Skip to content
2000
image of New Insights from Toxinology in Mammalian Reproduction: A Systematic Review

Abstract

Introduction

Assisted reproductive techniques still have limitations regarding embryonic development and the achievement of clinical pregnancy. Animal venoms represent a biological library with the potential to trigger relevant cellular mechanisms. This study aimed to evaluate, through a literature review and computational screening, the activity of natural venoms and their derivatives on germ cells.

Materials and Methods

A literature review was conducted in PubMed, Embase, Scopus, and Web of Science databases. Inclusion criteria: experimental studies involving oocytes, spermatozoa, or embryos /. Exclusion criteria: review articles, letters to the editor, abstracts, books, and studies outside the scope. Extracted data included the type of venom, source species, experimental model, effects, mechanisms, and administration routes.

Methodological quality was assessed using funnel plots, forest plots, and the SYRCLE tool. Computational screening was performed targeting hormonal receptors.

Results

Of the 584 articles analyzed, only 19 met the eligibility criteria. Among these, 57% investigated snake venom, 16% spider venom, 16% bee venom, and 10% sea anemone/scorpion venom. High heterogeneity was observed in the effects on sperm motility (I2 = 97%) and sperm concentration (I2 = 95%), although a positive effect on concentration was detected. All molecules showed activity on estrogen receptors.

Discussion

The findings suggest that venoms and their derivatives can modulate gamete functions, with effects influenced by the chemical diversity of toxins and variations in experimental models. Computational screening highlights potential molecular interactions with hormonal pathways, reinforcing their relevance as modulators of reproductive processes.

Conclusion

Animal venoms and their derivatives can exert biological activity on germ cells (oocytes, spermatozoa, and embryos).

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575400899251008064935
2025-10-29
2025-11-01
Loading full text...

Full text loading...

References

  1. Infertility 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/infertility
  2. Yaghoobi A. Nazerian Y. Meymand A.Z. Ansari A. Nazerian A. Niknejad H. Hypoxia-sensitive miRNA regulation via CRISPR/dCas9 loaded in hybrid exosomes: A novel strategy to improve embryo implantation and prevent placental insufficiency during pregnancy. Front. Cell Dev. Biol. 2023 10 1082657 10.3389/fcell.2022.1082657 36704201
    [Google Scholar]
  3. Lacconi V. Massimiani M. Carriero I. Bianco C. Ticconi C. Pavone V. Alteri A. Muzii L. Rago R. Pisaturo V. Campagnolo L. When the embryo meets the endometrium: Identifying the features required for successful embryo implantation. Int. J. Mol. Sci. 2024 25 5 2834 10.3390/ijms25052834 38474081
    [Google Scholar]
  4. Graham M.E. Jelin A. Hoon A.H. Wilms Floet A.M. Levey E. Graham E.M. Assisted reproductive technology: Short‐ and long‐term outcomes. Dev. Med. Child Neurol. 2023 65 1 38 49 10.1111/dmcn.15332 35851656
    [Google Scholar]
  5. Kowalski K. Rychlik L. Venom Use in eulipotyphlans: An evolutionary and ecological approach. Toxins 2021 13 3 231 10.3390/toxins13030231 33810196
    [Google Scholar]
  6. AlShammari A.K. Abd El-Aziz T.M. Al-Sabi A. Snake venom: A promising source of neurotoxins targeting voltage-gated potassium channels. Toxins 2023 16 1 12 10.3390/toxins16010012 38251229
    [Google Scholar]
  7. Gajski G. Leonova E. Sjakste N. Bee venom: Composition and anticancer properties. Toxins 2024 16 3 117 10.3390/toxins16030117 38535786
    [Google Scholar]
  8. Kerkis A. Hayashi M.A.F. Yamane T. Kerkis I. Properties of cell penetrating peptides (CPPs). IUBMB Life 2006 58 1 7 13 10.1080/15216540500494508 16540427
    [Google Scholar]
  9. de Moura G.A. de Oliveira J.R. Rocha Y.M. de Oliveira Freitas J. Rodrigues J.P.V. Ferreira V.P.G. Nicolete R. Antitumor and antiparasitic activity of antimicrobial peptides derived from snake venom: A systematic review approach. Curr. Med. Chem. 2022 29 32 5358 5368 10.2174/0929867329666220507011719 35524668
    [Google Scholar]
  10. Chan J.Y.W. Zhou H. Kwan Y.W. Chan S.W. Rádis-Baptista G. Lee S.M.Y. Evaluation in zebrafish model of the toxicity of rhodamine B‐conjugated crotamine, a peptide potentially useful for diagnostics and therapeutics. J. Biochem. Mol. Toxicol. 2017 31 11 e21964 10.1002/jbt.21964 28815806
    [Google Scholar]
  11. Lafnoune A. Chbel A. Darkaoui B. Nait Irahal I. Oukkache N. Cobra venom: From envenomation syndromes to therapeutic innovations. Int. J. Pept. Res. Ther. 2024 30 6 71 10.1007/s10989‑024‑10646‑2
    [Google Scholar]
  12. Lafnoune A. Chbel A. Darkaoui B. Wahnou H. Nait Irahal I. Invertebrate venoms: A treasure trove of bioactive compounds with anticancer potential. Arch. Toxicol. 2025 99 7 2685 2698 10.1007/s00204‑025‑04032‑0 40316781
    [Google Scholar]
  13. Jodidio M. Schwartz R.A. Bee venom: Apitherapy and more. Ital. J. Dermatol. Venereol. 2024 159 1 4 10 10.23736/S2784‑8671.23.07683‑1 37997319
    [Google Scholar]
  14. Diniz-Sousa R. Caldeira C.A.S. Pereira S.S. Da Silva S.L. Fernandes P.A. Teixeira L.M.C. Zuliani J.P. Soares A.M. Zuliani J. Soares A. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int. J. Biol. Macromol. 2023 238 124357 10.1016/j.ijbiomac.2023.124357 37028634
    [Google Scholar]
  15. Bordon K.C.F. Cologna C.T. Fornari-Baldo E.C. Pinheiro-Júnior E.L. Cerni F.A. Amorim F.G. Anjolette F.A.P. Cordeiro F.A. Wiezel G.A. Cardoso I.A. Ferreira I.G. Oliveira I.S. Boldrini-França J. Pucca M.B. Baldo M.A. Arantes E.C. From animal poisons and venoms to medicines: Achievements, challenges and perspectives in drug discovery. Front. Pharmacol. 2020 11 1132 10.3389/fphar.2020.01132 32848750
    [Google Scholar]
  16. Rádis-Baptista G. Cell-penetrating peptides derived from animal venoms and toxins. Toxins 2021 13 2 147 10.3390/toxins13020147 33671927
    [Google Scholar]
  17. PRISMA guidelines 2020 Available from:https://www.prisma-statement.org/
  18. Rocha Y.M. de Moura G.A. Desidério G.A. de Oliveira C.H. Lourenço F.D. de Figueiredo Nicolete L.D. The impact of fake news on social media and its influence on health during the COVID-19 pandemic: A systematic review. J. Public. Health. 2021 1 10 10.1007/s10389‑021‑01658‑z 34660175
    [Google Scholar]
  19. Medical subjects headings: MESH. 2025 Available from:https://www.ncbi.nlm.nih.gov/mesh
  20. Hooijmans C.R. Rovers M.M. de Vries R.B.M. Leenaars M. Ritskes-Hoitinga M. Langendam M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014 14 1 43 10.1186/1471‑2288‑14‑43 24667063
    [Google Scholar]
  21. Doleman B. Freeman S.C. Lund J.N. Williams J.P. Sutton A.J. Funnel plots may show asymmetry in the absence of publication bias with continuous outcomes dependent on baseline risk: Presentation of a new publication bias test. Res. Synth. Methods 2020 11 4 522 534 10.1002/jrsm.1414 32362052
    [Google Scholar]
  22. Escoffier J. Couvet M. de Pomyers H. Ray P.F. Sève M. Lambeau G. De Waard M. Arnoult C. Snake venoms as a source of compounds modulating sperm physiology: Secreted phospholipases A2 from Oxyuranus scutellatus scutellatus impact sperm motility, acrosome reaction and in vitro fertilization in mice. Biochimie 2010 92 7 826 836 10.1016/j.biochi.2010.03.003 20226834
    [Google Scholar]
  23. Navarrete P. Martínez-Torres A. Gutiérrez R.S. Mejía F.R. Parodi J. Venom of the Chilean Latrodectus mactans alters bovine spermatozoa calcium and function by blocking the TEA-sensitive K(+) current. Syst Biol Reprod Med 2010 56 4 303 310 10.3109/19396368.2010.492447 20718617
    [Google Scholar]
  24. Parodi J. Navarrete P. Marconi M. Gutiérrez R.S. Martínez-Torres A. Mejías F.R. Tetraethylammonium-sensitive K(+) current in the bovine spermatozoa and its blocking by the venom of the Chilean Latrodectus mactans. Syst Biol Reprod Med 2010 56 1 37 43 10.3109/19396360903497217 20170285
    [Google Scholar]
  25. Gómez P.N. Alvarez J.G. Parodi J. Romero F. Sánchez R. Effect of aracnotoxin from Latrodectus mactans on bovine sperm function: Modulatory action of bovine oviduct cells and their secretions. Andrologia 2012 44 Suppl. 1 764 771 10.1111/j.1439‑0272.2011.01263.x 22211875
    [Google Scholar]
  26. Jallouk A.P. Moley K.H. Omurtag K. Hu G. Lanza G.M. Wickline S.A. Hood J.L. Nanoparticle incorporation of melittin reduces sperm and vaginal epithelium cytotoxicity. PLoS One 2014 9 4 e95411 10.1371/journal.pone.0095411 24748389
    [Google Scholar]
  27. Campelo I.S. Pereira A.F. Alcântara-Neto A.S. Canel N.G. Souza-Fabjan J.M.G. Teixeira D.I.A. Camargo L.S.A. Melo L.M. Rádis-Baptista G. Salamone D.F. Freitas V.J.F. Effect of crotamine, a cell-penetrating peptide, on blastocyst production and gene expression of in vitro fertilized bovine embryos. Zygote 2016 24 1 48 57 10.1017/S0967199414000707 25532535
    [Google Scholar]
  28. Campelo I.S. Canel N.G. Bevacqua R.J. Melo L.M. Rádis-Baptista G. Freitas V.J.F. Salamone D.F. Crotamine, a cell-penetrating peptide, is able to translocate parthenogenetic and in vitro fertilized bovine embryos but does not improve exogenous DNA expression. J. Assist. Reprod. Genet. 2016 33 10 1405 1413 10.1007/s10815‑016‑0772‑7 27515309
    [Google Scholar]
  29. Martinez G. Hograindleur J.P. Voisin S. Abi Nahed R. Abd El Aziz T.M. Escoffier J. Bessonnat J. Fovet C.M. De Waard M. Hennebicq S. Aucagne V. Ray P.F. Schmitt E. Bulet P. Arnoult C. Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species. Mol. Hum. Reprod. 2016 23 2 116 131 10.1093/molehr/gaw075 27932550
    [Google Scholar]
  30. Abd El-Aziz T.M. Al Khoury S. Jaquillard L. Triquigneaux M. Martinez G. Bourgoin-Voillard S. Sève M. Arnoult C. Beroud R. De Waard M. Actiflagelin, a new sperm activator isolated from Walterinnesia aegyptia venom using phenotypic screening. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018 24 1 2 10.1186/s40409‑018‑0140‑4 29410678
    [Google Scholar]
  31. Fernandes F.H. Bustos-Obregon E. Matias R. Dourado D.M. Crotalus durissus sp. rattlesnake venom induces toxic injury in mouse sperm. Toxicon 2018 153 17 18 10.1016/j.toxicon.2018.08.006 30149042
    [Google Scholar]
  32. Abd El-Aziz T.M. Jaquillard L. Bourgoin-Voillard S. Martinez G. Triquigneaux M. Zoukimian C. Combemale S. Hograindleur J.P. Al Khoury S. Escoffier J. Michelland S. Bulet P. Beroud R. Seve M. Arnoult C. De Waard M. Bullet P. Beroud R. Seve M. Arnoult C. Waard M. Identification, characterization and synthesis of walterospermin, a sperm motility activator from the egyptian black snake Walterinnesia aegyptia venom. Int. J. Mol. Sci. 2020 21 20 7786 10.3390/ijms21207786 33096770
    [Google Scholar]
  33. El-Hanoun A. El-Komy A. El-Sabrout K. Abdella M. Effect of bee venom on reproductive performance and immune response of male rabbits. Physiol. Behav. 2020 223 112987 10.1016/j.physbeh.2020.112987 32492496
    [Google Scholar]
  34. Freitas V.J.F. Campelo I.S. Silva M.M.A.S. Cavalcanti C.M. Teixeira D.I.A. Camargo L.S.A. Melo L.M. Rádis-Baptista G. Disulphide-less crotamine is effective for formation of DNA–peptide complex but is unable to improve bovine embryo transfection. Zygote 2020 28 1 72 79 10.1017/S0967199419000716 31662126
    [Google Scholar]
  35. L-Shaeli, S.J.J.; Hussen, T.J.; Ethaeb, A.M. Effect of honey bee venom on the histological changes of testes and hormonal disturbance in diabetic mice. Vet. World 2022 15 9 2357 2364 10.14202/vetworld.2022.2357‑2364 36341058
    [Google Scholar]
  36. Ajisebiola B.S. Alamu P.I. James A.S. Adeyi A.O. Echis ocellatus venom-induced reproductive pathologies in rat model; roles of oxidative stress and pro-inflammatory cytokines. Toxins 2022 14 6 378 10.3390/toxins14060378 35737039
    [Google Scholar]
  37. Lazcano-Pérez F. Bermeo K. Castro H. Salazar Campos Z. Arenas I. Zavala-Moreno A. Chávez-Villela S.N. Jiménez I. Arreguín-Espinosa R. Fierro R. González-Márquez H. Garcia D.E. Sánchez-Rodríguez J. A sea anemone Lebrunia neglecta venom fraction decreases boar sperm cells capacitation: Possible involvement of HVA calcium channels. Toxins 2022 14 4 261 10.3390/toxins14040261 35448870
    [Google Scholar]
  38. Santos A.T. Kumar S. Albuquerque J.V.S. Arcce I.M.L. Chaves O.A. Cruz G.S. Carretero V.J. Melo L.M. Chaves M.S. Guijo J.M.H. Freitas V.J.F. Rádis-Baptista G. The anti-infective crotalicidin peptide analog RhoB-Ctn[1–9] is harmless to bovine oocytes and able to induce parthenogenesis in vitro. Toxicon 2023 234 107274 10.1016/j.toxicon.2023.107274 37657514
    [Google Scholar]
  39. Adeyi A.O. Ajisebiola B.S. Sanni A.A. Oladele J.O. Mustapha A.R.K. Oyedara O.O. Fagbenro O.S. Kaempferol mitigates reproductive dysfunctions induced by Naja nigricollis venom through antioxidant system and anti-inflammatory response in male rats. Sci. Rep. 2024 14 1 3933 10.1038/s41598‑024‑54523‑w 38365877
    [Google Scholar]
  40. Ajisebiola B.S. Toromade A.A. Oladele J.O. Mustapha A.R.K. Fagbenro O.S. Adeyi A.O. Echis ocellatus venom-induced sperm functional deficits, pro-apoptotic and inflammatory activities in male reproductive organs in rats: Antagonistic role of kaempferol. BMC Pharmacol. Toxicol. 2024 25 1 46 10.1186/s40360‑024‑00776‑0 39123263
    [Google Scholar]
  41. Yang D. Liu X. Li J. Xie J. Jiang L. Animal venoms: A novel source of anti-Toxoplasma gondii drug candidates. Front. Pharmacol. 2023 14 1178070 10.3389/fphar.2023.1178070 37205912
    [Google Scholar]
  42. Messadi E. Snake venom components as therapeutic drugs in ischemic heart disease. Biomolecules 2023 13 10 1539 10.3390/biom13101539 37892221
    [Google Scholar]
  43. Zainal Abidin S.A. Liew A.K.Y. Othman I. Shaikh F. Animal venoms as potential source of anticonvulsants. F1000 Res. 2024 13 225 10.12688/f1000research.147027.1
    [Google Scholar]
  44. Gimeno-Martos S. González-Arto M. Casao A. Gallego M. Cebrián-Pérez J.A. Muiño-Blanco T. Pérez-Pé R. Steroid hormone receptors and direct effects of steroid hormones on ram spermatozoa. Reproduction 2017 154 4 469 481 10.1530/REP‑17‑0177 28710294
    [Google Scholar]
  45. Cannarella R. Mancuso F. Barone N. Arato I. Lilli C. Bellucci C. Musmeci M. Luca G. La Vignera S. Condorelli R.A. Calogero A.E. Effects of follicle-stimulating hormone on human sperm motility in vitro. Int. J. Mol. Sci. 2023 24 7 6536 10.3390/ijms24076536 37047508
    [Google Scholar]
  46. Park Y.J. Pang M.G. Mitochondrial functionality in male fertility: From spermatogenesis to fertilization. Antioxidants 2021 10 1 98 10.3390/antiox10010098 33445610
    [Google Scholar]
  47. Hiu J.J. Yap M.K.K. Cytotoxicity of snake venom enzymatic toxins: Phospholipase A2 and l-amino acid oxidase. Biochem. Soc. Trans. 2020 48 2 719 731 10.1042/BST20200110 32267491
    [Google Scholar]
  48. Rayapati A.M. Vemulapati B. Chanda C. Cobra (Naja naja) venom L-amino acid oxidase (NNLAAO70) induces apoptosis and secondary necrosis in human lung epithelial cancer cells. J. Biosci. 2024 49 2 43 10.1007/s12038‑024‑00429‑8 38516910
    [Google Scholar]
  49. Marinho A.D. Silveira J.A.M. Chaves Filho A.J.M. Jorge A.R.C. Nogueira Júnior F.A. Pereira V.B.M. de Aquino P.E.A. Pereira C.A.S. Evangelista J.S.A.M. Macedo D.S. Lima Júnior R.C.P. Toyama M.H. Jorge R.J.B. Pereira G.J.S. Monteiro H.S.A. Bothrops pauloensis snake venom-derived Asp-49 and Lys-49 phospholipases A2 mediates acute kidney injury by oxidative stress and release of inflammatory cytokines. Toxicon 2021 190 31 38 10.1016/j.toxicon.2020.12.004 33307108
    [Google Scholar]
  50. Wang Y. Fu X. Li H. Mechanisms of oxidative stress-induced sperm dysfunction. Front. Endocrinol. 2025 16 1520835 10.3389/fendo.2025.1520835 39974821
    [Google Scholar]
  51. Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017 84 10 1039 1052 10.1002/mrd.22871 28749007
    [Google Scholar]
  52. Bravo A. Sánchez R. Zambrano F. Uribe P. Exogenous oxidative stress in human spermatozoa induces opening of the mitochondrial permeability transition pore: Effect on Mitochondrial function, sperm motility and induction of cell death. Antioxidants 2024 13 6 739 10.3390/antiox13060739 38929178
    [Google Scholar]
  53. Moura G.A. Rocha Y.M. Moura F.L.D. Freitas J.O. Rodrigues J.P.V. Ferreira V.P.G. Nicolete R. Immune system cells modulation in patients with reproductive issues: A systematic review approach. JBRA Assist. Reprod. 2023 28 1 78 89 10.5935/1518‑0557.20230044 37962966
    [Google Scholar]
  54. Kurkowska W. Bogacz A. Janiszewska M. Gabryś E. Tiszler M. Bellanti F. Kasperczyk S. Machoń-Grecka A. Dobrakowski M. Kasperczyk A. Oxidative Stress is associated with reduced sperm motility in normal semen. Am. J. Men Health 2020 14 5 1557988320939731 10.1177/1557988320939731 32938274
    [Google Scholar]
  55. Moretti E. Signorini C. Menchiari S. Liguori L. Corsaro R. Gambera L. Collodel G. Are F2-isoprostanes a better marker of semen lipid peroxidation than MDA in reproductive pathologies with inflammatory basis? Cytokine 2025 188 156889 10.1016/j.cyto.2025.156889 39923300
    [Google Scholar]
  56. Boitrelle F. Pagnier M. Athiel Y. Swierkowski-Blanchard N. Torre A. Alter L. Muratório C. Vialard F. Albert M. Selva J. A human morphologically normal spermatozoon may have noncondensed chromatin. Andrologia, 2014 47 (8) n/a 10.1111/and.12341 25220830
    [Google Scholar]
  57. Gonçalves V.B.P. de Moura G.A. Rodrigues J.P.V. Latorre J.M. Candela-Nogueira V. Soriano-Teruel P.M. García Fernández A. Máñez R.M. de Medeiros Chaves M. do O Pessoa, C.; de Lima, A.M.; Soares, A.M.; Nicolete, R. Assessment of the toxicity of free and PLGA-encapsulated phospholipase A2 CB: An in vitro approach. Curr. Med. Chem. 2025 32 35 7960 7972 10.2174/0109298673274499250327053516 40211991
    [Google Scholar]
  58. Tran T.V. Siniavin A.E. Hoang A.N. Le M.T.T. Pham C.D. Phung T.V. Nguyen K.C. Ziganshin R.H. Tsetlin V.I. Weng C.F. Utkin Y.N. Phospholipase A2 from krait Bungarus fasciatus venom induces human cancer cell death in vitro. PeerJ 2019 7 e8055 10.7717/peerj.8055 31824756
    [Google Scholar]
  59. Derakhshankhah H. Jafari S. Cell penetrating peptides: A concise review with emphasis on biomedical applications. Biomed. Pharmacother. 2018 108 1090 1096 10.1016/j.biopha.2018.09.097 30372809
    [Google Scholar]
  60. Zhang H. Zhang Y. Zhang C. Yu H. Ma Y. Li Z. Shi N. Recent advances of cell-penetrating peptides and their application as vectors for delivery of peptide and protein-based cargo molecules. Pharmaceutics 2023 15 8 2093 10.3390/pharmaceutics15082093 37631307
    [Google Scholar]
  61. Oliveira C.S. Dias H.R.S. Camargo A.J.R. Mourão A. Feuchard V.L.S. Muller M.D. Brandão F.Z. Nogueira L.A.G. Verneque R.S. Saraiva N.Z. Camargo L.S.A. Livestock-Forest integrated system attenuates deleterious heat stress effects in bovine oocytes. Anim. Reprod. Sci. 2024 268 107568 10.1016/j.anireprosci.2024.107568 39106562
    [Google Scholar]
  62. Adamiak S.J. Mackie K. Watt R.G. Webb R. Sinclair K.D. Impact of nutrition on oocyte quality: Cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. Biol. Reprod. 2005 73 5 918 926 10.1095/biolreprod.105.041483 15972884
    [Google Scholar]
  63. Valentim Silva J.R. de Barros N.B. Aragão Macedo S.R. Ferreira A.S. Moreira Dill L.S. Zanchi F.B. do Nascimento J.R. Fernandes do Nascimento F.R. Lourenzoni M.R. de Azevedo Calderon L. Soares A.M. Nicolete R. A natural cell-penetrating nanopeptide combined with pentavalent antimonial as experimental therapy against cutaneous leishmaniasis. Exp. Parasitol. 2020 217 107934 10.1016/j.exppara.2020.107934 32698075
    [Google Scholar]
  64. de Oliveira J.R. de Morais Oliveira-Tintino C.D. Carneiro J.N.P. dos Santos A.G. de Lima A.M. Soares A.M. Morais-Braga M.F.B. Coutinho H.D.M. Nicolete R. Crotamine derived from Crotalus durissus terrificus venom combined with drugs increases in vitro antibacterial and antifungal activities. Arch. Microbiol. 2024 206 9 368 10.1007/s00203‑024‑04096‑z 39107625
    [Google Scholar]
  65. Lima H.V.D. dos Santos T.M.C. de Sousa Silva M.M.A. da Silva Albuquerque J.V. Melo L.M. de Figueirêdo Freitas V.J. Rádis-Baptista G. The rhodamine B-encrypted vipericidin peptide, RhoB-Ctn[1-9], displays in vitro antimicrobial activity against opportunistic bacteria and yeasts. Curr. Pharm. Biotechnol. 2022 23 2 172 179 10.2174/1389201022666210322123903 33749557
    [Google Scholar]
  66. Protti D.A. Uchitel O.D. Transmitter release and presynaptic Ca2+ currents blocked by the spider toxin ω-Aga-IVA. Neuroreport 1993 5 3 333 336 10.1097/00001756‑199312000‑00039 7905295
    [Google Scholar]
  67. Adams M.E. Myers R.A. Imperial J.S. Olivera B.M. Toxityping rat brain calcium channels with. omega.-toxins from spider and cone snail venoms. Biochemistry 1993 32 47 12566 12570 10.1021/bi00210a003 8251474
    [Google Scholar]
  68. Finkelstein M. Etkovitz N. Breitbart H. Ca2+ signaling in mammalian spermatozoa. Mol. Cell. Endocrinol. 2020 516 110953 10.1016/j.mce.2020.110953 32712383
    [Google Scholar]
  69. Regeai S.O. Abusrer S.A. Shibani N.S. Low semen quality and adverse histological changes in testes of adult male mice treated with bee venom (Apis mellifera). Open Vet. J. 2021 11 1 70 79 10.4314/ovj.v11i1.11 33898286
    [Google Scholar]
  70. Danneels E. Van Vaerenbergh M. Debyser G. Devreese B. De Graaf D. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins 2015 7 11 4468 4483 10.3390/toxins7114468 26529016
    [Google Scholar]
  71. Gmachl M. Kreil G. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc. Natl. Acad. Sci. USA 1993 90 8 3569 3573 10.1073/pnas.90.8.3569 7682712
    [Google Scholar]
  72. Kocur O.M. Xie P. Cheung S. Souness S. McKnight M. Rosenwaks Z. Palermo G.D. Can a sperm selection technique improve embryo ploidy? Andrology 2023 11 8 1605 1612 10.1111/andr.13362 36484212
    [Google Scholar]
  73. Abramov R. Madjunkov M. Moskotsev S. Librach C. Madjunkova S. Librach C. Madjunkova S. P-527 Low sperm motility and elevated sperm DNA fragmentation index (DFI) are associated with increased rates of embryo aneuploidy in patients with advanced reproductive age Hum. Reprod. 2024 39 (1) deae108.867 10.1093/humrep/deae108.867
    [Google Scholar]
  74. Alcaide M. Moutinho Cabral I. Carvalho L. Mendes V.M. Alves de Matos A.P. Manadas B. Saúde L. D’Ambrosio M. Costa P.M. A comparative analysis of the venom system between two morphotypes of the sea anemone Actinia equina. Animals 2024 14 6 981 10.3390/ani14060981 38540078
    [Google Scholar]
  75. Li M. Mao K. Huang M. Liao Y. Fu J. Pan K. Shi Q. Gao B. Venomics reveals the venom complexity of sea anemone Heteractis magnifica. Mar. Drugs 2024 22 2 71 10.3390/md22020071 38393042
    [Google Scholar]
  76. Althouse G.C. Biological and chemical contaminants in extended porcine semen: Outcomes and diagnosis. Anim. Reprod. Sci. 2022 247 107086 10.1016/j.anireprosci.2022.107086 36191426
    [Google Scholar]
  77. López-Albors O. Llamas-López P.J. Ortuño J.Á. Latorre R. García-Vázquez F.A. In vivo measurement of pH and CO2 levels in the uterus of sows through the estrous cycle and after insemination. Sci. Rep. 2021 11 1 3194 10.1038/s41598‑021‑82620‑7 33542361
    [Google Scholar]
  78. Agwuegbo U.C. Jonas K.C. Molecular and functional insights into gonadotropin hormone receptor dimerization and oligomerization. Minerva Ginecol. 2018 70 5 539 548 10.23736/S0026‑4784.18.04287‑9 30226027
    [Google Scholar]
  79. Moura G.A. Lourenço M.L. Rocha Y.M. Rodrigues J.P.V. Pinheiro C.V. Queiroz A.S. Miranda E.P. Torquato Filho S.E. Nicolete R. Assessment of differentially expressed genes from in vitro matured human oocytes: A bioinformatics approach. JBRA Assist. Reprod. 2024 28 3 457 463 10.5935/1518‑0557.20240030 38801311
    [Google Scholar]
  80. VEGA-HUB 2025 Available from:https://www.vegahub.eu/about-qsar/
  81. Vračko M. Stanojević M. Sollner Dolenc M. Comparison of predictions of developmental toxicity for compounds of solvent data set. SAR QSAR Environ. Res. 2022 33 1 35 48 10.1080/1062936X.2022.2025614 35067137
    [Google Scholar]
  82. Berber A.A. Demi̇r Ş.N. Akinci Kenanoğlu N. Potential health risks of chloroacetanilide herbicides: An in silico analysis. Sakarya Univ. J. Sci. 2023 27 4 865 871 10.16984/saufenbilder.1281720
    [Google Scholar]
  83. Manganelli S. Roncaglioni A. Mansouri K. Judson R.S. Benfenati E. Manganaro A. Ruiz P. Development, validation and integration of in silico models to identify androgen active chemicals. Chemosphere 2019 220 204 215 10.1016/j.chemosphere.2018.12.131 30584954
    [Google Scholar]
  84. Ben Hlima H. Farhat A. Akermi S. Khemakhem B. Ben Halima Y. Michaud P. Fendri I. Abdelkafi S. In silico evidence of antiviral activity against SARS-CoV-2 main protease of oligosaccharides from Porphyridium sp. Sci. Total Environ. 2022 836 155580 10.1016/j.scitotenv.2022.155580 35500710
    [Google Scholar]
  85. Tang Z.R. Zhang R. Lian Z.X. Deng S.L. Yu K. Estrogen-receptor expression and function in female reproductive disease. Cells 2019 8 10 1123 10.3390/cells8101123 31546660
    [Google Scholar]
  86. Rago V. Giordano F. Brunelli E. Zito D. Aquila S. Carpino A. Identification of G protein‐coupled estrogen receptor in human and pig spermatozoa. J. Anat. 2014 224 6 732 736 10.1111/joa.12183 24697543
    [Google Scholar]
  87. Gimeno-Martos S. Santorromán-Nuez M. Cebrián-Pérez J.A. Muiño-Blanco T. Pérez-Pé R. Casao A. Involvement of progesterone and estrogen receptors in the ram sperm acrosome reaction. Domest. Anim. Endocrinol. 2021 74 106527 10.1016/j.domaniend.2020.106527 32799038
    [Google Scholar]
  88. Tang Y. Lu S. Wei J. Xu R. Zhang H. Wei Q. Han B. Gao Y. Zhao X. Peng S. Pan M. Ma B. Growth differentiation factor 9 regulates the expression of estrogen receptors via Smad2/3 signaling in goat cumulus cells. Theriogenology 2024 219 65 74 10.1016/j.theriogenology.2024.02.021 38402699
    [Google Scholar]
  89. Agnese M. Rosati L. Prisco M. Borzacchiello L. Abagnale L. Andreuccetti P. The expression of estrogen receptors during the Mytilus galloprovincialis ovarian cycle. J. Exp. Zool. A Ecol. Integr. Physiol. 2019 331 7 367 373 10.1002/jez.2272 31145556
    [Google Scholar]
  90. Lee E.B. Chakravarthi V.P. Wolfe M.W. Rumi M.A.K. ERβ regulation of gonadotropin responses during folliculogenesis. Int. J. Mol. Sci. 2021 22 19 10348 10.3390/ijms221910348 34638689
    [Google Scholar]
  91. Mathew J.L. Systematic reviews and meta-analysis: A guide for beginners. Indian Pediatr. 2022 59 4 320 330 10.1007/s13312‑022‑2500‑y 34183469
    [Google Scholar]
  92. Al-Khabori M. Rasool W. Introduction to systematic reviews and meta-analyses of therapeutic studies. Oman Med. J. 2022 37 5 e428 10.5001/omj.2022.42 36263198
    [Google Scholar]
  93. Brereton R.G. The chi squared and multinormal distributions. J. Chemometr. 2015 29 1 9 12 10.1002/cem.2680
    [Google Scholar]
  94. Gallo A. Esposito M.C. Tosti E. Boni R. Sperm motility, oxidative status, and mitochondrial activity: Exploring correlation in different species. Antioxidants 2021 10 7 1131 10.3390/antiox10071131 34356364
    [Google Scholar]
  95. Miller M.R. Mansell S.A. Meyers S.A. Lishko P.V. Flagellar ion channels of sperm: Similarities and differences between species. Cell Calcium 2015 58 1 105 113 10.1016/j.ceca.2014.10.009 25465894
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575400899251008064935
Loading
/content/journals/mrmc/10.2174/0113895575400899251008064935
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: venom ; oocytes ; Venoms ; assisted reproduction techniques ; spermatozoa ; reproductive medicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test