Skip to content
2000
Volume 25, Issue 22
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Polysaccharide-based iron oxide nanoparticles, particularly PSC-iron oxide nanoparticles, have emerged as promising agents for brain cancer diagnosis and therapy. Originally approved for anemia treatment, PSC-iron oxide nanoparticles leverage extended circulation time, biocompatibility, and MRI contrast capabilities to serve dual diagnostic and therapeutic roles. This review highlights its application in brain tumor management, focusing on enhanced MRI visualization of tumor vascularization and macrophage activity compared to gadolinium-based agents, which improve tumor delineation and treatment monitoring. Additionally, PSC-iron oxide nanoparticles exhibit immune-modulating properties that promote anti-tumor macrophage responses. Preclinical evidence supports the synergistic effects of this approach with existing therapies and its potential in hyperthermia applications. Challenges in clinical translation, including dosage optimization and safety, require further investigation. This review highlights the potential of PSC-iron oxide nanoparticles in current findings to advance precision medicine or nanomedicine approaches for brain tumors.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575400653251008064030
2025-10-29
2026-02-22
Loading full text...

Full text loading...

References

  1. IlicI. IlicM. International patterns and trends in the brain cancer incidence and mortality: An observational study based on the global burden of disease.Heliyon202397e1822210.1016/j.heliyon.2023.e18222 37519769
    [Google Scholar]
  2. HughesT. HarperA. GuptaS. FrazierA.L. van der GraafW.T.A. MorenoF. JosephA. Fidler-BenaoudiaM.M. The current and future global burden of cancer among adolescents and young adults: A population-based study.Lancet Oncol.202425121614162410.1016/S1470‑2045(24)00523‑0 39557059
    [Google Scholar]
  3. OstromQ.T. PriceM. NeffC. CioffiG. WaiteK.A. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2016—2020.Neuro-oncol.20232512iv1iv9910.1093/neuonc/noad149 37793125
    [Google Scholar]
  4. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  5. SiposD. RaposaB.L. FreihatO. SimonM. MekisN. CornacchioneP. KovácsÁ. Glioblastoma: Clinical presentation, multidisciplinary management, and long-term outcomes.Cancers202517114610.3390/cancers17010146 39796773
    [Google Scholar]
  6. AngomR.S. NakkaN.M.R. BhattacharyaS. Advances in glioblastoma therapy: An update on current approaches.Brain Sci.20231311153610.3390/brainsci13111536 38002496
    [Google Scholar]
  7. WermuthP.J. JimenezS.A. Nephrogenic systemic fibrosis.Scleroderma. VargaJ. DentonC. WigleyF. Boston, MASpringer202413715910.1007/978‑1‑4419‑5774‑0_13
    [Google Scholar]
  8. AdamsL.C. JayapalP. RamasamyS.K. MorakoteW. YeomK. BarattoL. Daldrup-LinkH.E. Ferumoxytol-Enhanced MRI in children and young adults: State of the art.AJR Am. J. Roentgenol.2023220459060310.2214/AJR.22.28453 36197052
    [Google Scholar]
  9. KhanF. PangL. DuntermanM. LesniakM.S. HeimbergerA.B. ChenP. Macrophages and microglia in glioblastoma: Heterogeneity, plasticity, and therapy.J. Clin. Invest.20231331e16344610.1172/JCI163446 36594466
    [Google Scholar]
  10. ZhaoW. ZhangZ. XieM. DingF. ZhengX. SunS. DuJ. Exploring tumor-associated macrophages in glioblastoma: From diversity to therapy.NPJ Precis. Oncol.20259112610.1038/s41698‑025‑00920‑x
    [Google Scholar]
  11. WuD. ZhaoJ. XuT. XiangH. ZhaoB. GaoL. ChenY. Glioma nanomedicine: Design, fabrication and theranostic application.Coord. Chem. Rev.202450521569610.1016/j.ccr.2024.215696
    [Google Scholar]
  12. Van DorenL. SteinheiserM. BoykinK. TaylorK.J. MenendezM. AuerbachM. Expert consensus guidelines: Intravenous iron uses, formulations, administration, and management of reactions.Am. J. Hematol.20249971338134810.1002/ajh.27220 38282557
    [Google Scholar]
  13. KorangathP. JinL. YangC.T. HealyS. GuoX. KeS. GrüttnerC. HuC. GabrielsonK. FooteJ. ClarkeR. IvkovR. Iron oxide nanoparticles inhibit tumor progression and suppress lung metastases in mouse models of breast cancer.ACS Nano20241815105091052610.1021/acsnano.3c12064 38564478
    [Google Scholar]
  14. ShanL. Superparamagnetic iron oxide nanoparticles (SPION) stabilized by alginate.Molecular Imaging and Contrast Agent Database (MICAD)National Center for Biotechnology Information (US): Bethesda (MD)2009
    [Google Scholar]
  15. WangC.Y. HongJ.M. ChenG. ZhangY. GuN. Facile method to synthesize oleic acid-capped magnetite nanoparticles.Chin. Chem. Lett.201021217918210.1016/j.cclet.2009.10.024
    [Google Scholar]
  16. IbarraJ. MelendresJ. AlmadaM. BurboaM.G. TaboadaP. JuárezJ. ValdezM.A. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles.Mater. Res. Express20152909501010.1088/2053‑1591/2/9/095010
    [Google Scholar]
  17. Roacho-PérezJ.A. Rodríguez-AguillónK.O. Gallardo-BlancoH.L. Velazco-CamposM.R. Sosa-CruzK.V. García-CasillasP.E. Rojas-PatlánL. Sánchez-DomínguezM. Rivas-EstillaA.M. Gómez-FloresV. Chapa-GonzalezC. Sánchez-DomínguezC.N. A full set of in vitro assays in chitosan/tween 80 microspheres loaded with magnetite nanoparticles.Polymers202113340010.3390/polym13030400 33513783
    [Google Scholar]
  18. PerdaniM.S. JuliansyahM.D. PutriD.N. UtamiT.S. HudayaC. YohdaM. HermansyahH. Immobilization of cholesterol oxidase in chitosan magnetite material for biosensor application.Int. J. Technol.202011475410.14716/ijtech.v11i4.3484
    [Google Scholar]
  19. PiosikE. KlimczakP. Ziegler-BorowskaM. Chełminiak-DudkiewiczD. MartyńskiT. A detailed investigation on interactions between magnetite nanoparticles functionalized with aminated chitosan and a cell model membrane.Mater. Sci. Eng. C202010911061610.1016/j.msec.2019.110616 32228924
    [Google Scholar]
  20. Chapa GonzálezC. Navarro ArriagaJ.U. García CasillasP.E. Physicochemical properties of chitosan–magnetite nanocomposites obtained with different pH.Polym. Polymer Compos.2021299_suppl.S1009S101610.1177/09673911211038461
    [Google Scholar]
  21. Flores-UrquizoI.A. García-CasillasP. Chapa-GonzálezC. Desarrollo de nanopartículas magnéticas Fe+32X+21O4(X= Fe, Co y Ni).Recubiertas Con Amino Silano. Rev. Mex. Ing. Biomed.20173840241110.17488/RMIB.38.1.36
    [Google Scholar]
  22. Flores UrquizoI.A. Máynez TozcanoD.I. Valencia GómezL.E. Roacho PérezJ.A. Chapa GonzálezC. Enhancing the cytocompatibility of cobalt‐iron ferrite nanoparticles through chemical substitution and surface modification.Adv. Mater. Interfaces20231018230020610.1002/admi.202300206
    [Google Scholar]
  23. UrquizoI.A.F. GarcíaT.C.H. LoredoS.L. GalindoJ.T.E. CasillasP.E.G. BarrónJ.C.S. GonzálezC.C. Effect of aminosilane nanoparticle coating on structural and magnetic properties and cell viability in human cancer cell lines.Part Syst. Charact20223910220010610.1002/ppsc.202200106
    [Google Scholar]
  24. Chapa GonzalezC. Martínez PérezC.A. Martínez MartínezA. Olivas ArmendárizI. Zavala TapiaO. Martel-EstradaA. García-CasillasP.E. Development of antibody‐coated magnetite nanoparticles for biomarker immobilization.J. Nanomater.20142014197828410.1155/2014/978284
    [Google Scholar]
  25. SodipoB.K. AzizA.A. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica.J. Magn. Mater.201641627529110.1016/j.jmmm.2016.05.019
    [Google Scholar]
  26. IllumL. ChurchA.E. ButterworthM.D. ArienA. WhetstoneJ. DavisS.S. Development of systems for targeting the regional lymph nodes for diagnostic imaging: In vivo behaviour of colloidal PEG-coated magnetite nanospheres in the rat following interstitial administration.Pharm. Res.200118564064510.1023/A:1011081210142 11465419
    [Google Scholar]
  27. Roacho-PérezJ.A. Ruiz-HernandezF.G. Chapa-GonzalezC. Martínez-RodríguezH.G. Flores-UrquizoI.A. Pedroza-MontoyaF.E. Garza-TreviñoE.N. Bautista-VillareaM. García-CasillasP.E. Sánchez-DomínguezC.N. Magnetite nanoparticles coated with PEG 3350-Tween 80: In vitro characterization using primary cell cultures.Polymers202012230010.3390/polym12020300
    [Google Scholar]
  28. KaraagacO. KöçkarH. Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles.J. Magn. Mater.202255116914010.1016/j.jmmm.2022.169140
    [Google Scholar]
  29. McKiernanE.P. MoloneyC. Roy ChaudhuriT. ClerkinS. BehanK. StraubingerR.M. CreanJ. BroughamD.F. Formation of hydrated PEG layers on magnetic iron oxide nanoflowers shows internal magnetisation dynamics and generates high in-vivo efficacy for MRI and magnetic hyperthermia.Acta Biomater.202215239340510.1016/j.actbio.2022.08.033 36007780
    [Google Scholar]
  30. ChapaC. LaraD. GarcíaP. Study of the influence of the molecular weight of the polymer used as a coating on magnetite nanoparticles.World Congress on Medical Physics and Biomedical Engineering LhotskaL. SukupovaL. LackovićI. IbbottG. SpringerSingapore201971110.1007/978‑981‑10‑9023‑3_2
    [Google Scholar]
  31. MauriziL. PapaA.L. DumontL. BouyerF. WalkerP. VandrouxD. MillotN. Influence of surface charge and polymer coating on internalization and biodistribution of polyethylene glycol-modified iron oxide nanoparticles.J. Biomed. Nanotechnol.201511112613610.1166/jbn.2015.1996 26301306
    [Google Scholar]
  32. DingJ. TaoK. LiJ. SongS. SunK. Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles.Colloids Surf. B Biointerfaces201079118419010.1016/j.colsurfb.2010.03.053 20427159
    [Google Scholar]
  33. Villegas-SerraltaE. ZavalaO. Flores-UrquizoI.A. García-CasillasP.E. Chapa GonzálezC. Detection of HER2 through antibody immobilization is influenced by the properties of the magnetite nanoparticle coating.J. Nanomater.201820181910.1155/2018/7571613
    [Google Scholar]
  34. ShaterabadiZ. NabiyouniG. SoleymaniM. Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia.Phys. C. Supercond.2018549848710.1016/j.physc.2018.02.060
    [Google Scholar]
  35. LunovO. SyrovetsT. BücheleB. JiangX. RöckerC. TronK. NienhausG.U. WaltherP. MailänderV. LandfesterK. SimmetT. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages.Biomaterials201031195063507110.1016/j.biomaterials.2010.03.023 20381862
    [Google Scholar]
  36. PedroL. HarmerQ. MayesE. ShieldsJ.D. Impact of locally administered carboxydextran‐coated super‐paramagnetic iron nanoparticles on cellular immune function.Small20191520190022410.1002/smll.201900224 30985079
    [Google Scholar]
  37. FrtúsA. SmolkováB. UzhytchakM. LunovaM. JirsaM. KubinováŠ. DejnekaA. LunovO. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications.J. Control. Release2020328597710.1016/j.jconrel.2020.08.036 32860925
    [Google Scholar]
  38. MehtaK.J. Iron oxide nanoparticles in mesenchymal stem cell detection and therapy.Stem Cell Rev. Rep.2022182234226110.1007/s12015‑022‑10343‑x
    [Google Scholar]
  39. HuS. ChenH. ZhouF. LiuJ. QianY. HuK. YanJ. GuZ. GuoZ. ZhangF. GuN. Superparamagnetic core–shell electrospun scaffolds with sustained release of IONPs facilitating in vitro and in vivo bone regeneration.J. Mater. Chem. B Mater. Biol. Med.20219438980899310.1039/D1TB01261D 34494055
    [Google Scholar]
  40. GerbJ. StraussW. DermanR. ShortV. MendelsonB. BahrainH. AuerbachM. Ferumoxytol for the treatment of iron deficiency and iron-deficiency anemia of pregnancy.Ther. Adv. Hematol.2021122040620721101804210.1177/20406207211018042 34104372
    [Google Scholar]
  41. DehK. ZamanM. VedvyasY. LiuZ. GillenK.M.C. O’ MalleyP. BedretdinovaD. NguyenT. LeeR. SpincemailleP. JinM.M. KimJ. Validation of MRI quantitative susceptibility mapping of superparamagnetic iron oxide nanoparticles for hyperthermia applications in live subjects.Sci. Rep.2020101117110.1038/s41598‑020‑58219‑9
    [Google Scholar]
  42. LiangC. ZhangX. ChengZ. YangM. HuangW. DongX. Magnetic iron oxide nanomaterials: A key player in cancer nanomedicine.VIEW2020132020004610.1002/VIW.20200046
    [Google Scholar]
  43. YuP. ZhengL. WangP. ChaiS. ZhangY. ShiT. ZhangL. PengR. HuangC. GuoB. JiangQ. Development of a novel polysaccharide-based iron oxide nanoparticle to prevent iron accumulation-related osteoporosis by scavenging reactive oxygen species.Int. J. Biol. Macromol.2020165Pt B1634164510.1016/j.ijbiomac.2020.10.016 33049237
    [Google Scholar]
  44. ElhalawaniH. AwanM.J. DingY. MohamedA.S.R. ElsayesA.K. Abu-GheidaI. WangJ. HazleJ. GunnG.B. LaiS.Y. Frank, Steven J.; Ginsberg, Lawrence E.; Rosenthal, David I.; Fuller, Clifton D. Data from a terminated study on iron oxide nanoparticle magnetic resonance imaging for head and neck tumors.Sci. Data2020716310.1038/s41597‑020‑0392‑z
    [Google Scholar]
  45. LapusanR. BorlanR. FocsanM. Advancing MRI with magnetic nanoparticles: A comprehensive review of translational research and clinical trials.Nanoscale Adv.2024692234225910.1039/D3NA01064C 38694462
    [Google Scholar]
  46. Harvell-SmithS. TungL.D. ThanhN.T.K. Magnetic particle imaging: Tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality.Nanoscale202214103658369710.1039/D1NR05670K 35080544
    [Google Scholar]
  47. AgarwalR. AdhikaryS. BhattacharyaS. GoswamiS. RoyD. DuttaS. GangulyA. NandaS. RajakP. Iron oxide nanoparticles: A narrative review of in-depth analysis from neuroprotection to neurodegeneration.Environmental Science: Advances20243563566010.1039/D4VA00062E
    [Google Scholar]
  48. ZhaoW. YuX. PengS. LuoY. LiJ. LuL. Construction of nanomaterials as contrast agents or probes for glioma imaging.J. Nanobiotechnol.202119112510.1186/s12951‑021‑00866‑9
    [Google Scholar]
  49. NucciL.P. SilvaH.R. GiampaoliV. MamaniJ.B. NucciM.P. GamarraL.F. Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: A systematic review with meta-analysis.Stem Cell Res. Ther.2015612710.1186/s13287‑015‑0015‑3 25889904
    [Google Scholar]
  50. YiZ. LiangW. RuanW. HuaW. LinX. A meta-analysis of Au/polypropionic acid nanoparticles loaded with olacetam for the treatment of vascular cognitive impairment.J. Nanosci. Nanotechnol.202020127433743810.1166/jnn.2020.18863 32711611
    [Google Scholar]
  51. BehrooziZ. RahimiB. KookliK. SafariM.S. HamblinM.R. RazmgirM. JanzadehA. RamezaniF. Distribution of gold nanoparticles into the brain: A systematic review and meta-analysis.Nanotoxicology20211581059107210.1080/17435390.2021.1966116 34591733
    [Google Scholar]
  52. JanzadehA. BehrooziZ. saliminiaF. JanzadehN. ArzaniH. TanhaK. HamblinM.R. RamezaniF. Neurotoxicity of silver nanoparticles in the animal brain: A systematic review and meta-analysis.Forensic Toxicol.2022401496310.1007/s11419‑021‑00589‑4 36454484
    [Google Scholar]
  53. Guerra SánchezK.J. Gordillo CastilloN. Favela CamachoS.E. Chapa GonzálezC. Nanoparticles for glioblastoma treatment.IFMBE Proc.20238665666410.1007/978‑3‑031‑18256‑3_69
    [Google Scholar]
  54. WangY. BastiancichC. NewlandB. Injectable local drug delivery systems for glioblastoma: A systematic review and meta -analysis of progress to date.Biomater. Sci.20231151553156610.1039/D2BM01534J 36655634
    [Google Scholar]
  55. ChenQ. YuanL. ChouW.C. ChengY.H. HeC. Monteiro-RiviereN.A. RiviereJ.E. LinZ. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice.ACS Nano20231720198101983110.1021/acsnano.3c04037 37812732
    [Google Scholar]
  56. TothG.B. VarallyayC.G. HorvathA. BashirM.R. ChoykeP.L. Daldrup-LinkH.E. DosaE. FinnJ.P. GahramanovS. HarisinghaniM. MacdougallI. NeuweltA. VasanawalaS.S. AmbadyP. BarajasR. CetasJ.S. CiporenJ. DeLougheryT.J. DoolittleN.D. FuR. GrinsteadJ. GuimaraesA.R. HamiltonB.E. LiX. McConnellH.L. MuldoonL.L. NesbitG. NettoJ.P. PettersonD. RooneyW.D. SchwartzD. SzidonyaL. NeuweltE.A. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging.Kidney Int.2017921476610.1016/j.kint.2016.12.037 28434822
    [Google Scholar]
  57. WeinsteinJ.S. VarallyayC.G. DosaE. GahramanovS. HamiltonB. RooneyW.D. MuldoonL.L. NeuweltE.A. Superparamagnetic iron oxide nanoparticles: Diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, A review.J. Cereb. Blood Flow Metab.2010301153510.1038/jcbfm.2009.192 19756021
    [Google Scholar]
  58. MuldoonL.L. SàndorM. PinkstonK.E. NeuweltE.A. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor.Neurosurgery200557478579610.1227/01.NEU.0000175731.25414.4c 16239893
    [Google Scholar]
  59. DósaE. GuillaumeD.J. HaluskaM. LacyC.A. HamiltonB.E. NjusJ.M. RooneyW.D. KraemerD.F. MuldoonL.L. NeuweltE.A. Magnetic resonance imaging of intracranial tumors: Intra-patient comparison of gadoteridol and ferumoxytol.Neuro-oncol.201113225126010.1093/neuonc/noq172 21163809
    [Google Scholar]
  60. VarallyayC.G. NesbitE. FuR. GahramanovS. MoloneyB. EarlE. MuldoonL.L. LiX. RooneyW.D. NeuweltE.A. High-resolution steady-state cerebral blood volume maps in patients with central nervous system neoplasms using ferumoxytol, a superparamagnetic iron oxide nanoparticle.J. Cereb. Blood Flow Metab.201333578078610.1038/jcbfm.2013.36 23486297
    [Google Scholar]
  61. HamiltonB.E. NesbitG.M. DosaE. GahramanovS. RooneyB. NesbitE.G. RainesJ. NeuweltE.A. Comparative analysis of ferumoxytol and gadoteridol enhancement using T1- and T2-weighted MRI in neuroimaging.AJR Am. J. Roentgenol.2011197498198810.2214/AJR.10.5992 21940589
    [Google Scholar]
  62. BarajasR.F. HamiltonB.E. SchwartzD. McConnellH.L. PetterssonD.R. HorvathA. SzidonyaL. VarallyayC.G. FirkinsJ. JaboinJ.J. KubickyC.D. RaslanA.M. DoganA. CetasJ.S. CiporenJ. HanS.J. AmbadyP. MuldoonL.L. WoltjerR. RooneyW.D. NeuweltE.A. Combined iron oxide nanoparticle ferumoxytol and gadolinium contrast enhanced MRI define glioblastoma pseudoprogression.Neuro-oncol.201921451752610.1093/neuonc/noy160 30277536
    [Google Scholar]
  63. IvM. SamghabadiP. HoldsworthS. GentlesA. RezaiiP. HarshG. LiG. ThomasR. MoseleyM. Daldrup-LinkH.E. VogelH. WintermarkM. CheshierS. YeomK.W. Quantification of macrophages in high-grade gliomas by using ferumoxytol-enhanced MRI: A pilot study.Radiology2019290119820610.1148/radiol.2018181204 30398435
    [Google Scholar]
  64. HamiltonB.E. BarajasR. NesbitG.M. FuR. AmbadyP. TaylorM. NeuweltE.A. Ferumoxytol-Enhanced MRI is not inferior to gadolinium-enhanced MRI in detecting intracranial metastatic disease and metastasis size.AJR Am. J. Roentgenol.202021561436144210.2214/AJR.19.22187 33052739
    [Google Scholar]
  65. QiaoR. FuC. ForghamH. JavedI. HuangX. ZhuJ. WhittakerA.K. DavisT.P. Magnetic iron oxide nanoparticles for brain imaging and drug delivery.Adv. Drug Deliv. Rev.202319711482210.1016/j.addr.2023.114822 37086918
    [Google Scholar]
  66. DadfarS.M. RoemhildK. DrudeN.I. von StillfriedS. KnüchelR. KiesslingF. LammersT. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.Adv. Drug Deliv. Rev.201913830232510.1016/j.addr.2019.01.005 30639256
    [Google Scholar]
  67. ZhengY. JiangB. GuoH. ZhangZ. ChenB. ZhangZ. WuS. ZhaoJ. The combinational nano-immunotherapy of ferumoxytol and poly(I:C) inhibits melanoma via boosting antiangiogenic immunity.Nanomedicine20234910265810.1016/j.nano.2023.102658 36708910
    [Google Scholar]
  68. ZanganehS. HutterG. SpitlerR. LenkovO. MahmoudiM. ShawA. PajarinenJ.S. NejadnikH. GoodmanS. MoseleyM. CoussensL.M. Daldrup-LinkH.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues.Nat. Nanotechnol.2016111198699410.1038/nnano.2016.168
    [Google Scholar]
  69. ZhangW. CaoS. LiangS. TanC.H. LuoB. XuX. SawP.E. Differently charged super-paramagnetic iron oxide nanoparticles preferentially induced m1-like phenotype of macrophages.Front. Bioeng. Biotechnol.2020853710.3389/fbioe.2020.00537 32548111
    [Google Scholar]
  70. WangG. SerkovaN.J. GromanE.V. ScheinmanR.I. SimbergD. Feraheme (Ferumoxytol) is recognized by proinflammatory and anti-inflammatory macrophages via scavenger receptor type AI/II.Mol. Pharm.201916104274428110.1021/acs.molpharmaceut.9b00632 31556296
    [Google Scholar]
  71. zhao, J.; Zhang, Z.; Xue, Y.; Wang, G.; Cheng, Y.; Pan, Y.; Zhao, S.; Hou, Y. Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I: C) promote melanoma regression.Theranostics20188226307632110.7150/thno.29746 30613299
    [Google Scholar]
  72. LiY. ThamizhchelvanA.M. MaH. PadelfordJ. ZhangZ. WuT. GuQ. WangZ. MaoH. A subtype specific probe for targeted magnetic resonance imaging of M2 tumor-associated macrophages in brain tumors.Acta Biomater.202519433635110.1016/j.actbio.2025.01.003 39805525
    [Google Scholar]
  73. ChenB. XingJ. LiM. LiuY. JiM. DOX@Ferumoxytol-Medical Chitosan as magnetic hydrogel therapeutic system for effective magnetic hyperthermia and chemotherapy in vitro.Colloids Surf. B Biointerfaces202019011089610.1016/j.colsurfb.2020.110896 32114270
    [Google Scholar]
  74. LiuX. ZhangY. WangY. ZhuW. LiG. MaX. ZhangY. ChenS. TiwariS. ShiK. ZhangS. FanH.M. ZhaoY.X. LiangX.J. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.Theranostics20201083793381510.7150/thno.40805 32206123
    [Google Scholar]
  75. Chapa GonzálezC. Magneto hyperthermia.Diagnosis and Treatment of Cancer using Thermal Therapies202324426510.1201/9781003342663‑13
    [Google Scholar]
  76. DalletL. StanickiD. VoisinP. MirauxS. RibotE.J. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment.Sci. Rep.202111328610.1038/s41598‑021‑82095‑6
    [Google Scholar]
  77. FantechiE. CastilloP.M. ConcaE. CugiaF. SangregorioC. CasulaM.F. Assessing the hyperthermic properties of magnetic heterostructures: The case of gold–iron oxide composites.Interface Focus2016662016005810.1098/rsfs.2016.0058 27920896
    [Google Scholar]
  78. LeonelA.G. MansurA.A.P. CarvalhoS.M. OutonL.E.F. ArdissonJ.D. KrambrockK. MansurH.S. Tunable magnetothermal properties of cobalt-doped magnetite–carboxymethylcellulose ferrofluids: Smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy.Nanoscale Adv.2021341029104610.1039/D0NA00820F 36133299
    [Google Scholar]
  79. Manescu PaltaneaV. AntoniacI. PaltaneaG. NemoianuI.V. MohanA.G. AntoniacA. RauJ.V. LaptoiuS.A. MihaiP. GavrilaH. Al-MoushalyA.R. BodogA.D. Magnetic hyperthermia in glioblastoma multiforme treatment.Int. J. Mol. Sci.202425181006510.3390/ijms251810065 39337552
    [Google Scholar]
  80. LeeK.C. KruegerS.A. BuelowK. GaloforoS. TormaJ. GrillsI.S. WilsonG.D. MarplesB. The use of ferumoxytol and T2*-weighted magnetic resonance imaging for noninvasive assessment of changes in tumor vascularity during radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.2016962 SupplementE575E57610.1016/j.ijrobp.2016.06.2069
    [Google Scholar]
  81. LehrmanE.D. PlotnikA.N. HopeT. SalonerD. Ferumoxytol-enhanced MRI in the peripheral vasculature.Clin. Radiol.2019741375010.1016/j.crad.2018.02.021 29731126
    [Google Scholar]
  82. GahramanovS. RaslanA.M. MuldoonL.L. HamiltonB.E. RooneyW.D. VarallyayC.G. NjusJ.M. HaluskaM. NeuweltE.A. Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: A pilot study.Int. J. Radiat. Oncol. Biol. Phys.201179251452310.1016/j.ijrobp.2009.10.072 20395065
    [Google Scholar]
  83. BarajasR.F. SchwartzD. McConnellH.L. KerschC.N. LiX. HamiltonB.E. StarkeyJ. PetterssonD.R. NickersonJ.P. PollockJ.M. FuR.F. HorvathA. SzidonyaL. VarallyayC.G. JaboinJ.J. RaslanA.M. DoganA. CetasJ.S. CiporenJ. HanS.J. AmbadyP. MuldoonL.L. WoltjerR. RooneyW.D. NeuweltE.A. Distinguishing extravascular from intravascular ferumoxytol pools within the brain: Proof of concept in patients with treated glioblastoma.AJNR Am. J. Neuroradiol.20204171193120010.3174/ajnr.A6600 32527840
    [Google Scholar]
  84. IsraelL.L. GalstyanA. HollerE. LjubimovaJ.Y. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain.J. Control. Release2020320456210.1016/j.jconrel.2020.01.009 31923537
    [Google Scholar]
  85. SinghN. JenkinsG.J.S. AsadiR. DoakS.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION).Nano Rev.201011535810.3402/nano.v1i0.5358
    [Google Scholar]
  86. YarjanliZ. GhaediK. EsmaeiliA. RahgozarS. ZarrabiA. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation.BMC Neurosci.20171815110.1186/s12868‑017‑0369‑9 28651647
    [Google Scholar]
  87. IrrsackE. AydinS. BleckmannK. SchullerJ. DringenR. KochM. Local administrations of iron oxide nanoparticles in the prefrontal cortex and caudate putamen of rats do not compromise working memory and motor activity.Neurotox. Res.2024421610.1007/s12640‑023‑00684‑x 38133743
    [Google Scholar]
  88. Feraheme™ (ferumoxytol) injection.2025Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022180lbl.pdf
/content/journals/mrmc/10.2174/0113895575400653251008064030
Loading
/content/journals/mrmc/10.2174/0113895575400653251008064030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test