Skip to content
2000
Volume 25, Issue 22
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Inflammatory Bowel Disease (IBD), which includes ulcerative colitis and Crohn’s disease, accounts for chronic inflammation in the entire gastrointestinal tract. Conventional treatments, such as amino salicylates, corticosteroids, immunomodulators, and biologics, can all alleviate symptoms; however, they may cause unwanted side effects and are extremely expensive. Most of the time, long-term treatment is also less effective. This review aims to discuss natural products (NPs) with therapeutic potential for IBD, emphasizing flavonoids, terpenoids, polysaccharides, and alkaloids. The compounds have been chosen based on literature reporting anti-inflammatory, antioxidative, and immunomodulatory activities that relate to IBD pathophysiology. Preclinical evidence using and models and available clinical data provides the basis for the main pharmacological effects, mechanisms of action, and safety profiles of these NPs. The key molecular pathways that are targeted include the NF-κB, MAPK, and JAK/STAT signaling pathways, as well as the establishment of the gut microbiota and intestinal barrier functions. Standardization, bioavailability, and maximal dosing remain challenging issues even when experimental models show promising results for various NPs. Hence, this review stresses the urgency for well-designed clinical trials and suitable formulation approaches to translate these observations into efficacious and evidence-based therapies. Being a natural remedy option, NPs could be considered complementary or alternative treatments for IBD, demanding further interrogation within an integrated therapeutic paradigm.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575405061250923110348
2025-10-15
2026-02-21
Loading full text...

Full text loading...

References

  1. ParkS.C. JeenY.T. Genetic studies of inflammatory bowel disease-focusing on Asian patients.Cells20198540410.3390/cells8050404 31052430
    [Google Scholar]
  2. LarabiA. BarnichN. NguyenH.T.T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD.Autophagy2020161385110.1080/15548627.2019.1635384 31286804
    [Google Scholar]
  3. LeeM. ChangE.B. Inflammatory bowel diseases (IBD) and the microbiome—searching the crime scene for clues.Gastroenterology2021160252453710.1053/j.gastro.2020.09.056 33253681
    [Google Scholar]
  4. AlatabS. SepanlouS.G. IkutaK. VahediH. BisignanoC. SafiriS. SadeghiA. NixonM.R. AbdoliA. AbolhassaniH. AlipourV. AlmadiM.A.H. Almasi-HashianiA. AnushiravaniA. ArablooJ. AtiqueS. AwasthiA. BadawiA. BaigA.A.A. BhalaN. BijaniA. BiondiA. BorzìA.M. BurkeK.E. CarvalhoF. DaryaniA. DubeyM. EftekhariA. FernandesE. FernandesJ.C. FischerF. Haj-MirzaianA. Haj-MirzaianA. HasanzadehA. HashemianM. HayS.I. HoangC.L. HousehM. IlesanmiO.S. Jafari BalalamiN. JamesS.L. KengneA.P. MalekzadehM.M. MeratS. MeretojaT.J. MestrovicT. MirrakhimovE.M. MirzaeiH. MohammadK.A. MokdadA.H. MonastaL. NegoiI. NguyenT.H. NguyenC.T. PourshamsA. PoustchiH. RabieeM. RabieeN. RamezanzadehK. RawafD.L. RawafS. RezaeiN. RobinsonS.R. RonfaniL. SaxenaS. SepehrimaneshM. ShaikhM.A. SharafiZ. SharifM. SiabaniS. SimaA.R. SinghJ.A. SoheiliA. SotoudehmaneshR. SuleriaH.A.R. TesfayB.E. TranB. TsoiD. VacanteM. WondmienehA.B. ZarghiA. ZhangZ-J. DiracM. MalekzadehR. NaghaviM. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017.Lancet Gastroenterol. Hepatol.2020511730.GBD2017 Inflammatory Bowel Disease Collaborators.10.1016/S2468‑1253(19)30333‑4 31648971
    [Google Scholar]
  5. MolodeckyN.A. SoonI.S. RabiD.M. GhaliW.A. FerrisM. ChernoffG. BenchimolE.I. PanaccioneR. GhoshS. BarkemaH.W. KaplanG.G. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review.Gastroenterology201214214654.e4210.1053/j.gastro.2011.10.001 22001864
    [Google Scholar]
  6. MakW.Y. ZhaoM. NgS.C. BurischJ. The epidemiology of inflammatory bowel disease: East meets west.J. Gastroenterol. Hepatol.202035338038910.1111/jgh.14872 31596960
    [Google Scholar]
  7. KotzeP.G. UnderwoodF.E. DamiãoA.O.M.C. FerrazJ.G.P. Saad-HossneR. ToroM. IadeB. Bosques-PadillaF. TeixeiraF.V. Juliao-BanosF. SimianD. GhoshS. PanaccioneR. NgS.C. KaplanG.G. Progression of inflammatory bowel diseases throughout Latin America and the Caribbean: A systematic review.Clin. Gastroenterol. Hepatol.202018230431210.1016/j.cgh.2019.06.030 31252191
    [Google Scholar]
  8. VerstocktB. FerranteM. VermeireS. Van AsscheG. New treatment options for inflammatory bowel diseases.J. Gastroenterol.201853558559010.1007/s00535‑018‑1449‑z 29556726
    [Google Scholar]
  9. KennedyN.A. HeapG.A. GreenH.D. HamiltonB. BewsheaC. WalkerG.J. ThomasA. NiceR. PerryM.H. BouriS. ChanchlaniN. HeerasingN.M. HendyP. LinS. GayaD.R. CummingsJ.R.F. SelingerC.P. LeesC.W. HartA.L. ParkesM. SebastianS. MansfieldJ.C. IrvingP.M. LindsayJ. RussellR.K. McDonaldT.J. McGovernD. GoodhandJ.R. AhmadT. PatelV. MazharZ. SaichR. ColleypriestB. ThamT.C. IqbalT.H. KaushikV. MurugesanS. SinghS. WeaverS. PrestonC. ButtA. SmithM. BasudeD. BealeA. LanglandsS. DirekzeN. ParkesM. TorrenteF. De La Revella NegroJ. MacDonaldC.E. EvansS.M. GunasekeraA.V.J. ThakurA. ElphickD. ShenoyA. NwokoloC.U. DharA. ColeA.T. AgrawalA. BridgerS. DohertyJ. CooperS.C. de SilvaS. MowatC. MayheadP. LeesC. JonesG. AhmadT. HartJ.W. GayaD.R. RussellR.K. GervaisL. DunckleyP. MahmoodT. BanimP.J.R. SonwalkarS. GhoshD. PhillipsR.H. AzazA. SebastianS. ShendereyR. ArmstrongL. BellC. HarirajR. MatthewsH. JafferbhoyH. SelingerC.P. ZamvarV. De CaesteckerJ.S. WillmottA. MillerR. BabuP.S. TzivinikosC. BloomS.L. Chung-FayeG. CroftN.M. FellJ.M.E. HarbordM. HartA. HopeB. IrvingP.M. LindsayJ.O. MawdsleyJ.E. McNairA. MonahanK.J. MurrayC.D. OrchardT. PaulT. PollokR. ShahN. BouriS. JohnsonM.W. ModiA. KabiruK.D. BaburajanB.K. BhaduriB. FagbemiA.A. LevisonS. LimdiJ.K. WattsG. FoleyS. RamadasA. MacFaulG. MansfieldJ. GrellierL. MorrisM-A. TremellingM. HawkeyC. KirkhamS. CharltonC.P.J. RodriguesA. SimmonsA. LewisS.J. SnookJ. TigheM. GogginP.M. De SilvaA.N. LalS. SmithM.S. PanterS. CummingsJ.R.F. DharmisariS. CarterM. WattsD. MahmoodZ. McLainB. SenS. PigottA.J. HobdayD. WesleyE. JohnstonR. EdwardsC. BecklyJ. VaniD. RamakrishnanS. ChaudharyR. TrudgillN.J. CooneyR. BellA. PrasadN. GordonJ.N. BrookesM.J. LiA. GoreS. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: A prospective, multicentre, cohort study.Lancet Gastroenterol. Hepatol.201945341353UK Inflammatory Bowel Disease Pharmacogenetics Study Group.10.1016/S2468‑1253(19)30012‑3 30824404
    [Google Scholar]
  10. DaneseS. FurfaroF. VetranoS. Targeting S1P in inflammatory bowel disease: new avenues for modulating intestinal leukocyte migration.J. Crohn’s Colitis201812Suppl. 2S678S68610.1093/ecco‑jcc/jjx107 28961752
    [Google Scholar]
  11. ZaidunN.H. ThentZ.C. LatiffA.A. Combating oxidative stress disorders with citrus flavonoid: Naringenin.Life Sci.201820811112210.1016/j.lfs.2018.07.017 30021118
    [Google Scholar]
  12. Den HartoghD.J. TsianiE. Antidiabetic properties of naringenin: A citrus fruit polyphenol.Biomolecules2019939910.3390/biom9030099 30871083
    [Google Scholar]
  13. Pinho-RibeiroF.A. ZarpelonA.C. FattoriV. ManchopeM.F. MizokamiS.S. CasagrandeR. VerriW.A. Naringenin reduces inflammatory pain in mice.Neuropharmacology201610550851910.1016/j.neuropharm.2016.02.019 26907804
    [Google Scholar]
  14. ZengW. JinL. ZhangF. ZhangC. LiangW. Naringenin as a potential immunomodulator in therapeutics.Pharmacol. Res.201813512212610.1016/j.phrs.2018.08.002 30081177
    [Google Scholar]
  15. ZobeiriM. BelwalT. ParviziF. NaseriR. FarzaeiM.H. NabaviS.F. SuredaA. NabaviS.M. Naringenin and its nano-formulations for fatty liver: Cellular modes of action and clinical perspective.Curr. Pharm. Biotechnol.201819319620510.2174/1389201019666180514170122 29766801
    [Google Scholar]
  16. DouW. ZhangJ. SunA. ZhangE. DingL. MukherjeeS. WeiX. ChouG. WangZ.T. ManiS. Protective effect of naringenin against experimental colitis via suppression of toll-like receptor 4/NF-κB signalling.Br. J. Nutr.2013110459960810.1017/S0007114512005594 23506745
    [Google Scholar]
  17. FathimaA. RaoJ.R. Selective toxicity of Catechin—A natural flavonoid towards bacteria.Appl. Microbiol. Biotechnol.2016100146395640210.1007/s00253‑016‑7492‑x 27052380
    [Google Scholar]
  18. Martínez LealJ. Valenzuela SuárezL. JayabalanR. Huerta OrosJ. Escalante-AburtoA. A review on health benefits of kombucha nutritional compounds and metabolites.CYTA J. Food201816139039910.1080/19476337.2017.1410499
    [Google Scholar]
  19. CardosoR.R. NetoR.O. dos Santos D’AlmeidaC.T. do NascimentoT.P. PresseteC.G. AzevedoL. MartinoH.S.D. CameronL.C. FerreiraM.S.L. BarrosF.A.R. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities.Food Res. Int.202012810878210.1016/j.foodres.2019.108782 31955755
    [Google Scholar]
  20. MasciaC. MainaM. ChiarpottoE. LeonarduzziG. PoliG. BiasiF. Proinflammatory effect of cholesterol and its oxidation products on CaCo-2 human enterocyte-like cells: Effective protection by epigallocatechin-3-gallate.Free Radic. Biol. Med.201049122049205710.1016/j.freeradbiomed.2010.09.033 20923702
    [Google Scholar]
  21. SergentT. PirontN. MeuriceJ. ToussaintO. SchneiderY.J. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium.Chem. Biol. Interact.2010188365966710.1016/j.cbi.2010.08.007 20816778
    [Google Scholar]
  22. BingX. XueleiL. WanweiD. LinlangL. KeyanC. EGCG maintains Th1/Th2 balance and mitigates ulcerative colitis induced by dextran sulfate sodium through TLR4/MyD88/NF‐κB signaling pathway in rats.Can. J. Gastroenterol. Hepatol.2017201711910.1155/2017/3057268 29404307
    [Google Scholar]
  23. ChenY. LeT.H. DuQ. ZhaoZ. LiuY. ZouJ. HuaW. LiuC. ZhuY. Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling.Int. Immunopharmacol.20197114415410.1016/j.intimp.2019.01.021 30901677
    [Google Scholar]
  24. XueB. XieJ. HuangJ. ChenL. GaoL. OuS. WangY. PengX. Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro.Food Funct.2016731501150710.1039/C5FO01438G 26882962
    [Google Scholar]
  25. BitzerZ.T. EliasR.J. Vijay-KumarM. LambertJ.D. (‐)‐Epigallocatechin‐3‐gallate decreases colonic inflammation and permeability in a mouse model of colitis, but reduces macronutrient digestion and exacerbates weight loss.Mol. Nutr. Food Res.201660102267227410.1002/mnfr.201501042 27218415
    [Google Scholar]
  26. GuanF. LiuA.B. LiG. YangZ. SunY. YangC.S. JuJ. Deleterious effects of high concentrations of (-)-epigallocatechin-3-gallate and atorvastatin in mice with colon inflammation.Nutr. Cancer201264684785510.1080/01635581.2012.695424 22716294
    [Google Scholar]
  27. DrydenG.W. LamA. BeattyK. QazzazH.H. McClainC.J. A pilot study to evaluate the safety and efficacy of an oral dose of (-)-epigallocatechin-3-gallate-rich polyphenon E in patients with mild to moderate ulcerative colitis.Inflamm. Bowel Dis.2013199110.1097/MIB.0b013e31828f5198 23846486
    [Google Scholar]
  28. LiuD. WuJ. XieH. LiuM. TakauI. ZhangH. XiongY. XiaC. Inhibitory effect of hesperetin and on human UDP-glucuronosyltransferase enzymes: Implications for herb–drug interactions.Biol. Pharm. Bull.201639122052205910.1248/bpb.b16‑00581 27904048
    [Google Scholar]
  29. ShirzadM. HeidarianE. BeshkarP. Gholami-ArjenakiM. Biological effects of hesperetin on interleukin-6/phosphorylated signal transducer and activator of transcription 3 pathway signaling in prostate cancer PC3 cells.Pharmacognosy Res.201792188194 28539744
    [Google Scholar]
  30. González-AlfonsoJ. MíguezN. PadillaJ. LeemansL. PovedaA. Jiménez-BarberoJ. BallesterosA. SandovalG. PlouF. Optimization of regioselective α-glucosylation of hesperetin catalyzed by cyclodextrin glucanotransferase.Molecules20182311288510.3390/molecules23112885 30400664
    [Google Scholar]
  31. ParhizH. RoohbakhshA. SoltaniF. RezaeeR. IranshahiM. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models.Phytother. Res.201529332333110.1002/ptr.5256 25394264
    [Google Scholar]
  32. Alu’dattM.H. RababahT. AlhamadM.N. Al-MahasnehM.A. EreifejK. Al-KarakiG. Al-DuaisM. AndradeJ.E. TranchantC.C. KubowS. GhozlanK.A. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: Content, and antioxidant, anti-diabetic and anti-hypertensive properties.Food Funct.2017893187319710.1039/C7FO00212B 28805834
    [Google Scholar]
  33. ChenF. YinY. LiuY. LiuX. LiuF. ZhangX. ZhaoH. LiuD. Oxymatrine alleviates the inflammatory damage and its mechanism in rats with TNBS-induced colitis. Xi bao yu fen zi Mian yi xue za zhi= Chinese.J. Cell. Mol. Immunol.201935115
    [Google Scholar]
  34. LiQ. MiaoZ. WangR. YangJ. ZhangD. Hesperetin induces apoptosis in human glioblastoma cells via p38 MAPK activation.Nutr. Cancer202072353854510.1080/01635581.2019.1638424 31295040
    [Google Scholar]
  35. ElhennawyM.G. AbdelaleemE.A. ZakiA.A. MohamedW.R. Cinnamaldehyde and hesperetin attenuate TNBS‐induced ulcerative colitis in rats through modulation of the JAk2/STAT3/SOCS3 pathway.J. Biochem. Mol. Toxicol.2021355e2273010.1002/jbt.22730 33522063
    [Google Scholar]
  36. PolatF.R. KaraboğaI. PolatM.S. ErboğaZ. YilmazA. GüzelS. Effect of hesperetin on inflammatory and oxidative status in trinitrobenzene sulfonic acid-induced experimental colitis model.Cell. Mol. Biol.20186411586510.14715/cmb/2018.64.11.11 30213290
    [Google Scholar]
  37. GuazelliC.F.S. FattoriV. FerrazC.R. BorghiS.M. CasagrandeR. BaracatM.M. VerriW.A. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis.Chem. Biol. Interact.202133310931510.1016/j.cbi.2020.109315 33171134
    [Google Scholar]
  38. ErlundI. MeririnneE. AlfthanG. AroA. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice.J. Nutr.2001131223524110.1093/jn/131.2.235 11160539
    [Google Scholar]
  39. GanaiA.A. FarooqiH. Bioactivity of genistein: A review of in vitro and in vivo studies.Biomed. Pharmacother.201576303810.1016/j.biopha.2015.10.026 26653547
    [Google Scholar]
  40. SahinI. BilirB. AliS. SahinK. KucukO. Soy isoflavones in integrative oncology: Increased efficacy and decreased toxicity of cancer therapy.Integr. Cancer Ther.201918153473541983531010.1177/1534735419835310 30897972
    [Google Scholar]
  41. SefrinaL.R. BriawanD. SinagaT. PermaesihD. Flavonoid database based on Indonesian foods.J. Nutr. Sci. Vitaminol.202066Suppl.S251S25510.3177/jnsv.66.S251 33612606
    [Google Scholar]
  42. SpagnuoloC. RussoG.L. OrhanI.E. HabtemariamS. DagliaM. SuredaA. NabaviS.F. DeviK.P. LoizzoM.R. TundisR. NabaviS.M. Genistein and cancer: Current status, challenges, and future directions.Adv. Nutr.20156440841910.3945/an.114.008052 26178025
    [Google Scholar]
  43. ChenQ. DuanX. FanH. XuM. TangQ. ZhangL. ShouZ. LiuX. ZuoD. YangJ. DengS. DongY. WuH. LiuY. NanZ. Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway.Int. Immunopharmacol.20175314915710.1016/j.intimp.2017.10.025 29107215
    [Google Scholar]
  44. AbronJ.D. SinghN.P. PriceR.L. NagarkattiM. NagarkattiP.S. SinghU.P. Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis.PLoS One2018137e019963110.1371/journal.pone.0199631 30024891
    [Google Scholar]
  45. CaoW. KayamaH. ChenM.L. DelmasA. SunA. KimS.Y. RangarajanE.S. McKevittK. BeckA.P. JacksonC.B. CrynenG. OikonomopoulosA. LaceyP.N. MartinezG.J. IzardT. LorenzR.G. Rodriguez-PalaciosA. CominelliF. AbreuM.T. HommesD.W. KoralovS.B. TakedaK. SundrudM.S. The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids.Immunity201747611821196.e1010.1016/j.immuni.2017.11.012 29262351
    [Google Scholar]
  46. SchneiderL.S. HernandezG. ZhaoL. FrankeA.A. ChenY.L. PawluczykS. MackW.J. BrintonR.D. Safety and feasibility of estrogen receptor-β targeted phytoSERM formulation for menopausal symptoms: Phase 1b/2a randomized clinical trial.Menopause201926887488410.1097/GME.0000000000001325 30889096
    [Google Scholar]
  47. JaakolaL. New insights into the regulation of anthocyanin biosynthesis in fruits.Trends Plant Sci.201318947748310.1016/j.tplants.2013.06.003 23870661
    [Google Scholar]
  48. SuiX. ZhangY. ZhouW. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility.Food Chem.201619691091610.1016/j.foodchem.2015.09.113 26593572
    [Google Scholar]
  49. SilvaS. CostaE.M. CalhauC. MoraisR.M. PintadoM.E. Anthocyanin extraction from plant tissues: A review.Crit. Rev. Food Sci. Nutr.201757143072308310.1080/10408398.2015.1087963 26529399
    [Google Scholar]
  50. FangJ. Bioavailability of anthocyanins.Drug Metab. Rev.201446450852010.3109/03602532.2014.978080 25347327
    [Google Scholar]
  51. ChunO.K. ChungS.J. SongW.O. Estimated dietary flavonoid intake and major food sources of U.S. adults.J. Nutr.200713751244125210.1093/jn/137.5.1244 17449588
    [Google Scholar]
  52. Del RioD. BorgesG. CrozierA. Berry flavonoids and phenolics: Bioavailability and evidence of protective effects.Br. J. Nutr.2010104S3S67S9010.1017/S0007114510003958 20955651
    [Google Scholar]
  53. SharmaP. McCleesS. AfaqF. Pomegranate for prevention and treatment of cancer: An update.Molecules201722117710.3390/molecules22010177 28125044
    [Google Scholar]
  54. ThumannT.A. Pferschy-WenzigE.M. Moissl-EichingerC. BauerR. The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders.J. Ethnopharmacol.201924511215310.1016/j.jep.2019.112153 31408679
    [Google Scholar]
  55. TianL. TanY. ChenG. WangG. SunJ. OuS. ChenW. BaiW. Metabolism of anthocyanins and consequent effects on the gut microbiota.Crit. Rev. Food Sci. Nutr.201959698299110.1080/10408398.2018.1533517 30595029
    [Google Scholar]
  56. KhanM.S. IkramM. ParkJ.S. ParkT.J. KimM.O. Gut microbiota, its role in induction of Alzheimer’s disease pathology, and possible therapeutic interventions: Special focus on anthocyanins.Cells20209485310.3390/cells9040853 32244729
    [Google Scholar]
  57. PengY. YanY. WanP. ChenD. DingY. RanL. MiJ. LuL. ZhangZ. LiX. ZengX. CaoY. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice.Free Radic. Biol. Med.20191369610810.1016/j.freeradbiomed.2019.04.005 30959170
    [Google Scholar]
  58. WuL.H. XuZ.L. DongD. HeS.A. YuH. Protective effect of anthocyanins extract from blueberry on TNBS‐induced IBD model of mice.Evid. Based Complement. Alternat. Med.20112011152546210.1093/ecam/neq040 21785630
    [Google Scholar]
  59. PibergerH. OehmeA. HofmannC. DreiseitelA. SandP.G. ObermeierF. SchoelmerichJ. SchreierP. KrammerG. RoglerG. Bilberries and their anthocyanins ameliorate experimental colitis.Mol. Nutr. Food Res.201155111724172910.1002/mnfr.201100380 21957076
    [Google Scholar]
  60. JiaoY.F. LuM. ZhaoY.P. LiuN. NiuY.T. NiuY. ZhouR. YuJ.Q. N-methylcytisine ameliorates dextran-sulfate-sodium-induced colitis in mice by inhibiting the inflammatory response.Molecules201823351010.3390/molecules23030510 29495327
    [Google Scholar]
  61. NomiY. Iwasaki-KurashigeK. MatsumotoH. Therapeutic effects of anthocyanins for vision and eye health.Molecules20192418331110.3390/molecules24183311 31514422
    [Google Scholar]
  62. LaiY. ZengH. HeM. QianH. WuZ. LuoZ. XueY. YaoG. ZhangY. 6,8-Di-C-methyl-flavonoids with neuroprotective activities from Rhododendron fortunei.Fitoterapia201611223724310.1016/j.fitote.2016.06.008 27345941
    [Google Scholar]
  63. NishitaniY. YamamotoK. YoshidaM. AzumaT. KanazawaK. HashimotoT. MizunoM. Intestinal anti‐inflammatory activity of luteolin: Role of the aglycone in NF‐κB inactivation in macrophages co‐cultured with intestinal epithelial cells.Biofactors201339552253310.1002/biof.1091 23460110
    [Google Scholar]
  64. RanX. LiY. ChenG. FuS. HeD. HuangB. WeiL. LinY. GuoY. HuG. Farrerol ameliorates TNBS-induced colonic inflammation by inhibiting ERK1/2, JNK1/2, and NF-κB signaling pathway.Int. J. Mol. Sci.2018197203710.3390/ijms19072037 30011811
    [Google Scholar]
  65. ShiH.J. SongH.B. WangL. XiaoS.X. BoK.P. MaW. The synergy of diammonium glycyrrhizinate remarkably reduces the toxicity of oxymatrine in ICR mice.Biomed. Pharmacother.201897192510.1016/j.biopha.2017.09.039 29080454
    [Google Scholar]
  66. TaoF. QianC. GuoW. LuoQ. XuQ. SunY. Inhibition of Th1/Th17 responses via suppression of STAT1 and STAT3 activation contributes to the amelioration of murine experimental colitis by a natural flavonoid glucoside icariin.Biochem. Pharmacol.201385679880710.1016/j.bcp.2012.12.002 23261528
    [Google Scholar]
  67. JuS. GeY. LiP. TianX. WangH. ZhengX. JuS. Dietary quercetin ameliorates experimental colitis in mouse by remodeling the function of colonic macrophages via a heme oxygenase-1-dependent pathway.Cell Cycle2018171536310.1080/15384101.2017.1387701 28976231
    [Google Scholar]
  68. HeC. WangZ. ShiJ. Pharmacological effects of icariin.Adv. Pharmacol.20208717920310.1016/bs.apha.2019.10.004 32089233
    [Google Scholar]
  69. HuangY. XingK. QiuL. WuQ. WeiH. Therapeutic implications of functional tea ingredients for ameliorating inflammatory bowel disease: A focused review.Crit. Rev. Food Sci. Nutr.202262195307532110.1080/10408398.2021.1884532 33635174
    [Google Scholar]
  70. LiuC. WangJ. YangY. LiuX. ZhuY. ZouJ. PengS. LeT.H. ChenY. ZhaoS. HeB. MiQ. ZhangX. DuQ. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice.Biochem. Pharmacol.201815536637910.1016/j.bcp.2018.07.010 30012462
    [Google Scholar]
  71. KimJ.K. KimJ.Y. JangS.E. ChoiM.S. JangH.M. YooH.H. KimD.H. Fermented red ginseng alleviates cyclophosphamide-induced immunosuppression and 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis in mice by regulating macrophage activation and T cell differentiation.Am. J. Chin. Med.20184681879189710.1142/S0192415X18500945 30518233
    [Google Scholar]
  72. XuL. ZhangY. XueX. LiuJ. LiZ.S. YangG.Y. SongY. PanY. MaY. HuS. WenA. JiaY. RodriguezL.M. TullM.B. BenanteK. KhanS.A. CaoY. JovanovicB. RichmondE. UmarA. BerganR. WuK. A phase I trial of berberine in Chinese with ulcerative colitis.Cancer Prev. Res.202013111712610.1158/1940‑6207.CAPR‑19‑0258 31619442
    [Google Scholar]
  73. LeeS.Y. JeongJ.J. EunS.H. KimD.H. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis.Eur. J. Pharmacol.201576233334310.1016/j.ejphar.2015.06.011 26054809
    [Google Scholar]
  74. RyukJ.A. ZhengM.S. LeeM.Y. SeoC.S. LiY. LeeS.H. MoonD.C. LeeH.W. LeeJ.H. ParkJ.Y. SonJ.K. KoB.S. Discrimination of Phellodendron amurense and P. chinense based on DNA analysis and the simultaneous analysis of alkaloids.Arch. Pharm. Res.20123561045105410.1007/s12272‑012‑0612‑y 22870814
    [Google Scholar]
  75. YeH. WuQ. ZhuY. GuoC. ZhengX. Ginsenoside Rh2 alleviates dextran sulfate sodium-induced colitis via augmenting TGFβ signaling.Mol. Biol. Rep.20144185485549010.1007/s11033‑014‑3422‑0 24893598
    [Google Scholar]
  76. TianM. MaP. ZhangY. MiY. FanD. Ginsenoside Rk3 alleviated DSS-induced ulcerative colitis by protecting colon barrier and inhibiting NLRP3 inflammasome pathway.Int. Immunopharmacol.20208510664510.1016/j.intimp.2020.106645 32521491
    [Google Scholar]
  77. JohE.H. LeeI.A. JungI.H. KimD.H. Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation—The key step of inflammation.Biochem. Pharmacol.201182327828610.1016/j.bcp.2011.05.003 21600888
    [Google Scholar]
  78. YangN. LiangG. LinJ. ZhangS. LinQ. JiX. ChenH. LiN. JinS. Ginsenoside Rd therapy improves histological and functional recovery in a rat model of inflammatory bowel disease.Phytother. Res.202034113019302810.1002/ptr.6734 32468636
    [Google Scholar]
  79. ZhangA. WangH. SunH. ZhangY. AnN. YanG. MengX. WangX. Metabolomics strategy reveals therapeutical assessment of limonin on nonbacterial prostatitis.Food Funct.20156113540354910.1039/C5FO00489F 26302114
    [Google Scholar]
  80. CuiH. CaiY. WangL. JiaB. LiJ. ZhaoS. ChuX. LinJ. ZhangX. BianY. ZhuangP. Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon.Front. Pharmacol.2018957110.3389/fphar.2018.00571 29904348
    [Google Scholar]
  81. FanS. ZhangC. LuoT. WangJ. TangY. ChenZ. YuL. Limonin: A review of its pharmacology, toxicity, and pharmacokinetics.Molecules20192420367910.3390/molecules24203679 31614806
    [Google Scholar]
  82. LiuS. ZhangS. LvX. LuJ. RenC. ZengZ. ZhengL. ZhouX. FuH. ZhouD. ChenY. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway.Int. Immunopharmacol.20197510576810.1016/j.intimp.2019.105768 31382166
    [Google Scholar]
  83. ChrzanowskiJ. ChrzanowskaA. GrabońW. Glycyrrhizin: An old weapon against a novel coronavirus.Phytother. Res.202135262963610.1002/ptr.6852 32902005
    [Google Scholar]
  84. LvJ. ZhangY. TianZ. LiuF. ShiY. LiuY. XiaP. Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-κB activation.Int. J. Biol. Macromol.20179872372910.1016/j.ijbiomac.2017.02.024 28188801
    [Google Scholar]
  85. StronatiL. PaloneF. NegroniA. ColantoniE. MancusoA.B. CucchiaraS. CesiV. IsoldiS. VitaliR. Dipotassium glycyrrhizate improves intestinal mucosal healing by modulating extracellular matrix remodeling genes and restoring epithelial barrier functions.Front. Immunol.20191093910.3389/fimmu.2019.00939 31105713
    [Google Scholar]
  86. KudoT. OkamuraS. ZhangY. MasuoT. MoriM. Topical application of glycyrrhizin preparation ameliorates experimentally induced colitis in rats.World J. Gastroenterol.201117172223222810.3748/wjg.v17.i17.2223 21633533
    [Google Scholar]
  87. de PutterR. DonckJ. Low-dose liquorice ingestion resulting in severe hypokalaemic paraparesis, rhabdomyolysis and nephrogenic diabetes insipidus.Clin. Kidney J.201471737510.1093/ckj/sft159 25859357
    [Google Scholar]
  88. JinM. ZhaoK. HuangQ. ShangP. Structural features and biological activities of the polysaccharides from Astragalus membranaceus.Int. J. Biol. Macromol.20146425726610.1016/j.ijbiomac.2013.12.002 24325861
    [Google Scholar]
  89. AuyeungK.K. HanQ.B. KoJ.K. Astragalus membranaceus: A review of its protection against inflammation and gastrointestinal cancers.Am. J. Chin. Med.201644112210.1142/S0192415X16500014 26916911
    [Google Scholar]
  90. YangH. LiY. WuW. SunQ. ZhangY. ZhaoW. LvH. XiaQ. HuP. LiH. QianJ. The incidence of inflammatory bowel disease in Northern China: A prospective population-based study.PLoS One201497e10129610.1371/journal.pone.0101296 25029440
    [Google Scholar]
  91. YanX. LuQ.G. ZengL. LiX.H. LiuY. DuX.F. BaiG.M. Synergistic protection of astragalus polysaccharides and matrine against ulcerative colitis and associated lung injury in rats.World J. Gastroenterol.2020261556910.3748/wjg.v26.i1.55 31933514
    [Google Scholar]
  92. FlórezN. Gonzalez-MunozM. RibeiroD. FernandesE. DominguezH. FreitasM. Algae polysaccharides’ chemical characterization and their role in the inflammatory process.Curr. Med. Chem.201724214917510.2174/0929867323666161028160416 27804878
    [Google Scholar]
  93. RiouxJ.D. XavierR.J. TaylorK.D. SilverbergM.S. GoyetteP. HuettA. GreenT. KuballaP. BarmadaM.M. DattaL.W. ShugartY.Y. GriffithsA.M. TarganS.R. IppolitiA.F. BernardE.J. MeiL. NicolaeD.L. RegueiroM. SchummL.P. SteinhartA.H. RotterJ.I. DuerrR.H. ChoJ.H. DalyM.J. BrantS.R. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis.Nat. Genet.200739559660410.1038/ng2032 17435756
    [Google Scholar]
  94. XiaE.Q. CuiB. XuX.R. SongY. AiX.X. LiH.B. Microwave-assisted extraction of oxymatrine from Sophora flavescens.Molecules20111697391740010.3390/molecules16097391 21878859
    [Google Scholar]
  95. CaoX. HeQ. Anti-tumor activities of bioactive phytochemicals in Sophora flavescens for breast cancer.Cancer Manag. Res.2020121457146710.2147/CMAR.S243127 32161498
    [Google Scholar]
  96. WenJ.B. ZhuF.Q. ChenW.G. JiangL.P. ChenJ. HuZ.P. HuangY.J. ZhouZ.W. WangG.L. LinH. ZhouS.F. Oxymatrine improves intestinal epithelial barrier function involving NF-κB-mediated signaling pathway in CCl4-induced cirrhotic rats.PLoS One201498e10608210.1371/journal.pone.0106082 25171482
    [Google Scholar]
  97. GuzmanJ.R. KooJ.S. GoldsmithJ.R. MühlbauerM. NarulaA. JobinC. Oxymatrine prevents NF-κB nuclear translocation and ameliorates acute intestinal inflammation.Sci. Rep.201331162910.1038/srep01629 23568217
    [Google Scholar]
  98. DaneseS. New therapies for inflammatory bowel disease: From the bench to the bedside.Gut201261691893210.1136/gutjnl‑2011‑300904 22115827
    [Google Scholar]
  99. QiuM. LiuJ. FengP. SuY. GuoR. ShiF. WangS. ZhaoB. Cytochrome P450s regulates aloperine-induced pathological changes in mouse liver and kidney.Res. Vet. Sci.20201329710010.1016/j.rvsc.2020.06.005 32544634
    [Google Scholar]
  100. WangR. DengX. GaoQ. WuX. HanL. GaoX. ZhaoS. ChenW. ZhouR. LiZ. BaiC. Sophora alopecuroides L.: An ethnopharmacological, phytochemical., and pharmacological review.J. Ethnopharmacol.202024811217210.1016/j.jep.2019.112172 31442619
    [Google Scholar]
  101. FuX. SunF. WangF. ZhangJ. ZhengB. ZhongJ. YueT. ZhengX. XuJ.F. WangC.Y. Aloperine protects mice against DSS‐induced colitis by PP2A‐mediated PI3K/Akt/mTOR signaling suppression.Mediators Inflamm.20172017111410.1155/2017/5706152 29056830
    [Google Scholar]
  102. LeeI.A. LowD. KambaA. LladoV. MizoguchiE. Oral caffeine administration ameliorates acute colitis by suppressing chitinase 3-like 1 expression in intestinal epithelial cells.J. Gastroenterol.20144981206121610.1007/s00535‑013‑0865‑3 23925589
    [Google Scholar]
  103. SenchinaD.S. HallamJ.E. KohutM.L. NguyenN.A. PereraM.A. Alkaloids and athlete immune function: Caffeine, theophylline, gingerol, ephedrine, and their congeners.Exerc. Immunol. Rev.2014206893 24974722
    [Google Scholar]
  104. SingletonE.L. LeN. NessG.L. Theophylline and caffeine as alternatives during an aminophylline shortage.Ann. Pharmacother.201953331632010.1177/1060028018806624 30304941
    [Google Scholar]
  105. ZhouB. MaC. RenX. XiaT. LiX. WuY. Production of theophylline via aerobic fermentation of pu-erh tea using tea-derived fungi.BMC Microbiol.201919126110.1186/s12866‑019‑1640‑2 31771506
    [Google Scholar]
  106. Ghasemi-PirbalutiM. MotaghiE. NajafiA. HosseiniM.J. The effect of theophylline on acetic acid induced ulcerative colitis in rats.Biomed. Pharmacother.20179015315910.1016/j.biopha.2017.03.038 28351778
    [Google Scholar]
  107. AnnamarajuP. PatelP. BaradhiK.M. Pentoxifylline.StatPearls.Treasure Island, FLStatPearls Publishing2024 32644522
    [Google Scholar]
  108. HaoY. HuoJ. WangT. SunG. WangW. Chemical profiling of Coptis rootlet and screening of its bioactive compounds in inhibiting Staphylococcus aureus by UPLC-Q-TOF/MS.J. Pharm. Biomed. Anal.202018011308910.1016/j.jpba.2019.113089 31901737
    [Google Scholar]
  109. ZhangX.J. YuanZ.W. QuC. YuX.T. HuangT. ChenP.V. SuZ.R. DouY.X. WuJ.Z. ZengH.F. XieY. ChenJ.N. Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota.Pharmacol. Res.2018137344610.1016/j.phrs.2018.09.010 30243842
    [Google Scholar]
  110. MaiC.T. WuM.M. WangC.L. SuZ.R. ChengY.Y. ZhangX.J. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation.Mol. Immunol.2019105768510.1016/j.molimm.2018.10.015 30496979
    [Google Scholar]
  111. BjarnasonI. MacphersonA.J. Delivery, safety and efficacy of 5-aminosalicylate preparations.Inflammopharmacology19932327728710.1007/BF02660618
    [Google Scholar]
  112. ReyhanE. IrkorucuO. SurmeliogluA. OzkaraS. DegerK.C. AziretM. ErdemH. CetinkunarS. DemirturkP. SehirliA.O. Efficacy of pentoxifylline and tadalafil in rat model of ischemic colitis.J. Invest. Surg.201427634935310.3109/08941939.2014.971204 25361018
    [Google Scholar]
  113. KaratayE. Gül UtkuÖ. ErdalH. ArhanM. Önalİ.K. İbi̇şM. Eki̇nci̇Ö. Yilmaz Demi̇rtaşC. DumluG.Ş. Pentoxifylline attenuates mucosal damage in an experimental model of rat colitis by modulating tissue biomarkers of inflammation, oxidative stress, and fibrosis.Turk. J. Med. Sci.201747134835610.3906/sag‑1508‑98 28263514
    [Google Scholar]
  114. DorringtonA.M. SelingerC.P. ParkesG.C. SmithM. PollokR.C. RaineT. The historical role and contemporary use of corticosteroids in inflammatory bowel disease.J. Crohn’s Colitis20201491316132910.1093/ecco‑jcc/jjaa053 32170314
    [Google Scholar]
  115. Dubois-CamachoK. OttumP.A. Franco-MuñozD. De la FuenteM. Torres-RiquelmeA. Díaz-JiménezD. Olivares-MoralesM. AstudilloG. QueraR. HermosoM.A. Glucocorticosteroid therapy in inflammatory bowel diseases: From clinical practice to molecular biology.World J. Gastroenterol.201723366628663810.3748/wjg.v23.i36.6628 29085208
    [Google Scholar]
  116. KimK.U. KimJ. KimW.H. MinH. ChoiC.H. Treatments of inflammatory bowel disease toward personalized medicine.Arch. Pharm. Res.202144329330910.1007/s12272‑021‑01318‑6 33763844
    [Google Scholar]
  117. SattlerL. HanauerS.B. MalterL. Immunomodulatory agents for treatment of patients with inflammatory bowel disease (review safety of anti-TNF, anti-integrin, anti IL-12/23, JAK inhibition, sphingosine 1-phosphate receptor modulator, azathioprine/6-MP and methotrexate).Curr. Gastroenterol. Rep.202123123010.1007/s11894‑021‑00829‑y 34913108
    [Google Scholar]
  118. CaiZ. WangS. LiJ. Treatment of inflammatory bowel disease: A comprehensive review.Front. Med.2021876547410.3389/fmed.2021.765474 34988090
    [Google Scholar]
  119. TominagaK. SugayaT. TanakaT. KanazawaM. IijimaM. IrisawaA. Thiopurines: Recent topics and their role in the treatment of inflammatory bowel diseases.Front. Pharmacol.20211158229110.3389/fphar.2020.582291 33584261
    [Google Scholar]
  120. HerfarthH.H. Methotrexate for inflammatory bowel diseases-new developments.Dig. Dis.2016341-214014610.1159/000443129 26981630
    [Google Scholar]
  121. MammoserA. Calcineurin inhibitor encephalopathy.Semin. Neurol.201232551752410.1055/s‑0033‑1334471 23677660
    [Google Scholar]
  122. ZhangW. MichalowskiC.B. BeloquiA. Oral delivery of biologics in inflammatory bowel disease treatment.Front. Bioeng. Biotechnol.2021967519410.3389/fbioe.2021.675194 34150733
    [Google Scholar]
  123. QueirozN.S.F. RegueiroM. Safety considerations with biologics and new inflammatory bowel disease therapies.Curr. Opin. Gastroenterol.202036425726410.1097/MOG.0000000000000607 31895234
    [Google Scholar]
  124. RakowskyS. PapamichaelK. CheifetzA.S. Choosing the right biologic for complications of inflammatory bowel disease.Expert Rev. Gastroenterol. Hepatol.202216323524910.1080/17474124.2022.2036122 35094628
    [Google Scholar]
  125. ZhangH.M. YuanS. MengH. HouX.T. LiJ. XueJ.C. LiY. WangQ. NanJ.X. JinX.J. ZhangQ.G. Stem cell-based therapies for inflammatory bowel disease.Int. J. Mol. Sci.20222315849410.3390/ijms23158494 35955628
    [Google Scholar]
  126. KotlarzD. BeierR. MuruganD. DiestelhorstJ. JensenO. BoztugK. PfeiferD. KreipeH. PfisterE.D. BaumannU. PuchalkaJ. BohneJ. EgritasO. DalgicB. KolhoK.L. SauerbreyA. BuderusS. GüngörT. EnningerA. KodaY.K.L. GuarisoG. WeissB. CorbaciogluS. SochaP. UsluN. MetinA. WahbehG.T. HusainK. RamadanD. Al-HerzW. GrimbacherB. SauerM. SykoraK.W. KoletzkoS. KleinC. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: Implications for diagnosis and therapy.Gastroenterology2012143234735510.1053/j.gastro.2012.04.045 22549091
    [Google Scholar]
  127. PanX. LiQ. ZhuX. LiZ. CaiX. PangR. RuanG. Mechanism and therapeutic effect of umbilical cord mesenchymal stem cells in inflammatory bowel disease.Sci. Rep.2019911764610.1038/s41598‑019‑54194‑y 31776475
    [Google Scholar]
  128. WeiH. LiuX. OuyangC. ZhangJ. ChenS. LuF. ChenL. Complications following stem cell therapy in inflammatory bowel disease.Curr. Stem Cell Res. Ther.2017126471475 28302045
    [Google Scholar]
  129. LaluM.M. McIntyreL. PuglieseC. FergussonD. WinstonB.W. MarshallJ.C. GrantonJ. StewartD.J. Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials.PLoS One2012710e4755910.1371/journal.pone.0047559 23133515
    [Google Scholar]
  130. GoughE. ShaikhH. MangesA.R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection.Clin. Infect. Dis.20115310994100210.1093/cid/cir632 22002980
    [Google Scholar]
  131. GuoB. HarstallC. LouieT. Veldhuyzen van ZantenS. DielemanL.A. Systematic review: Faecal transplantation for the treatment of Clostridium difficile ‐associated disease.Aliment. Pharmacol. Ther.201235886587510.1111/j.1365‑2036.2012.05033.x 22360412
    [Google Scholar]
  132. ColmanR.J. RubinD.T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis.J. Crohn’s Colitis20148121569158110.1016/j.crohns.2014.08.006 25223604
    [Google Scholar]
  133. WeingardenA.R. VaughnB.P. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease.Gut Microbes20178323825210.1080/19490976.2017.1290757 28609251
    [Google Scholar]
  134. BüningJ. HomannN. von SmolinskiD. BorcherdingF. NoackF. StolteM. KohlM. LehnertH. LudwigD. Helminths as governors of inflammatory bowel disease.Gut20085781182118310.1136/gut.2008.152355 18628388
    [Google Scholar]
  135. SummersR.W. ElliottD.E. QadirK. UrbanJ.F. ThompsonR. WeinstockJ.V. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease.Am. J. Gastroenterol.20039892034204110.1111/j.1572‑0241.2003.07660.x
    [Google Scholar]
  136. HunterM.M. MckayD.M. Helminths as therapeutic agents for inflammatory bowel disease.Aliment. Pharmacol. Ther.200419216717710.1111/j.0269‑2813.2004.01803.x 14723608
    [Google Scholar]
  137. BemelmanW.A. AdaminaM. BuskensC. DHoore, A.; Kotze, P.G.; Oresland, T.; Panis, Y.; Samprieto, G.; Spinelli, A.; Tulchinsky, H.; Warusavitarne, J.; Zmora, O. Evolving role of IBD surgery.J. Crohn’s Colitis20181281005100710.1093/ecco‑jcc/jjy056
    [Google Scholar]
  138. KühnF. KlarE. Surgical principles in the treatment of ulcerative colitis.Viszeralmedizin2015314246250 26557832
    [Google Scholar]
  139. HerlihyN. FeakinsR. Gut inflammation induced by drugs: Can pathology help to differentiate from inflammatory bowel disease?United Eur. Gastroenterol. J.202210545146410.1002/ueg2.12242 35633273
    [Google Scholar]
  140. KieslerP. FussI.J. StroberW. Experimental models of inflammatory bowel diseases.Cell. Mol. Gastroenterol. Hepatol.20151215417010.1016/j.jcmgh.2015.01.006 26000334
    [Google Scholar]
  141. ShenZ.H. ZhuC.X. QuanY.S. YangZ.Y. WuS. LuoW.W. TanB. WangX.Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation.World J. Gastroenterol.201824151410.3748/wjg.v24.i1.5 29358877
    [Google Scholar]
  142. ZhangY.J. LiS. GanR.Y. ZhouT. XuD.P. LiH.B. Impacts of gut bacteria on human health and diseases.Int. J. Mol. Sci.20151647493751910.3390/ijms16047493 25849657
    [Google Scholar]
  143. NascimentoR.P. MachadoA.P.F. GalvezJ. CazarinC.B.B. Maróstica JuniorM.R. Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models.Life Sci.202037811812910.1016/j.lfs.2020.118129 32717271
    [Google Scholar]
  144. WangL. GaoM. KangG. HuangH. The potential role of phytonutrients flavonoids influencing gut microbiota in the prophylaxis and treatment of inflammatory bowel disease.Front. Nutr.2021879803810.3389/fnut.2021.798038 34970585
    [Google Scholar]
  145. AlrafasH.R. BusbeeP.B. NagarkattiM. NagarkattiP.S. Resveratrol modulates the gut microbiota to prevent murine colitis development through induction of Tregs and suppression of Th17 cells.J. Leukoc. Biol.2019106246748010.1002/JLB.3A1218‑476RR 30897248
    [Google Scholar]
  146. WuX. WangL. TangL. WangL. CaoS. WuQ. ZhangZ. LiL. Salvianolic acid B alters the gut microbiota and mitigates colitis severity and associated inflammation.J. Funct. Foods20184631231910.1016/j.jff.2018.04.068
    [Google Scholar]
  147. ChengH. LiuJ. ZhangD. WangJ. TanY. FengW. PengC. Ginsenoside Rg1 alleviates acute ulcerative colitis by modulating gut microbiota and microbial tryptophan metabolism.Front. Immunol.20221381760010.3389/fimmu.2022.817600 35655785
    [Google Scholar]
  148. JiJ. GeX. ChenY. ZhuB. WuQ. ZhangJ. ShanJ. ChengH. ShiL. Daphnetin ameliorates experimental colitis by modulating microbiota composition and Treg/Th17 balance.FASEB J.20193389308932210.1096/fj.201802659RR 31145641
    [Google Scholar]
  149. YuanS. LiY. LiJ. XueJ.C. WangQ. HouX.T. MengH. NanJ.X. ZhangQ.G. Traditional Chinese medicine and natural products: Potential approaches for inflammatory bowel disease.Front. Pharmacol.20221389279010.3389/fphar.2022.892790 35873579
    [Google Scholar]
  150. ZhangJ. LeiH. HuX. DongW. Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling.Eur. J. Pharmacol.202087317299210.1016/j.ejphar.2020.172992 32035144
    [Google Scholar]
  151. ArakiY. MukaisyoK. SugiharaH. FujiyamaY. HattoriT. Increased apoptosis and decreased proliferation of colonic epithelium in dextran sulfate sodium-induced colitis in mice.Oncol. Rep.201024486987410.3892/or.2010.869 20811666
    [Google Scholar]
  152. WuZ. HuangS. LiT. LiN. HanD. ZhangB. XuZ.Z. ZhangS. PangJ. WangS. ZhangG. ZhaoJ. WangJ. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis.Microbiome20219118410.1186/s40168‑021‑01115‑9 34493333
    [Google Scholar]
  153. LiuC. ZengY. WenY. HuangX. LiuY. Natural products modulate cell apoptosis: A promising way for the treatment of ulcerative colitis.Front. Pharmacol.20221380614810.3389/fphar.2022.806148 35173617
    [Google Scholar]
  154. YousefM. PichyangkuraR. SoodvilaiS. ChatsudthipongV. MuanprasatC. Chitosan oligosaccharide as potential therapy of inflammatory bowel disease: Therapeutic efficacy and possible mechanisms of action.Pharmacol. Res.2012661667910.1016/j.phrs.2012.03.013 22475725
    [Google Scholar]
  155. HouC. ChenL. YangL. JiX. An insight into anti-inflammatory effects of natural polysaccharides.Int. J. Biol. Macromol.202015324825510.1016/j.ijbiomac.2020.02.315 32114173
    [Google Scholar]
  156. PaunovicV. HarnettM.M. Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis.Drugs201373210111510.1007/s40265‑013‑0014‑6 23371304
    [Google Scholar]
  157. ZhuL. ShenH. GuP.Q. LiuY.J. ZhangL. ChengJ.F. Baicalin alleviates TNBS induced colitis by inhibiting PI3K/AKT pathway activation.Exp. Ther. Med.202020158159010.3892/etm.2020.8718 32537016
    [Google Scholar]
  158. YuanD. LiC. HuangQ. FuX. DongH. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides.Crit. Rev. Food Sci. Nutr.202363225890591010.1080/10408398.2022.2025535 35021901
    [Google Scholar]
  159. El-AkabawyG. El-SherifN.M. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress.Biomed. Pharmacother.201911184185110.1016/j.biopha.2019.01.001 30616083
    [Google Scholar]
  160. Grzybowska-ChlebowczykU. Wysocka-WojakiewiczP. JasielskaM. CukrowskaB. WięcekS. KniażewskaM. ChudekJ. Oxidative and antioxidative stress status in children with inflammatory bowel disease as a result of a chronic inflammatory process.Mediators Inflamm.2018201811710.1155/2018/4120973 30116148
    [Google Scholar]
  161. Piechota-PolanczykA. FichnaJ. Review article: The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases.Naunyn Schmiedebergs Arch. Pharmacol.2014387760562010.1007/s00210‑014‑0985‑1 24798211
    [Google Scholar]
  162. ZhuX. TianX. YangM. YuY. ZhouY. GaoY. ZhangL. LiZ. XiaoY. MosesR.E. LiX. ZhangB. Procyanidin B2 promotes intestinal injury repair and attenuates colitis-associated tumorigenesis via suppression of oxidative stress in mice.Antioxid. Redox Signal.2021352759210.1089/ars.2019.7911 32940048
    [Google Scholar]
  163. LvT. ShenL. YangL. DiaoW. YangZ. ZhangY. YuS. LiY. Polydatin ameliorates dextran sulfate sodium-induced colitis by decreasing oxidative stress and apoptosis partially via sonic hedgehog signaling pathway.Int. Immunopharmacol.20186425626310.1016/j.intimp.2018.09.009 30218952
    [Google Scholar]
  164. SangarajuR. NalbanN. AlavalaS. RajendranV. JeraldM.K. SistlaR. Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice.Inflamm. Res.201968869170410.1007/s00011‑019‑01252‑w 31147743
    [Google Scholar]
  165. WangY. JiX. YanM. ChenX. KangM. TengL. WuX. ChenJ. DengC. Protective effect and mechanism of polysaccharide from Dictyophora indusiata on dextran sodium sulfate-induced colitis in C57BL/6 mice.Int. J. Biol. Macromol.201914097398410.1016/j.ijbiomac.2019.08.198 31449863
    [Google Scholar]
  166. SilvaF.A.R. RodriguesB.L. AyrizonoM.L.S. LealR.F. The immunological basis of inflammatory bowel disease.Gastroenterol. Res. Pract.20162016111110.1155/2016/2097274 28070181
    [Google Scholar]
  167. Zaiatz BittencourtV. JonesF. DohertyG. RyanE.J. Targeting immune cell metabolism in the treatment of inflammatory bowel disease.Inflamm. Bowel Dis.202127101684169310.1093/ibd/izab024 33693743
    [Google Scholar]
  168. ZhuY. ZhaoQ. HuangQ. LiY. YuJ. ZhangR. LiuJ. YanP. XiaJ. GuoL. LiuG. YangX. ZengJ. Nuciferine regulates immune function and gut microbiota in DSS-induced ulcerative colitis.Front. Vet. Sci.2022993937710.3389/fvets.2022.939377 35909691
    [Google Scholar]
  169. LiM. GuoW. DongY. WangW. TianC. ZhangZ. YuT. ZhouH. GuiY. XueK. LiJ. JiangF. SarapultsevA. WangH. ZhangG. LuoS. FanH. HuD. Beneficial effects of celastrol on immune balance by modulating gut microbiota in experimental ulcerative colitis mice.Genomics Proteomics Bioinformatics202220228830310.1016/j.gpb.2022.05.002 35609771
    [Google Scholar]
  170. WeiB. ZhangR. ZhaiJ. ZhuJ. YangF. YueD. LiuX. LuC. SunX. Suppression of Th17 cell response in the alleviation of dextran sulfate sodium-induced colitis by Ganoderma lucidum polysaccharides.J. Immunol. Res.20182018111010.1155/2018/2906494 29888292
    [Google Scholar]
  171. ZhuH. LiY.R. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: Updated experimental and clinical evidence.Exp. Biol. Med.2012237547448010.1258/ebm.2011.011358 22442342
    [Google Scholar]
  172. ScottO. RoifmanC.M. NF-κB pathway and the Goldilocks principle: Lessons from human disorders of immunity and inflammation.J. Allergy Clin. Immunol.201914351688170110.1016/j.jaci.2019.03.016 30940520
    [Google Scholar]
  173. CuiL. WangW. LuoY. NingQ. XiaZ. ChenJ. FengL. WangH. SongJ. TanX. TanW. WangC. JiaX. Polysaccharide from Scutellaria baicalensis Georgi ameliorates colitis via suppressing NF-κB signaling and NLRP3 inflammasome activation.Int. J. Biol. Macromol.201913239340510.1016/j.ijbiomac.2019.03.230 30936012
    [Google Scholar]
  174. LiuC. DunkinD. LaiJ. SongY. CeballosC. BenkovK. LiX.M. Anti-inflammatory effects of Ganoderma lucidum triterpenoid in human crohn’s disease associated with downregulation of NF-κB signaling.Inflamm. Bowel Dis.20152181918192510.1097/MIB.0000000000000439 25993687
    [Google Scholar]
  175. ZhouY. ZhongB. MinX. HouY. LinL. WuQ. ShiJ. ChenX. Therapeutic potential of isobavachalcone, a natural flavonoid, in murine experimental colitis by inhibiting NF‐κB p65.Phytother. Res.202135105861587010.1002/ptr.7246 34435401
    [Google Scholar]
  176. LiuM. ZhangG. ZhengC. SongM. LiuF. HuangX. BaiS. HuangX. LinC. ZhuC. HuY. MiS. LiuC. Activating the pregnane X receptor by imperatorin attenuates dextran sulphate sodium‐induced colitis in mice.Br. J. Pharmacol.2018175173563358010.1111/bph.14424 29945292
    [Google Scholar]
  177. VillarinoA.V. KannoY. O’SheaJ.J. Mechanisms and consequences of Jak–STAT signaling in the immune system.Nat. Immunol.201718437438410.1038/ni.3691 28323260
    [Google Scholar]
  178. ZhangX. XuF. LiuL. FengL. WuX. ShenY. SunY. WuX. XuQ. (+)-Borneol improves the efficacy of edaravone against DSS-induced colitis by promoting M2 macrophages polarization via JAK2-STAT3 signaling pathway.Int. Immunopharmacol.20175311010.1016/j.intimp.2017.10.002 29028547
    [Google Scholar]
  179. TaoJ.H. DuanJ.A. ZhangW. JiangS. GuoJ.M. WeiD.D. Polysaccharides from Chrysanthemum morifolium Ramat ameliorate colitis rats via regulation of the metabolic profiling and NF-κ B/TLR4 and IL-6/JAK2/STAT3 signaling pathways.Front. Pharmacol.2018974610.3389/fphar.2018.00746 30042683
    [Google Scholar]
  180. DireitoR. RochaJ. LimaA. GonçalvesM.M. DuarteM.P. MateusV. SousaC. FernandesA. PintoR. Boavida FerreiraR. SepodesB. FigueiraM.E. Reduction of inflammation and colon injury by a spearmint phenolic extract in experimental bowel disease in mice.Medicines2019626510.3390/medicines6020065 31174376
    [Google Scholar]
  181. ZhuF. ZhengJ. XuF. XiY. ChenJ. XuX. Resveratrol alleviates dextran sulfate sodium-induced acute ulcerative colitis in mice by mediating PI3K/Akt/VEGFA pathway.Front. Pharmacol.20211269398210.3389/fphar.2021.693982 34497510
    [Google Scholar]
  182. HuL.H. LiuJ.Y. YinJ.B. Eriodictyol attenuates TNBS ‐induced ulcerative colitis through repressing TLR4/NF‐kB signaling pathway in rats.Kaohsiung J. Med. Sci.202137981281810.1002/kjm2.12400 34042266
    [Google Scholar]
  183. El-SherbinyM. EisaN.H. Abo El-MagdN.F. ElsherbinyN.M. SaidE. KhodirA.E. Anti-inflammatory/anti-apoptotic impact of betulin attenuates experimentally induced ulcerative colitis: An insight into TLR4/NF-kB/caspase signalling modulation.Environ. Toxicol. Pharmacol.20218810375010.1016/j.etap.2021.103750 34597787
    [Google Scholar]
  184. WangY.J. LiQ.M. ZhaX.Q. LuoJ.P. Dendrobium fimbriatum hook polysaccharide ameliorates dextran-sodium-sulfate-induced colitis in mice via improving intestinal barrier function, modulating intestinal microbiota, and reducing oxidative stress and inflammatory responses.Food Funct.202213114316010.1039/D1FO03003E 34874039
    [Google Scholar]
  185. VenkataramanB. OjhaS. BelurP.D. BhongadeB. RajV. CollinP.D. AdrianT.E. SubramanyaS.B. Phytochemical drug candidates for the modulation of peroxisome proliferator‐activated receptor γ in inflammatory bowel diseases.Phytother. Res.20203471530154910.1002/ptr.6625 32009281
    [Google Scholar]
  186. DubuquoyL. RousseauxC. ThuruX. Peyrin-BirouletL. RomanoO. ChavatteP. ChamaillardM. DesreumauxP. PPAR as a new therapeutic target in inflammatory bowel diseases.Gut20065591341134910.1136/gut.2006.093484 16905700
    [Google Scholar]
  187. VenkataramanB. AlmarzooqiS. RajV. AlhassaniA.T. AlhassaniA.S. AhmedK.J. SubramanianV.S. OjhaS.K. AttoubS. AdrianT.E. SubramanyaS.B. Thymoquinone, a dietary bioactive compound, exerts anti-inflammatory effects in colitis by stimulating expression of the colonic epithelial PPAR-γ transcription factor.Nutrients2021134134310.3390/nu13041343 33920708
    [Google Scholar]
  188. VenkataramanB. AlmarzooqiS. RajV. DudejaP.K. BhongadeB.A. PatilR.B. OjhaS.K. AttoubS. AdrianT.E. SubramanyaS.B. α-Bisabolol Mitigates Colon Inflammation by Stimulating Colon PPAR-γ Transcription Factor: In Vivo and In Vitro Study.PPAR Res.20222022112210.1155/2022/5498115 35465355
    [Google Scholar]
  189. XuB. HuangS. ChenY. WangQ. LuoS. LiY. WangX. ChenJ. LuoX. ZhouL. Synergistic effect of combined treatment with baicalin and emodin on DSS ‐induced colitis in mouse.Phytother. Res.202135105708571910.1002/ptr.7230 34379340
    [Google Scholar]
  190. ZhouY. WangD. YanW. Treatment effects of natural products on inflammatory bowel disease in vivo and their mechanisms: Based on animal experiments.Nutrients2023154103110.3390/nu15041031 36839389
    [Google Scholar]
  191. DuanL. ChengS. LiL. LiuY. WangD. LiuG. Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease.Front. Pharmacol.20211268448610.3389/fphar.2021.684486 34335253
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575405061250923110348
Loading
/content/journals/mrmc/10.2174/0113895575405061250923110348
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test