R.A. Faller B. Farr D. Keller T. Fozard J.R. Fullerton J. Garman S. Hatto J. Hayden C. He H. Howes C. Janus D. Jiang Z. Lewis C. Loeuillet-Ritzler F. Moser H. Reilly J. Steward A. Sykes D. Tedaldi L. Trifilieff A. Tweed M. Watson S. Wissler E. Wyss D. The identification of indacaterol as an ultralong-acting inhaled β 2 -adrenoceptor agonist. J. Med. Chem. 2010 53 9 3675 3684 10.1021/jm100068m 20402514
    [Google Scholar]
  64. Beattie D. Beer D. Bradley M.E. Bruce I. Charlton S.J. Cuenoud B.M. Fairhurst R.A. Farr D. Fozard J.R. Janus D. Rosethorne E.M. Sandham D.A. Sykes D.A. Trifilieff A. Turner K.L. Wissler E. An investigation into the structure–activity relationships associated with the systematic modification of the β2-adrenoceptor agonist indacaterol. Bioorg. Med. Chem. Lett. 2012 22 19 6280 6285 10.1016/j.bmcl.2012.07.096 22932315
    [Google Scholar]
  65. Bennett J.A. Harrison T.W. Tattersfield A.E. The contribution of the swallowed fraction of an inhaled dose of salmeterol to it systemic effects. Eur. Respir. J. 1999 13 2 445 448 10.1183/09031936.99.13244599 10065696
    [Google Scholar]
  66. Rosethorne E.M. Turner R.J. Fairhurst R.A. Charlton S.J. Efficacy is a contributing factor to the clinical onset of bronchodilation of inhaled β2-adrenoceptor agonists. Naunyn Schmiedebergs Arch. Pharmacol. 2010 382 3 255 263 10.1007/s00210‑010‑0533‑6 20694793
    [Google Scholar]
  67. Manchee G.R. Barrow A. Kulkarni S. Palmer E. Oxford J. Colthup P.V. Maconochie J.G. Tarbit M.H. Disposition of salmeterol xinafoate in laboratory animals and humans. Drug Metab. Dispos. 1993 21 6 1022 1028 10.1016/S0090‑9556(25)08195‑4 7905380
    [Google Scholar]
  68. Manchee G.R. Eddershaw P.J. Ranshaw L.E. Herriott D. Park G.R. Bayliss M.K. Tarbit M.H. The aliphatic oxidation of salmeterol to alpha-hydroxysalmeterol in human liver microsomes is catalyzed by CYP3A. Drug Metab. Dispos. 1996 24 5 555 559 8723736
    [Google Scholar]
  69. Procopiou P.A. Barrett V.J. Bevan N.J. Biggadike K. Butchers P.R. Coe D.M. Conroy R. Edney D.D. Field R.N. Ford A.J. Guntrip S.B. Looker B.E. McLay I.M. Monteith M.J. Morrison V.S. Mutch P.J. Richards S.A. Sasse R. Smith C.E. Synthesis and structure-activity relationships of long-acting β 2 adrenergic receptor agonists incorporating arylsulfonamide groups. J. Med. Chem. 2009 52 8 2280 2288 10.1021/jm801016j 19317397
    [Google Scholar]
  70. Matera M.G. Page C.P. Calzetta L. Rogliani P. Cazzola M. Pharmacology and therapeutics of bronchodilators revisited. Pharmacol. Rev. 2020 72 1 218 252 10.1124/pr.119.018150 31848208
    [Google Scholar]
  71. Aparici M. Gómez-Angelats M. Vilella D. Otal R. Carcasona C. Viñals M. Ramos I. Gavaldà A. De Alba J. Gras J. Cortijo J. Morcillo E. Puig C. Ryder H. Beleta J. Miralpeix M. Pharmacological characterization of abediterol, a novel inhaled β(2)-adrenoceptor agonist with long duration of action and a favorable safety profile in preclinical models. J. Pharmacol. Exp. Ther. 2012 342 2 497 509 10.1124/jpet.112.193284 22588259
    [Google Scholar]
  72. Crim C. Gotfried M. Spangenthal S. Watkins M. Emmett A. Crawford C. Baidoo C. Castro-Santamaria R. A randomized, controlled, repeat-dose study of batefenterol/fluticasone furoate compared with placebo in the treatment of COPD. BMC Pulm. Med. 2020 20 1 119 10.1186/s12890‑020‑1153‑7 32366249
    [Google Scholar]
  73. Lo Bello F. Hansbro P.M. Donovan C. Coppolino I. Mumby S. Adcock I.M. Caramori G. New drugs under development for COPD. Expert Opin. Emerg. Drugs 2020 25 4 419 431 10.1080/14728214.2020.1819982 32882146
    [Google Scholar]
  74. Glossop P.A. Lane C.A.L. Price D.A. Bunnage M.E. Lewthwaite R.A. James K. Brown A.D. Yeadon M. Perros-Huguet C. Trevethick M.A. Clarke N.P. Webster R. Jones R.M. Burrows J.L. Feeder N. Taylor S.C.J. Spence F.J. Inhalation by design: Novel ultra-long-acting β(2)-adrenoreceptor agonists for inhaled once-daily treatment of asthma and chronic obstructive pulmonary disease that utilize a sulfonamide agonist headgroup. J. Med. Chem. 2010 53 18 6640 6652 10.1021/jm1005989 20804199
    [Google Scholar]
  75. Mickle Travis Krishnan Suma. Bishop Barney. Lauderback Christopher. Moncrief James Scott Oberlender Robert. Piccariello Thomas Paul Bernhard J. Verbicky Christopher A Abuse-resistant amphetamine prodrugs. U.S. Patent 7.659,253 B2 2010
  76. Aparici M. Carcasona C. Ramos I. Montero J.L. Ortiz J.L. Cortijo J. Puig C. Vilella D. Doe C. Gavaldà A. Miralpeix M. Pharmacological preclinical characterization of LAS190792, a novel inhaled bifunctional muscarinic receptor antagonist/β2-adrenoceptor agonist (MABA) molecule. Pulm. Pharmacol. Ther. 2017 46 1 10 10.1016/j.pupt.2017.07.003 28729041
    [Google Scholar]
  77. Milara J. Contreras S. de Diego A. Calbet M. Aparici M. Morcillo E. Miralpeix M. Cortijo J. In vitro anti-inflammatory effects of AZD8999, a novel bifunctional muscarinic acetylcholine receptor antagonist/β2-adrenoceptor agonist (MABA) compound in neutrophils from COPD patients. PLoS One 2019 14 1 e0210188 10.1371/journal.pone.0210188 30608978
    [Google Scholar]
  78. Include the corrected Reference as: Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention (2020 410 update) 2020 Available from:https://ginasthma.org/wp-content/uploads/2020/04/GINA-2020-full-report_-final-_wms.pdf
    [Google Scholar]
  79. Laurent C. Phenethanolamine derivatives as beta-2 adrenoreceptor agonists U.S. Patent EP001577291A1 2005
    [Google Scholar]
  80. Global initiative for chronic obstructive lung. 2017 Available from: https://goldcopd.org/
  81. Barnes P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2008 8 3 183 192 10.1038/nri2254 18274560
    [Google Scholar]
  82. Asthma COPD and Asthma - COPD overlap syndrome chromeextension. 2016 Available from:https://goldcopd.org/wp-content/uploads/2016/04/GOLD_ACOS_2015.pdf
  83. Caramori G. Casolari P. Barczyk A. Durham A.L. Di Stefano A. Adcock I. COPD immunopathology. Semin. Immunopathol. 2016 38 4 497 515 10.1007/s00281‑016‑0561‑5 27178410
    [Google Scholar]
  84. Busse W.W. Shah S.R. Somerville L. Parasuraman B. Martin P. Goldman M. Comparison of adjustable- and fixed-dose budesonide/formoterol pressurized metered-dose inhaler and fixed dose fluticasone propionate/salmeterol dry powder inhaler in asthma patients J. Allergy Clin. Immunol. 2008 121 (6) 1407 1414 e6, 1414.e1-1414.e6. 10.1016/j.jaci.2008.03.019 18455221
    [Google Scholar]
  85. Welte T. Optimising treatment for COPD - New strategies for combination therapy. Int. J. Clin. Pract. 2009 63 8 1136 1149 10.1111/j.1742‑1241.2009.02139.x 19624783
    [Google Scholar]
  86. Rana N. Grover P. Singh H. Recent developments and future perspectives of purine derivatives as a promising scaffold in drug discovery. Curr. Top. Med. Chem. 2024 24 6 541 579 10.2174/0115680266290152240110074034 38288806
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575398230251001073434
Loading
/content/journals/mrmc/10.2174/0113895575398230251001073434
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test