Skip to content
2000
image of Polysaccharide-Based Magnetic Nanoparticles in Brain Cancer: A Review on the Diagnostic and Therapeutic Potential of Ferumoxytol

Abstract

Polysaccharide-based iron oxide nanoparticles, particularly PSC-iron oxide nanoparticles, have emerged as promising agents for brain cancer diagnosis and therapy. Originally approved for anemia treatment, PSC-iron oxide nanoparticles leverage extended circulation time, biocompatibility, and MRI contrast capabilities to serve dual diagnostic and therapeutic roles. This review highlights its application in brain tumor management, focusing on enhanced MRI visualization of tumor vascularization and macrophage activity compared to gadolinium-based agents, which improve tumor delineation and treatment monitoring. Additionally, PSC-iron oxide nanoparticles exhibit immune-modulating properties that promote anti-tumor macrophage responses. Preclinical evidence supports the synergistic effects of this approach with existing therapies and its potential in hyperthermia applications. Challenges in clinical translation, including dosage optimization and safety, require further investigation. This review highlights the potential of PSC-iron oxide nanoparticles in current findings to advance precision medicine or nanomedicine approaches for brain tumors.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575400653251008064030
2025-10-29
2025-11-01
Loading full text...

Full text loading...

References

  1. Ilic I. Ilic M. International patterns and trends in the brain cancer incidence and mortality: An observational study based on the global burden of disease. Heliyon 2023 9 7 e18222 10.1016/j.heliyon.2023.e18222 37519769
    [Google Scholar]
  2. Hughes T. Harper A. Gupta S. Frazier A.L. van der Graaf W.T.A. Moreno F. Joseph A. Fidler-Benaoudia M.M. The current and future global burden of cancer among adolescents and young adults: A population-based study. Lancet Oncol. 2024 25 12 1614 1624 10.1016/S1470‑2045(24)00523‑0 39557059
    [Google Scholar]
  3. Ostrom Q.T. Price M. Neff C. Cioffi G. Waite K.A. Kruchko C. Barnholtz-Sloan J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2016—2020. Neuro-oncol. 2023 25 12 iv1 iv99 10.1093/neuonc/noad149 37793125
    [Google Scholar]
  4. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  5. Sipos D. Raposa B.L. Freihat O. Simon M. Mekis N. Cornacchione P. Kovács Á. Glioblastoma: Clinical presentation, multidisciplinary management, and long-term outcomes. Cancers (Basel) 2025 17 1 146 10.3390/cancers17010146 39796773
    [Google Scholar]
  6. Angom R.S. Nakka N.M.R. Bhattacharya S. Advances in glioblastoma therapy: An update on current approaches. Brain Sci. 2023 13 11 1536 10.3390/brainsci13111536 38002496
    [Google Scholar]
  7. Wermuth P.J. Jimenez S.A. Nephrogenic systemic fibrosis. In:Scleroderma. Varga J. Denton C. Wigley F. Boston, MA Springer 2024 137 159 10.1007/978‑1‑4419‑5774‑0_13
    [Google Scholar]
  8. Adams L.C. Jayapal P. Ramasamy S.K. Morakote W. Yeom K. Baratto L. Daldrup-Link H.E. Ferumoxytol-Enhanced MRI in children and young adults: State of the art. AJR Am. J. Roentgenol. 2023 220 4 590 603 10.2214/AJR.22.28453 36197052
    [Google Scholar]
  9. Khan F. Pang L. Dunterman M. Lesniak M.S. Heimberger A.B. Chen P. Macrophages and microglia in glioblastoma: Heterogeneity, plasticity, and therapy. J. Clin. Invest. 2023 133 1 e163446 10.1172/JCI163446 36594466
    [Google Scholar]
  10. Zhao W. Zhang Z. Xie M. Ding F. Zheng X. Sun S. Du J. Exploring tumor-associated macrophages in glioblastoma: From diversity to therapy. npj Precis Oncol. 2025 9 (1) 126 10.1038/s41698‑025‑00920‑x
    [Google Scholar]
  11. Wu D. Zhao J. Xu T. Xiang H. Zhao B. Gao L. Chen Y. Glioma nanomedicine: Design, fabrication and theranostic application. Coord. Chem. Rev. 2024 505 215696 10.1016/j.ccr.2024.215696
    [Google Scholar]
  12. Van Doren L. Steinheiser M. Boykin K. Taylor K.J. Menendez M. Auerbach M. Expert consensus guidelines: Intravenous iron uses, formulations, administration, and management of reactions. Am. J. Hematol. 2024 99 7 1338 1348 10.1002/ajh.27220 38282557
    [Google Scholar]
  13. Korangath P. Jin L. Yang C.T. Healy S. Guo X. Ke S. Grüttner C. Hu C. Gabrielson K. Foote J. Clarke R. Ivkov R. Iron oxide nanoparticles inhibit tumor progression and suppress lung metastases in mouse models of breast cancer. ACS Nano 2024 18 15 10509 10526 10.1021/acsnano.3c12064 38564478
    [Google Scholar]
  14. Shan L. Superparamagnetic iron oxide nanoparticles (SPION) stabilized by alginate. In: Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda (MD) 2009
    [Google Scholar]
  15. Wang C.Y. Hong J.M. Chen G. Zhang Y. Gu N. Facile method to synthesize oleic acid-capped magnetite nanoparticles. Chin. Chem. Lett. 2010 21 2 179 182 10.1016/j.cclet.2009.10.024
    [Google Scholar]
  16. Ibarra J. Melendres J. Almada M. Burboa M.G. Taboada P. Juárez J. Valdez M.A. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles. Mater. Res. Express 2015 2 9 095010 10.1088/2053‑1591/2/9/095010
    [Google Scholar]
  17. Roacho-Pérez J.A. Rodríguez-Aguillón K.O. Gallardo-Blanco H.L. Velazco-Campos M.R. Sosa-Cruz K.V. García-Casillas P.E. Rojas-Patlán L. Sánchez-Domínguez M. Rivas-Estilla A.M. Gómez-Flores V. Chapa-Gonzalez C. Sánchez-Domínguez C.N. A full set of in vitro assays in chitosan/tween 80 microspheres loaded with magnetite nanoparticles. Polymers (Basel) 2021 13 3 400 10.3390/polym13030400 33513783
    [Google Scholar]
  18. Perdani M.S. Juliansyah M.D. Putri D.N. Utami T.S. Hudaya C. Yohda M. Hermansyah H. Immobilization of cholesterol oxidase in chitosan magnetite material for biosensor application. Int. J. Technol 2020 11 4 754 10.14716/ijtech.v11i4.3484
    [Google Scholar]
  19. Piosik E. Klimczak P. Ziegler-Borowska M. Chełminiak-Dudkiewicz D. Martyński T. A detailed investigation on interactions between magnetite nanoparticles functionalized with aminated chitosan and a cell model membrane. Mater. Sci. Eng. C 2020 109 110616 10.1016/j.msec.2019.110616 32228924
    [Google Scholar]
  20. Chapa González C. Navarro Arriaga J.U. García Casillas P.E. Physicochemical properties of chitosan–magnetite nanocomposites obtained with different pH. Polym. Polymer Compos. 2021 29 9 Suppl. S1009 S1016 10.1177/09673911211038461
    [Google Scholar]
  21. Flores-Urquizo I.A. García-Casillas P. Chapa-González C. Desarrollo de nanopartículas magnéticas Fe+32X+21O4(X= Fe, Co y Ni) Recubiertas Con Amino Silano. Rev. Mex. Ing. Biomed. 2017 38 402 411 10.17488/RMIB.38.1.36
    [Google Scholar]
  22. Flores Urquizo I.A. Máynez Tozcano D.I. Valencia Gómez L.E. Roacho Pérez J.A. Chapa González C. Enhancing the cytocompatibility of cobalt‐iron ferrite nanoparticles through chemical substitution and surface modification. Adv. Mater. Interfaces 2023 10 18 2300206 10.1002/admi.202300206
    [Google Scholar]
  23. Urquizo I.A.F. García T.C.H. Loredo S.L. Galindo J.T.E. Casillas P.E.G. Barrón J.C.S. González C.C. Effect of aminosilane nanoparticle coating on structural and magnetic properties and cell viability in human cancer cell lines. Part. Part. Syst. Charact. 2022 39 10 2200106 10.1002/ppsc.202200106
    [Google Scholar]
  24. Chapa Gonzalez C. Martínez Pérez C.A. Martínez Martínez A. Olivas Armendáriz I. Zavala Tapia O. Martel-Estrada A. García-Casillas P.E. Development of antibody‐coated magnetite nanoparticles for biomarker immobilization. J. Nanomater. 2014 2014 1 978284 10.1155/2014/978284
    [Google Scholar]
  25. Sodipo B.K. Aziz A.A. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. J. Magn. Mater. 2016 416 275 291 10.1016/j.jmmm.2016.05.019
    [Google Scholar]
  26. Illum L. Church A.E. Butterworth M.D. Arien A. Whetstone J. Davis S.S. Development of systems for targeting the regional lymph nodes for diagnostic imaging: In vivo behaviour of colloidal PEG-coated magnetite nanospheres in the rat following interstitial administration. Pharm. Res. 2001 18 5 640 645 10.1023/A:1011081210142 11465419
    [Google Scholar]
  27. Roacho-Pérez J.A. Ruiz-Hernandez F.G. Chapa-Gonzalez C. Martínez-Rodríguez H.G. Flores-Urquizo I.A. Pedroza-Montoya F.E. Garza-Treviño E.N. Bautista-Villarea M. García-Casillas P.E. Sánchez-Domínguez C.N. Magnetite nanoparticles coated with PEG 3350-Tween 80: In vitro characterization using primary cell cultures. Polymers (Basel) 2020 12 2 300 10.3390/polym12020300
    [Google Scholar]
  28. Karaagac O. Köçkar H. Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles. J. Magn. Mater. 2022 551 169140 10.1016/j.jmmm.2022.169140
    [Google Scholar]
  29. McKiernan E.P. Moloney C. Roy Chaudhuri T. Clerkin S. Behan K. Straubinger R.M. Crean J. Brougham D.F. Formation of hydrated PEG layers on magnetic iron oxide nanoflowers shows internal magnetisation dynamics and generates high in-vivo efficacy for MRI and magnetic hyperthermia. Acta Biomater. 2022 152 393 405 10.1016/j.actbio.2022.08.033 36007780
    [Google Scholar]
  30. Chapa C. Lara D. García P. Study of the influence of the molecular weight of the polymer used as a coating on magnetite nanoparticles. In:World Congress on Medical Physics and Biomedical Engineering Lhotska L. Sukupova L. Lacković I. Ibbott G. Springer Singapore 2019 7 11 10.1007/978‑981‑10‑9023‑3_2
    [Google Scholar]
  31. Maurizi L. Papa A.L. Dumont L. Bouyer F. Walker P. Vandroux D. Millot N. Influence of surface charge and polymer coating on internalization and biodistribution of polyethylene glycol-modified iron oxide nanoparticles. J. Biomed. Nanotechnol. 2015 11 1 126 136 10.1166/jbn.2015.1996 26301306
    [Google Scholar]
  32. Ding J. Tao K. Li J. Song S. Sun K. Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles. Colloids Surf. B Biointerfaces 2010 79 1 184 190 10.1016/j.colsurfb.2010.03.053 20427159
    [Google Scholar]
  33. Villegas-Serralta E. Zavala O. Flores-Urquizo I.A. García-Casillas P.E. Chapa González C. Detection of HER2 through antibody immobilization is influenced by the properties of the magnetite nanoparticle coating. J. Nanomater. 2018 2018 1 9 10.1155/2018/7571613
    [Google Scholar]
  34. Shaterabadi Z. Nabiyouni G. Soleymani M. Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia. Phys. C Supercond 2018 549 84 87 10.1016/j.physc.2018.02.060
    [Google Scholar]
  35. Lunov O. Syrovets T. Büchele B. Jiang X. Röcker C. Tron K. Nienhaus G.U. Walther P. Mailänder V. Landfester K. Simmet T. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 2010 31 19 5063 5071 10.1016/j.biomaterials.2010.03.023 20381862
    [Google Scholar]
  36. Pedro L. Harmer Q. Mayes E. Shields J.D. Impact of locally administered carboxydextran‐coated super‐paramagnetic iron nanoparticles on cellular immune function. Small 2019 15 20 1900224 10.1002/smll.201900224 30985079
    [Google Scholar]
  37. Frtús A. Smolková B. Uzhytchak M. Lunova M. Jirsa M. Kubinová Š. Dejneka A. Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Control. Release 2020 328 59 77 10.1016/j.jconrel.2020.08.036 32860925
    [Google Scholar]
  38. Mehta K.J. Iron oxide nanoparticles in mesenchymal stem cell detection and therapy. Stem Cell Rev. Rep. 2022 18 2234 2261 10.1007/s12015‑022‑10343‑x
    [Google Scholar]
  39. Hu S. Chen H. Zhou F. Liu J. Qian Y. Hu K. Yan J. Gu Z. Guo Z. Zhang F. Gu N. Superparamagnetic core–shell electrospun scaffolds with sustained release of IONPs facilitating in vitro and in vivo bone regeneration. J. Mater. Chem. B Mater. Biol. Med. 2021 9 43 8980 8993 10.1039/D1TB01261D 34494055
    [Google Scholar]
  40. Gerb J. Strauss W. Derman R. Short V. Mendelson B. Bahrain H. Auerbach M. Ferumoxytol for the treatment of iron deficiency and iron-deficiency anemia of pregnancy. Ther. Adv. Hematol. 2021 12 20406207211018042 10.1177/20406207211018042 34104372
    [Google Scholar]
  41. Deh K. Zaman M. Vedvyas Y. Liu Z. Gillen K.M.C. O’ Malley P. Bedretdinova D. Nguyen T. Lee R. Spincemaille P. Jin M.M. Kim J. Validation of MRI quantitative susceptibility mapping of superparamagnetic iron oxide nanoparticles for hyperthermia applications in live subjects. Sci. Rep. 2020 10 1 1171 10.1038/s41598‑020‑58219‑9
    [Google Scholar]
  42. Liang C. Zhang X. Cheng Z. Yang M. Huang W. Dong X. Magnetic iron oxide nanomaterials: A key player in cancer nanomedicine. VIEW 2020 1 3 20200046 10.1002/VIW.20200046
    [Google Scholar]
  43. Yu P. Zheng L. Wang P. Chai S. Zhang Y. Shi T. Zhang L. Peng R. Huang C. Guo B. Jiang Q. Development of a novel polysaccharide-based iron oxide nanoparticle to prevent iron accumulation-related osteoporosis by scavenging reactive oxygen species. Int. J. Biol. Macromol 2020 165 (Pt B) 1634 1645 10.1016/j.ijbiomac.2020.10.016 33049237
    [Google Scholar]
  44. Elhalawani H. Awan M.J. Ding Y. Mohamed A.S.R. Elsayes A.K. Abu-Gheida I. Wang J. Hazle J. Gunn G.B. Lai S.Y. Frank, Steven J.; Ginsberg, Lawrence E.; Rosenthal, David I.; Fuller, Clifton D. Data from a terminated study on iron oxide nanoparticle magnetic resonance imaging for head and neck tumors. Sci. Data 2020 7 1 63 10.1038/s41597‑020‑0392‑z
    [Google Scholar]
  45. Lapusan R. Borlan R. Focsan M. Advancing MRI with magnetic nanoparticles: A comprehensive review of translational research and clinical trials. Nanoscale Adv. 2024 6 9 2234 2259 10.1039/D3NA01064C 38694462
    [Google Scholar]
  46. Harvell-Smith S. Tung L.D. Thanh N.T.K. Magnetic particle imaging: Tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. Nanoscale 2022 14 10 3658 3697 10.1039/D1NR05670K 35080544
    [Google Scholar]
  47. Agarwal R. Adhikary S. Bhattacharya S. Goswami S. Roy D. Dutta S. Ganguly A. Nanda S. Rajak P. Iron oxide nanoparticles: A narrative review of in-depth analysis from neuroprotection to neurodegeneration. Environmental Science: Advances 2024 3 5 635 660 10.1039/D4VA00062E
    [Google Scholar]
  48. Zhao W. Yu X. Peng S. Luo Y. Li J. Lu L. Construction of nanomaterials as contrast agents or probes for glioma imaging. J. Nanobiotechnology 2021 19 1 125 10.1186/s12951‑021‑00866‑9
    [Google Scholar]
  49. Nucci L.P. Silva H.R. Giampaoli V. Mamani J.B. Nucci M.P. Gamarra L.F. Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: A systematic review with meta-analysis. Stem Cell Res. Ther. 2015 6 1 27 10.1186/s13287‑015‑0015‑3 25889904
    [Google Scholar]
  50. Yi Z. Liang W. Ruan W. Hua W. Lin X. A meta-analysis of Au/polypropionic acid nanoparticles loaded with olacetam for the treatment of vascular cognitive impairment. J. Nanosci. Nanotechnol. 2020 20 12 7433 7438 10.1166/jnn.2020.18863 32711611
    [Google Scholar]
  51. Behroozi Z. Rahimi B. Kookli K. Safari M.S. Hamblin M.R. Razmgir M. Janzadeh A. Ramezani F. Distribution of gold nanoparticles into the brain: A systematic review and meta-analysis. Nanotoxicology 2021 15 8 1059 1072 10.1080/17435390.2021.1966116 34591733
    [Google Scholar]
  52. Janzadeh A. Behroozi Z. saliminia, F.; Janzadeh, N.; Arzani, H.; Tanha, K.; Hamblin, M.R.; Ramezani, F. Neurotoxicity of silver nanoparticles in the animal brain: A systematic review and meta-analysis. Forensic Toxicol. 2022 40 1 49 63 10.1007/s11419‑021‑00589‑4 36454484
    [Google Scholar]
  53. Guerra Sánchez K.J. Gordillo Castillo N. Favela Camacho S.E. Chapa González C. Nanoparticles for glioblastoma treatment. IFMBE Proc. 2023 86 656 664 10.1007/978‑3‑031‑18256‑3_69
    [Google Scholar]
  54. Wang Y. Bastiancich C. Newland B. Injectable local drug delivery systems for glioblastoma: A systematic review and meta -analysis of progress to date. Biomater. Sci. 2023 11 5 1553 1566 10.1039/D2BM01534J 36655634
    [Google Scholar]
  55. Chen Q. Yuan L. Chou W.C. Cheng Y.H. He C. Monteiro-Riviere N.A. Riviere J.E. Lin Z. Meta-analysis of nanoparticle distribution in tumors and major organs in tumor-bearing mice. ACS Nano 2023 17 20 19810 19831 10.1021/acsnano.3c04037 37812732
    [Google Scholar]
  56. Toth G.B. Varallyay C.G. Horvath A. Bashir M.R. Choyke P.L. Daldrup-Link H.E. Dosa E. Finn J.P. Gahramanov S. Harisinghani M. Macdougall I. Neuwelt A. Vasanawala S.S. Ambady P. Barajas R. Cetas J.S. Ciporen J. DeLoughery T.J. Doolittle N.D. Fu R. Grinstead J. Guimaraes A.R. Hamilton B.E. Li X. McConnell H.L. Muldoon L.L. Nesbit G. Netto J.P. Petterson D. Rooney W.D. Schwartz D. Szidonya L. Neuwelt E.A. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017 92 1 47 66 10.1016/j.kint.2016.12.037 28434822
    [Google Scholar]
  57. Weinstein J.S. Varallyay C.G. Dosa E. Gahramanov S. Hamilton B. Rooney W.D. Muldoon L.L. Neuwelt E.A. Superparamagnetic iron oxide nanoparticles: Diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, A review. J. Cereb. Blood Flow Metab. 2010 30 1 15 35 10.1038/jcbfm.2009.192 19756021
    [Google Scholar]
  58. Muldoon L.L. Sàndor M. Pinkston K.E. Neuwelt E.A. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 2005 57 4 785 796 10.1227/01.NEU.0000175731.25414.4c 16239893
    [Google Scholar]
  59. Dósa E. Guillaume D.J. Haluska M. Lacy C.A. Hamilton B.E. Njus J.M. Rooney W.D. Kraemer D.F. Muldoon L.L. Neuwelt E.A. Magnetic resonance imaging of intracranial tumors: Intra-patient comparison of gadoteridol and ferumoxytol. Neuro-oncol. 2011 13 2 251 260 10.1093/neuonc/noq172 21163809
    [Google Scholar]
  60. Varallyay C.G. Nesbit E. Fu R. Gahramanov S. Moloney B. Earl E. Muldoon L.L. Li X. Rooney W.D. Neuwelt E.A. High-resolution steady-state cerebral blood volume maps in patients with central nervous system neoplasms using ferumoxytol, a superparamagnetic iron oxide nanoparticle. J. Cereb. Blood Flow Metab. 2013 33 5 780 786 10.1038/jcbfm.2013.36 23486297
    [Google Scholar]
  61. Hamilton B.E. Nesbit G.M. Dosa E. Gahramanov S. Rooney B. Nesbit E.G. Raines J. Neuwelt E.A. Comparative analysis of ferumoxytol and gadoteridol enhancement using T1- and T2-weighted MRI in neuroimaging. AJR Am. J. Roentgenol. 2011 197 4 981 988 10.2214/AJR.10.5992 21940589
    [Google Scholar]
  62. Barajas R.F. Hamilton B.E. Schwartz D. McConnell H.L. Pettersson D.R. Horvath A. Szidonya L. Varallyay C.G. Firkins J. Jaboin J.J. Kubicky C.D. Raslan A.M. Dogan A. Cetas J.S. Ciporen J. Han S.J. Ambady P. Muldoon L.L. Woltjer R. Rooney W.D. Neuwelt E.A. Combined iron oxide nanoparticle ferumoxytol and gadolinium contrast enhanced MRI define glioblastoma pseudoprogression. Neuro-oncol. 2019 21 4 517 526 10.1093/neuonc/noy160 30277536
    [Google Scholar]
  63. Iv M. Samghabadi P. Holdsworth S. Gentles A. Rezaii P. Harsh G. Li G. Thomas R. Moseley M. Daldrup-Link H.E. Vogel H. Wintermark M. Cheshier S. Yeom K.W. Quantification of macrophages in high-grade gliomas by using ferumoxytol-enhanced MRI: A pilot study. Radiology 2019 290 1 198 206 10.1148/radiol.2018181204 30398435
    [Google Scholar]
  64. Hamilton B.E. Barajas R. Nesbit G.M. Fu R. Ambady P. Taylor M. Neuwelt E.A. Ferumoxytol-Enhanced MRI is not inferior to gadolinium-enhanced MRI in detecting intracranial metastatic disease and metastasis size. AJR Am. J. Roentgenol. 2020 215 6 1436 1442 10.2214/AJR.19.22187 33052739
    [Google Scholar]
  65. Qiao R. Fu C. Forgham H. Javed I. Huang X. Zhu J. Whittaker A.K. Davis T.P. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv. Drug Deliv. Rev. 2023 197 114822 10.1016/j.addr.2023.114822 37086918
    [Google Scholar]
  66. Dadfar S.M. Roemhild K. Drude N.I. von Stillfried S. Knüchel R. Kiessling F. Lammers T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019 138 302 325 10.1016/j.addr.2019.01.005 30639256
    [Google Scholar]
  67. Zheng Y. Jiang B. Guo H. Zhang Z. Chen B. Zhang Z. Wu S. Zhao J. The combinational nano-immunotherapy of ferumoxytol and poly(I:C) inhibits melanoma via boosting anti-angiogenic immunity. Nanomedicine 2023 49 102658 10.1016/j.nano.2023.102658 36708910
    [Google Scholar]
  68. Zanganeh S. Hutter G. Spitler R. Lenkov O. Mahmoudi M. Shaw A. Pajarinen J.S. Nejadnik H. Goodman S. Moseley M. Coussens L.M. Daldrup-Link H.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 2016 11 11 986 994 10.1038/nnano.2016.168
    [Google Scholar]
  69. Zhang W. Cao S. Liang S. Tan C.H. Luo B. Xu X. Saw P.E. Differently charged super-paramagnetic iron oxide nanoparticles preferentially induced m1-like phenotype of macrophages. Front. Bioeng. Biotechnol. 2020 8 537 10.3389/fbioe.2020.00537 32548111
    [Google Scholar]
  70. Wang G. Serkova N.J. Groman E.V. Scheinman R.I. Simberg D. Feraheme (Ferumoxytol) is recognized by proinflammatory and anti-inflammatory macrophages via scavenger receptor type AI/II. Mol. Pharm. 2019 16 10 4274 4281 10.1021/acs.molpharmaceut.9b00632 31556296
    [Google Scholar]
  71. zhao, J.; Zhang, Z.; Xue, Y.; Wang, G.; Cheng, Y.; Pan, Y.; Zhao, S.; Hou, Y. Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I: C) promote melanoma regression. Theranostics 2018 8 22 6307 6321 10.7150/thno.29746 30613299
    [Google Scholar]
  72. Li Y. Thamizhchelvan A.M. Ma H. Padelford J. Zhang Z. Wu T. Gu Q. Wang Z. Mao H. A subtype specific probe for targeted magnetic resonance imaging of M2 tumor-associated macrophages in brain tumors. Acta Biomater. 2025 194 336 351 10.1016/j.actbio.2025.01.003 39805525
    [Google Scholar]
  73. Chen B. Xing J. Li M. Liu Y. Ji M. DOX@Ferumoxytol-Medical Chitosan as magnetic hydrogel therapeutic system for effective magnetic hyperthermia and chemotherapy in vitro. Colloids Surf. B Biointerfaces 2020 190 110896 10.1016/j.colsurfb.2020.110896 32114270
    [Google Scholar]
  74. Liu X. Zhang Y. Wang Y. Zhu W. Li G. Ma X. Zhang Y. Chen S. Tiwari S. Shi K. Zhang S. Fan H.M. Zhao Y.X. Liang X.J. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 2020 10 8 3793 3815 10.7150/thno.40805 32206123
    [Google Scholar]
  75. Chapa González C. Magneto hyperthermia. Diagnosis and Treatment of Cancer using Thermal Therapies, 2023 244 265 10.1201/9781003342663‑13
    [Google Scholar]
  76. Dallet L. Stanicki D. Voisin P. Miraux S. Ribot E.J. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Sci. Rep. 2021 11 3286 10.1038/s41598‑021‑82095‑6
    [Google Scholar]
  77. Fantechi E. Castillo P.M. Conca E. Cugia F. Sangregorio C. Casula M.F. Assessing the hyperthermic properties of magnetic heterostructures: The case of gold–iron oxide composites. Interface Focus 2016 6 6 20160058 10.1098/rsfs.2016.0058 27920896
    [Google Scholar]
  78. Leonel A.G. Mansur A.A.P. Carvalho S.M. Outon L.E.F. Ardisson J.D. Krambrock K. Mansur H.S. Tunable magnetothermal properties of cobalt-doped magnetite–carboxymethylcellulose ferrofluids: Smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy. Nanoscale Adv. 2021 3 4 1029 1046 10.1039/D0NA00820F 36133299
    [Google Scholar]
  79. Manescu Paltanea V. Antoniac I. Paltanea G. Nemoianu I.V. Mohan A.G. Antoniac A. Rau J.V. Laptoiu S.A. Mihai P. Gavrila H. Al-Moushaly A.R. Bodog A.D. Magnetic hyperthermia in glioblastoma multiforme treatment. Int. J. Mol. Sci. 2024 25 18 10065 10.3390/ijms251810065 39337552
    [Google Scholar]
  80. Lee K.C. Krueger S.A. Buelow K. Galoforo S. Torma J. Grills I.S. Wilson G.D. Marples B. The use of ferumoxytol and T2*-weighted magnetic resonance imaging for noninvasive assessment of changes in tumor vascularity during radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2016 96 2 Suppl. E575 E576 10.1016/j.ijrobp.2016.06.2069
    [Google Scholar]
  81. Lehrman E.D. Plotnik A.N. Hope T. Saloner D. Ferumoxytol-enhanced MRI in the peripheral vasculature. Clin. Radiol. 2019 74 1 37 50 10.1016/j.crad.2018.02.021 29731126
    [Google Scholar]
  82. Gahramanov S. Raslan A.M. Muldoon L.L. Hamilton B.E. Rooney W.D. Varallyay C.G. Njus J.M. Haluska M. Neuwelt E.A. Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: A pilot study. Int. J. Radiat. Oncol. Biol. Phys. 2011 79 2 514 523 10.1016/j.ijrobp.2009.10.072 20395065
    [Google Scholar]
  83. Barajas R.F. Schwartz D. McConnell H.L. Kersch C.N. Li X. Hamilton B.E. Starkey J. Pettersson D.R. Nickerson J.P. Pollock J.M. Fu R.F. Horvath A. Szidonya L. Varallyay C.G. Jaboin J.J. Raslan A.M. Dogan A. Cetas J.S. Ciporen J. Han S.J. Ambady P. Muldoon L.L. Woltjer R. Rooney W.D. Neuwelt E.A. Distinguishing extravascular from intravascular ferumoxytol pools within the brain: Proof of concept in patients with treated glioblastoma. AJNR Am. J. Neuroradiol. 2020 41 7 1193 1200 10.3174/ajnr.A6600 32527840
    [Google Scholar]
  84. Israel L.L. Galstyan A. Holler E. Ljubimova J.Y. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J. Control. Release 2020 320 45 62 10.1016/j.jconrel.2020.01.009 31923537
    [Google Scholar]
  85. Singh N. Jenkins G.J.S. Asadi R. Doak S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010 1 1 5358 10.3402/nano.v1i0.5358
    [Google Scholar]
  86. Yarjanli Z. Ghaedi K. Esmaeili A. Rahgozar S. Zarrabi A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci. 2017 18 1 51 10.1186/s12868‑017‑0369‑9 28651647
    [Google Scholar]
  87. Irrsack E. Aydin S. Bleckmann K. Schuller J. Dringen R. Koch M. Local administrations of iron oxide nanoparticles in the prefrontal cortex and caudate putamen of rats do not compromise working memory and motor activity. Neurotox. Res. 2024 42 1 6 10.1007/s12640‑023‑00684‑x 38133743
    [Google Scholar]
  88. Feraheme™ (ferumoxytol) injection 2025 Avialable from:https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022180lbl.pdf
/content/journals/mrmc/10.2174/0113895575400653251008064030
Loading
/content/journals/mrmc/10.2174/0113895575400653251008064030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test