Mini Reviews in Medicinal Chemistry - Volume 25, Issue 21, 2025
Volume 25, Issue 21, 2025
-
-
Imidazo[2,1-b] [1,3,4]thiadiazole: A Versatile Scaffold in Anticancer Drug Discovery - Impact of C-2, C-5, and C-6 Substitutions
More LessImidazo[2,1-b][1,3,4]thiadiazoles, a class of fused bicyclic heterocycles, have garnered significant interest in medicinal chemistry due to their diverse biological activities, particularly their anticancer properties. Over recent decades, extensive research has been conducted to explore and enhance their therapeutic potential. This comprehensive review spans six decades of research on the imidazo[2,1-b][1,3,4]thiadiazole scaffold, focusing on structural variations at C-2, C-5, and C-6 position on this scaffold and their implications for anticancer activity. Modifications at these positions have been shown to significantly impact the compound’s efficacy against various cancer cell lines. Continuous exploration and optimization of these substitutions hold promise for the development of novel anticancer therapeutics.
-
-
-
The Roles, Mechanisms, and Clinical Significance of Long Non-coding RNA MSC-AS1 in Cancer
More LessAuthors: Jingjie Yang, Fan Peng, Kexing Liu, Haodong He, Haoran Liu, Li Li, Qianqian Yao, Ning Yang, Gang Zhou and Chengfu YuanMusculin antisense RNA 1 (MSC-AS1) is a long non-coding RNA (lncRNA) located on human chromosome 8q13.3-q21.11. Emerging evidence shows that MSC-AS1 is either upregulated or downregulated in 16 types of human cancers, and is associated with clinical pathological features and patient prognosis in 12 of these cancers. It is widely believed that the dysregulation of MSC-AS1 contributes to tumor cell growth, metastasis, epithelial-mesenchymal transition (EMT) progression, metabolic reprogramming, and drug resistance formation. Mechanistically, MSC-AS1 can act as a competing endogenous RNA (ceRNA) by sponging 14 miRNAs to affect the expression of downstream mRNAs, or it may directly interact with proteins, both of which contribute to the activation of the PI3K/AKT and Wnt/β-catenin signaling pathways. Our review study suggests that MSC-AS1 is a potential cancer biomarker and therapeutic target. In summary, we have explained the research on MSC-AS1 related to cancer treatment, its expression patterns, functional characteristics, and molecular mechanisms in malignant tumors. We have further emphasized its significance in clinical prognosis and therapeutic applications.
-
-
-
Exploring Indole-Based Molecules as Novel Therapeutics for Parkinson’s Disease: A Comprehensive Review
More LessAuthors: Ritam Mondal, Deepika Paliwal, Aman Thakur, Saurabh Sharma and Niranjan KaushikThe primary feature of Parkinson's disease (PD), a progressive neurodegenerative disease that results in both motor and non-motor dysfunctions, is the degeneration of dopaminergic neurons in the substantia nigra. In recent years, indole-based compounds have emerged as promising candidates for developing novel treatments for Parkinson's disease due to their diverse pharmacological properties. Among the significant pathogenic targets against which indole derivatives exhibit potent activity are monoamine oxidase (MAO), NMDA receptors, oxidative stress, and neuroinflammation. This review provides an in-depth analysis of synthetic indole derivatives as potential therapeutic agents for Parkinson’s disease. We explore how these compounds may reduce the pathology associated with Parkinson's disease, identify molecular targets, and analyze the relationships between their structure and activity. We also discuss recent advances in computational and medicinal chemistry that aim to enhance indole structures. Potential challenges and upcoming prospects for the therapeutic application of indole-based therapies are also considered in the review. The ultimate objective of this study is to elucidate the potential applications of synthetic indole derivatives in the development of innovative therapies for Parkinson's disease.
-
-
-
Emerging Role of Dendrobium Orchid Plants in Diabetes: Phytochemistry Aspects, SAR, and Therapeutic Potential
More LessAuthors: Sanjeev Kumar Sahu, Paranjeet Kaur, Manish Vyas and Divya ChauhanIntroductionDendrobium belongs to one of the most important genera of the Orchidaceae family, which covers the largest category of flowering plants. More recent traditional medicinal studies have revealed that these orchid plants are used worldwide to treat a variety of illnesses, including those related to the complexion, pulmonary, gastrointestinal, reproductive, and circulatory systems, as well as cancers, pain, and inflammation. Several Dendrobium species have been the subject of phytochemistry and pharmacological research to explore their different medicinal aspects.
Materials and MethodsA comprehensive search through databases (PubMed, Google Scholar, Web of Science, Traditional integrated knowledge resources, local dissertations, and books) was conducted up until November 2024 using key terms such as “Orchid plants, Type 2 diabetes, phytomedicine, natural products, phytoconstituents, phytochemistry, therapeutic potential, and plant-derived antidiabetic agents.”
ResultsIts major phytoconstituents belong to the chemical categories of stilbenoid, glycoside, alkaloids, flavonoids, phenanthrenes, anthocyanins, carotenoids, and bibenzyl derivatives, in which the alkaloids and flavonoids play a most significant role for their biological properties. The flavone C-glycoside and flavanols are commonly found, but highly methylated and glycosylated derivatives of flavonoids are absent in orchid leaves.
DiscussionThe phytochemical composition of Dendrobium, along with its structure-activity relationship of major classes, supports it as a potential source for novel antidiabetic agents through integrating traditional knowledge with medicinal chemistry aspects.
ConclusionA specific Dendrobium orchid plant has a promising role in the effective management of diabetes. In the future, newer, more potent antidiabetic compounds may be isolated and further developed into more effective antidiabetic agents.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month