Skip to content
2000
Volume 25, Issue 21
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Introduction

belongs to one of the most important genera of the Orchidaceae family, which covers the largest category of flowering plants. More recent traditional medicinal studies have revealed that these orchid plants are used worldwide to treat a variety of illnesses, including those related to the complexion, pulmonary, gastrointestinal, reproductive, and circulatory systems, as well as cancers, pain, and inflammation. Several species have been the subject of phytochemistry and pharmacological research to explore their different medicinal aspects.

Materials and Methods

A comprehensive search through databases (PubMed, Google Scholar, Web of Science, Traditional integrated knowledge resources, local dissertations, and books) was conducted up until November 2024 using key terms such as “Orchid plants, Type 2 diabetes, phytomedicine, natural products, phytoconstituents, phytochemistry, therapeutic potential, and plant-derived antidiabetic agents.”

Results

Its major phytoconstituents belong to the chemical categories of stilbenoid, glycoside, alkaloids, flavonoids, phenanthrenes, anthocyanins, carotenoids, and bibenzyl derivatives, in which the alkaloids and flavonoids play a most significant role for their biological properties. The flavone C-glycoside and flavanols are commonly found, but highly methylated and glycosylated derivatives of flavonoids are absent in orchid leaves.

Discussion

The phytochemical composition of Dendrobium, along with its structure-activity relationship of major classes, supports it as a potential source for novel antidiabetic agents through integrating traditional knowledge with medicinal chemistry aspects.

Conclusion

A specific Dendrobium orchid plant has a promising role in the effective management of diabetes. In the future, newer, more potent antidiabetic compounds may be isolated and further developed into more effective antidiabetic agents.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575402987250917093529
2025-09-30
2026-01-01
Loading full text...

Full text loading...

References

  1. KumarA. GangwarR. Ahmad ZargarA. KumarR. SharmaA. Prevalence of diabetes in India: A review of IDF diabetes atlas.Curr. Diabetes Rev.202420110.2174/1573399819666230413094200
    [Google Scholar]
  2. JacobB. NarendhirakannanR. Role of medicinal plants in the management of diabetes mellitus: A review.3 Biotech20199110.1007/s13205‑018‑1528‑0
    [Google Scholar]
  3. YedjouC.G. GrigsbyJ. MbemiA. NelsonD. MildortB. LatinwoL. TchounwouP.B. The management of diabetes mellitus using medicinal plants and vitamins.Int. J. Mol. Sci.20232410908510.3390/ijms24109085 37240430
    [Google Scholar]
  4. PaulN. KatochM. SinghN. NegiA. MurthyS. Role of phytoconstituents of medicinal plants in curing type 2 diabetes. J. Food.Chem. Nanotechnol.202410S1S34S41
    [Google Scholar]
  5. AnsariP. AktherS. HannanJ.M.A. SeidelV. NujatN.J. Abdel-WahabY.H.A. Pharmacologically active phytomolecules isolated from traditional antidiabetic plants and their therapeutic role for the management of diabetes mellitus.Molecules20222713427810.3390/molecules27134278 35807526
    [Google Scholar]
  6. SinghS. BansalA. SinghV. ChopraT. PoddarJ. Flavonoids, alkaloids and terpenoids: A new hope for the treatment of diabetes mellitus.J. Diabetes Metab. Disord.202221194195010.1007/s40200‑021‑00943‑8 35673446
    [Google Scholar]
  7. JainA. JangidT. JangirR.N. BhardwajG.S. Antidiabetic activity of polyherbal formulations: A comprehensive review.Protoplasma202512210.1007/s00709‑025‑02057‑x 40178615
    [Google Scholar]
  8. SuvarnaR. ShenoyR.P. HadapadB.S. NayakA.V. Effectiveness of polyherbal formulations for the treatment of type 2 Diabetes mellitus - A systematic review and meta-analysis.J. Ayurveda Integr. Med.202112121322210.1016/j.jaim.2020.11.002 33551339
    [Google Scholar]
  9. FongeB.A. EssomoS.E. BechemT.E. TabotP.T. ArreyB.D. AfangaY. AssouaE.M. Market trends and ethnobotany of orchids of Mount Cameroon.J. Ethnobiol. Ethnomed.20191512910.1186/s13002‑019‑0308‑1 31238949
    [Google Scholar]
  10. SinghS. SinghA.K. KumarS. KumarM. PandeyP.K. SinghM.C.K. Medicinal properties and uses of orchids: A concise review.Elixir. Appl. Bot.2012521162711634
    [Google Scholar]
  11. GutierrezR.M.P. Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology.J. Med. Plants Res.201048592638
    [Google Scholar]
  12. AroraM. MahajanA. SembiJ.K. A review on phytochemical and pharmacological potential of family Orchidaceae.Inter. Res. J. Pharm.201781092410.7897/2230‑8407.0810176
    [Google Scholar]
  13. AroraA. BehlT. SehgalA. SinghS. SharmaN. BhatiaS. Sobarzo-SanchezE. BungauS. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus.Life Sci.202127311931110.1016/j.lfs.2021.119311 33662428
    [Google Scholar]
  14. KumarS. BehlT. SachdevaM. SehgalA. KumariS. KumarA. KaurG. YadavH.N. BungauS. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus.Life Sci.202126411866110.1016/j.lfs.2020.118661 33121986
    [Google Scholar]
  15. NajmiA. JavedS.A. Al BrattyM. AlhazmiH.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents.Molecules202227234910.3390/molecules27020349 35056662
    [Google Scholar]
  16. ZhangM. ChenY. ChenR. WenY. HuangQ. LiuY. ZhaoC. Research status of the effects of natural oligosaccharides on glucose metabolism.eFood2022365410.1002/efd2.54
    [Google Scholar]
  17. SinghJ.K. ChakrabortyS. NagpalM. AggarwalG. Herbal approach for diabetic cure and futuristic dimension.Curr. Drug Res. Rev.202315320722110.2174/2589977515666230217114449 36799415
    [Google Scholar]
  18. SementinaA. CierzniakowskiM. RogalskaJ. PiechowiakI. SpichalskiM. AraszkiewiczA. A novel approach to alpha-lipoic acid therapy in the treatment of diabetic peripheral neuropathy.J. Med. Sci.2022913e714e71410.20883/medical.e714
    [Google Scholar]
  19. KhalidW. ArshadM.S. JabeenA. Muhammad AnjumF. QaisraniT.B. SuleriaH.A.R. Fiber‐enriched botanicals: A therapeutic tool against certain metabolic ailments.Food Sci. Nutr.202210103203321810.1002/fsn3.2920 36249968
    [Google Scholar]
  20. WenL. WuD. TanX. ZhongM. XingJ. LiW. LiD. CaoF. The role of catechins in regulating diabetes: An update review.Nutrients20221421468110.3390/nu14214681 36364943
    [Google Scholar]
  21. PaudelM.R. Orchids Phytochemistry, Biology and Horticulture: Fundamentals and Applications.ChamSpringer202238941410.1007/978‑3‑030‑38392‑3_16
    [Google Scholar]
  22. HossainM.M. Therapeutic orchids: Traditional uses and recent advances — An overview.Fitoterapia201182210214010.1016/j.fitote.2010.09.007 20851751
    [Google Scholar]
  23. MajumderP.L. BanerjeeS. SenS. Three stilbenoids from the orchid Agrostophyllum callosum.Phytochemistry199642384785210.1016/0031‑9422(95)00954‑X
    [Google Scholar]
  24. MajumderP.L. LahiriS. MukhotiN. Four stilbenoids from the orchid Agrostophyllum khasiyanum.Phytochemistry19964241157116110.1016/0031‑9422(96)00022‑2
    [Google Scholar]
  25. AuberonF. OlatunjiO. KrisaS. AntheaumeC. HerbetteG. BontéF. MérillonJ.M. LobsteinA. Two new stilbenoids from the aerial parts of Arundina graminifolia (Orchidaceae).Molecules20162111143010.3390/molecules21111430 27801800
    [Google Scholar]
  26. PalaretiG. LegnaniC. CosmiB. AntonucciE. ErbaN. PoliD. TestaS. TosettoA. InvestigatorsD. De MicheliV. Comparison between different D ‐ D imer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study.Int. J. Lab. Hematol.2016381424910.1111/ijlh.12426 26362346
    [Google Scholar]
  27. WuJ. LuC. LiX. FangH. WanW. YangQ. SunX. WangM. HuX. ChenC.Y.O. WeiX. Synthesis and biological evaluation of novel gigantol derivatives as potential agents in prevention of diabetic cataract.PLoS One20151010014109210.1371/journal.pone.0141092 26517726
    [Google Scholar]
  28. JungM. LeeY. ParkM. KimH. KimH. LimE. TakJ. SimM. LeeD. ParkN. OhW.K. HurK.Y. KangE.S. LeeH.C. Design, synthesis, and discovery of stilbene derivatives based on lithospermic acid B as potent protein tyrosine phosphatase 1B inhibitors.Bioorg. Med. Chem. Lett.200717164481448610.1016/j.bmcl.2007.06.016 17596944
    [Google Scholar]
  29. MizunoC.S. MaG. KhanS. PatnyA. AveryM.A. RimandoA.M. Design, synthesis, biological evaluation and docking studies of pterostilbene analogs inside PPARα.Bioorg. Med. Chem.20081673800380810.1016/j.bmc.2008.01.051 18272370
    [Google Scholar]
  30. ChenX.J. MeiW.L. CaiC.H. GuoZ.K. SongX.Q. DaiH.F. Four new bibenzyl derivatives from Dendrobium sinense.Phytochem. Lett.2014910711210.1016/j.phytol.2014.04.012
    [Google Scholar]
  31. ZhaoN. YangG. ZhangY. ChenL. ChenY. A new 9,10-dihydrophenanthrene from Dendrobium moniliforme.Nat. Prod. Res.201630217417910.1080/14786419.2015.1046379 26132274
    [Google Scholar]
  32. NuamnaichatiN. SuriyaU. KhineH.E.E. SungthongR. SuwannamaiP. SritularakB. PrompetcharaE. LaomeepholC. AlduinaR. ChaothamC. Arene substitutions in orchid bibenzyls: Mechanistic insights into glucose uptake and lipid metabolism for targeting metabolic disorders.Nutrients2025177110410.3390/nu17071104 40218862
    [Google Scholar]
  33. SarakulwattanaC. Alpha-glucosidase inhibitors from dendrobium scabrilingue.Thesis, Faculty of Pharmaceutical Sciences, Chulalongkorn University201810.58837/CHULA.THE.2018.431
    [Google Scholar]
  34. AyoupM.S. KhaledN. Abdel-HamidH. GhareebD.A. NasrS.A. OmerA. SonousiA. KassabA.E. EltaweilA.S. Novel sulfonamide derivatives as multitarget antidiabetic agents: Design, synthesis, and biological evaluation.RSC Advances202414117664767510.1039/D4RA01060D 38440282
    [Google Scholar]
  35. YamakiM. BaiL. KatoT. InoueK. TakagiS. YamagataY. TomitaK.I. Blespirol, a phenanthrene with a spirolactone ring from Bletilla striata.Phytochemistry19933361497149810.1016/0031‑9422(93)85119‑C
    [Google Scholar]
  36. MajumderP.L. KarA. ShooleryJ.N. Bulbophyllanthrin, a phenanthrene of the orchid Bulbophyllum leopardium.Phytochemistry19852492083208710.1016/S0031‑9422(00)83127‑1
    [Google Scholar]
  37. LiJ. FengW. DaiR. LiB. Recent progress on the identification of phenanthrene derivatives in traditional chinese medicine and their biological activities.Pharmacol. Res. Mod. Chin. Med.2022310007810.1016/j.prmcm.2022.100078
    [Google Scholar]
  38. ApelC. DumontetV. LozachO. MeijerL. GuéritteF. LitaudonM. Phenanthrene derivatives from Appendicula reflexa as new CDK1/cyclin B inhibitors.Phytochem. Lett.20125481481810.1016/j.phytol.2012.09.008
    [Google Scholar]
  39. TóthB. HohmannJ. VasasA. Phenanthrenes: A promising group of plant secondary metabolites.J. Nat. Prod.201881366167810.1021/acs.jnatprod.7b00619 29280630
    [Google Scholar]
  40. ThantM.T. SritularakB. ChatsumpunN. MekboonsonglarpW. PunpreukY. LikhitwitayawuidK. Three novel biphenanthrene derivatives and a new phenylpropanoid ester from Aerides multiflora and their α-glucosidase inhibitory activity.Plants202110238510.3390/plants10020385 33671404
    [Google Scholar]
  41. Cheun-AromT. KitisripanyaT. NuntawongP. SritularakB. ChuanasaT. Exploring anti-diabetic potential of compounds from roots of Dendrobium polyanthum Wall. ex Lindl. through inhibition of carbohydrate-digesting enzymes and glycation inhibitory activity.Heliyon202410143450210.1016/j.heliyon.2024.e34502 39114042
    [Google Scholar]
  42. GuoX.Y. WangJ. WangN.L. KitanakaS. LiuH.W. YaoX.S. New stilbenoids from Pholidota yunnanensis and their inhibitory effects on nitric oxide production.Chem. Pharm. Bull.2006541212510.1248/cpb.54.21 16394543
    [Google Scholar]
  43. WeiX. WangD. XuZ. LiuJ. ZhuQ. ChenQ. TangH. XuW. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium.Heliyon202410183754110.1016/j.heliyon.2024.e37541 39328574
    [Google Scholar]
  44. DurlandJ.R. AdkinsH. Hydrophenanthrenes.J. Am. Chem. Soc.19386061501150510.1021/ja01273a067
    [Google Scholar]
  45. YokozawaT. KimH.Y. ChoE.J. ChoiJ.S. ChungH.Y. Antioxidant effects of isorhamnetin 3,7-di-O-β-D-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocin-induced diabetes.J. Agric. Food Chem.200250195490549510.1021/jf0202133 12207497
    [Google Scholar]
  46. MarkhamK.R. TernaiB. StanleyR. GeigerH. MabryT.J. Carbon-13 NMR studies of flavonoids—III.Tetrahedron19783491389139710.1016/0040‑4020(78)88336‑7
    [Google Scholar]
  47. HameedA. HafizurR.M. HussainN. RazaS.A. RehmanM. AshrafS. Ul-HaqZ. KhanF. AbbasG. ChoudharyM.I. Eriodictyol stimulates insulin secretion through cAMP/PKA signaling pathway in mice islets.Eur. J. Pharmacol.201882024525510.1016/j.ejphar.2017.12.015 29229531
    [Google Scholar]
  48. KatoA. NasuN. TakebayashiK. AdachiI. MinamiY. SanaeF. AsanoN. WatsonA.A. NashR.J. Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase.J. Agric. Food Chem.200856124469447310.1021/jf800569s 18494482
    [Google Scholar]
  49. ProençaC. FreitasM. RibeiroD. OliveiraE.F.T. SousaJ.L.C. ToméS.M. RamosM.J. SilvaA.M.S. FernandesP.A. FernandesE. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity relationship study.J. Enzyme Inhib. Med. Chem.20173211216122810.1080/14756366.2017.1368503 28933564
    [Google Scholar]
  50. XiaoJ. KaiG. YamamotoK. ChenX. Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect.Crit. Rev. Food Sci. Nutr.201353881883610.1080/10408398.2011.561379 23768145
    [Google Scholar]
  51. LiM.F. HirataY. XuG.J. NiwaM. WuH.M. Studies on the chemical constituents of Dendrobium loddigesii rolfe.Yao Xue Xue Bao1991264307310 1659772
    [Google Scholar]
  52. GuoC. Huang, Q.; Wang, Y.; Yao, Y.; Li, J.; Chen, J.; Wu, M.; Zhang, Z.; e, M.; Qi, H.; Ji, P.; Liu, Q.; Zhao, D.; Su, H.; Qi, W.; Li, X. Therapeutic application of natural products: NAD+ metabolism as potential target.Phytomedicine202311415476810.1016/j.phymed.2023.154768 36948143
    [Google Scholar]
  53. IkedaY. NonakaH. FurumaiT. IgarashiY. Cremastrine, a pyrrolizidine alkaloid from Cremastra appendiculata.J. Nat. Prod.200568457257310.1021/np049650x 15844951
    [Google Scholar]
  54. ZhangC. LiuS.J. YangL. YuanM.Y. LiJ.Y. HouB. LiH.M. YangX.Z. DingC.C. HuJ.M. Sesquiterpene amino ether and cytotoxic phenols from Dendrobium wardianum Warner.Fitoterapia2017122767910.1016/j.fitote.2017.08.015 28844931
    [Google Scholar]
  55. WangH. ZhaoT. CheC.T. Dendrobine and 3-Hydroxy-2-oxodendrobine from Dendrobium nobile.J. Nat. Prod.198548579680110.1021/np50041a014
    [Google Scholar]
  56. ZhanX. QianY. MaoB. Metabolic profiling of terpene diversity and the response of prenylsynthase-terpene synthase genes during biotic and abiotic stresses in Dendrobium catenatum.Int. J. Mol. Sci.20222312639810.3390/ijms23126398 35742843
    [Google Scholar]
  57. RamyaM. JangS. AnH.R. LeeS.Y. ParkP.M. ParkP.H. Volatile organic compounds from orchids: From synthesis and function to gene regulation.Int. J. Mol. Sci.2020213116010.3390/ijms21031160 32050562
    [Google Scholar]
  58. ZhaoW. YeQ. TanX. JiangH. LiX. ChenK. KinghornA.D. Three new sesquiterpene glycosides from Dendrobium nobile with immunomodulatory activity.J. Nat. Prod.20016491196120010.1021/np0102612 11575955
    [Google Scholar]
  59. ZhaoC. LiuQ. HalaweishF. ShaoB. YeY. ZhaoW. Copacamphane, picrotoxane, and alloaromadendrane sesquiterpene glycosides and phenolic glycosides from Dendrobium moniliforme.J. Nat. Prod.20036681140114310.1021/np0301801 12932145
    [Google Scholar]
  60. PlanggerI. MühlsteigerA. BergerJ. FeilnerJ. WurstK. KoeberleA. KoeberleS.C. MagauerT. Development of a synthetic platform for Ent ‐Pimaranes reveals their potential as novel non‐redox active ferroptosis inhibitors.Chemistry202531720240381110.1002/chem.202403811 39665294
    [Google Scholar]
  61. MaG-X. WangT.S. YinL. PanY. GuoY.L. LeBlancG.A. ReineckeM.G. WatsonW.H. KrawiecM. Two pimarane diterpenoids from Ephemerantha lonchophylla and their evaluation as modulators of the multidrug resistance phenotype.J. Nat. Prod.199861111211510.1021/np970065o 9461658
    [Google Scholar]
  62. ZhangB. XingY. WenC. YuX. SunW. XiuZ. DongY. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose.Bioorg. Med. Chem. Lett.201727225065507010.1016/j.bmcl.2017.09.027 28964635
    [Google Scholar]
  63. AliH. HoughtonP.J. SoumyanathA. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus.J. Ethnopharmacol.2006107344945510.1016/j.jep.2006.04.004 16678367
    [Google Scholar]
  64. PujirahayuN. BhattacharjyaD.K. SuzukiT. KatayamaT. α-Glucosidase inhibitory activity of cycloartane-type triterpenes isolated from Indonesian stingless bee propolis and their structure–activity relationship.Pharmaceuticals201912310210.3390/ph12030102 31266160
    [Google Scholar]
  65. MinhT. KhangD. TuyenP. MinhL. AnhL. QuanN. HaP. QuanN. ToanN. ElzaawelyA. XuanT. Phenolic compounds and antioxidant activity of Phalaenopsis orchid hybrids.Antioxidants2016533110.3390/antiox5030031 27649250
    [Google Scholar]
  66. MalungaL.N. Joseph ThandapillyS. AmesN. Cereal‐derived phenolic acids and intestinal alpha glucosidase activity inhibition: Structural activity relationship.J. Food Biochem.20184261263510.1111/jfbc.12635
    [Google Scholar]
  67. MatiasM. SilvestreS. FalcãoA. AlvesG. Gastrodia elata and epilepsy: Rationale and therapeutic potential.Phytomedicine201623121511152610.1016/j.phymed.2016.09.001 27765372
    [Google Scholar]
  68. AlizadehS.R. EbrahimzadehM.A. O ‐Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure–activity relationship for drug design, a review.Phytother. Res.202236277880710.1002/ptr.7352 34964515
    [Google Scholar]
  69. LiuY. YangL. ZhangY. LiuX. WuZ. GilbertR.G. DengB. WangK. Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure.J. Ethnopharmacol.202024811230810.1016/j.jep.2019.112308 31622745
    [Google Scholar]
  70. ZhengY. ZhouX. WangC. ZhangJ. ChangD. ZhuangS. XuW. ChenY. WangX. NanL. SunY. LinX. LinW. HeC. DaiL. ZhangJ. ChenJ. ShiH. HuangM. Effect of dendrobium mixture in alleviating diabetic cognitive impairment associated with regulating gut microbiota.Biomed. Pharmacother.202214911289110.1016/j.biopha.2022.112891 35367768
    [Google Scholar]
  71. LiX.W. ChenH.P. HeY.Y. ChenW.L. ChenJ.W. GaoL. HuH.Y. WangJ. Effects of rich-polyphenols extract of Dendrobium loddigesii on anti-diabetic, anti-inflammatory, anti-oxidant, and gut microbiota modulation in db/db mice.Molecules20182312324510.3390/molecules23123245 30544624
    [Google Scholar]
  72. ZhuangS. ZhangJ. LinX. WangX. YuW. ShiH. Dendrobium mixture ameliorates type 2 diabetes mellitus with non-alcoholic fatty liver disease through PPAR gamma: An integrated study of bioinformatics analysis and experimental verification.Front. Pharmacol.202314111255410.3389/fphar.2023.1112554 36874030
    [Google Scholar]
  73. LiX.W. HuangM. LoK. ChenW.L. HeY.Y. XuY. ZhengH. HuH. WangJ. Anti-diabetic effect of a shihunine-rich extract of Dendrobium loddigesii on 3T3-L1 cells and db/db mice by up-regulating AMPK–GLUT4–PPARα.Molecules20192414267310.3390/molecules24142673 31340585
    [Google Scholar]
  74. ChangJ. ZhouY. CongG. GuoH. GuoY. LuK. LiY. TianH. Dendrobium candidum protects against diabetic kidney lesions through regulating vascular endothelial growth factor, Glucose Transporter 1, and connective tissue growth factor expression in rats.J. Cell. Biochem.20191208139241393110.1002/jcb.28666 31021475
    [Google Scholar]
  75. ZengJ. LiD. LiZ. ZhangJ. ZhaoX. Dendrobium officinale attenuates myocardial fibrosis via inhibiting EMT signaling pathway in HFD/STZ-induced diabetic mice.Biol. Pharm. Bull.202043586487210.1248/bpb.b19‑01073 32378562
    [Google Scholar]
  76. JainA. SarsaiyaS. GongQ. WuQ. ShiJ. Overview of Dendrobium nobile: Research perspectives.CABI2025114
    [Google Scholar]
  77. LiZ. ZengM. GengK. LaiD. XuZ. ZhouW. Chemical constituents and hypoglycemic mechanisms of Dendrobium nobile in treatment of type 2 diabetic rats by UPLC-ESI-Q-orbitrap, network pharmacology and in vivo experimental verification.Molecules2023286268310.3390/molecules28062683 36985655
    [Google Scholar]
  78. ZhangQ. LiJ. LuoM. XieG.Y. ZengW. WuY. ZhuY. YangX. GuoA.Y. Systematic transcriptome and regulatory network analyses reveal the hypoglycemic mechanism of Dendrobium fimbriatum.Mol. Ther. Nucleic Acids20201911410.1016/j.omtn.2019.10.033 31790971
    [Google Scholar]
  79. LinX. ShiH. CuiY. WangX. ZhangJ. YuW. WeiM. Dendrobium mixture regulates hepatic gluconeogenesis in diabetic rats via the phosphoinositide 3 kinase/protein kinase B signaling pathway.Exp. Ther. Med.201816120421210.3892/etm.2018.6194 29896241
    [Google Scholar]
  80. ChenY. ZhengY. LinX. ZhangJ. LinF. ShiH. Dendrobium mixture attenuates renal damage in rats with diabetic nephropathy by inhibiting the PI3K/Akt/mTOR pathway.Mol. Med. Rep.202124259010.3892/mmr.2021.12229 34165163
    [Google Scholar]
  81. FangJ. LinY. XieH. FaragM.A. FengS. LiJ. ShaoP. Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice.Food Chem. X20221310020710.1016/j.fochx.2022.100207 35498995
    [Google Scholar]
  82. ChenY. LinX. ZhengY. YuW. LinF. ZhangJ. Dendrobium mixture ameliorates diabetic nephropathy in db/db mice by regulating the tGF-β1/Smads signaling pathway.Evid. Based Complement. Alternat. Med.2021202111110.1155/2021/9931983 34630622
    [Google Scholar]
  83. LiuH. XingY. WangY. RenX. ZhangD. DaiJ. XiuZ. YuS. DongY. Dendrobium officinale polysaccharide prevents diabetes via the regulation of gut microbiota in prediabetic mice.Foods20231212231010.3390/foods12122310 37372523
    [Google Scholar]
  84. HuangC. YuJ. DaJ. DongR. DaiL. YangY. DengY. YuanJ. Dendrobium officinale Kimura & Migo polysaccharide inhibits hyperglycaemia-induced kidney fibrosis via the miRNA-34a-5p/SIRT1 signalling pathway.J. Ethnopharmacol.202331311660110.1016/j.jep.2023.116601 37146843
    [Google Scholar]
  85. LiY. ChangQ.X. XiaP.G. LiangZ.S. The different parts of Dendrobium officinale Kimura et Migo: Traditional uses, phytochemistry, pharmacological activities, and product development status and potential.Phytochem. Rev.2025241985102610.1007/s11101‑024‑09973‑5
    [Google Scholar]
  86. KuangM.T. LiJ.Y. YangX.B. YangL. XuJ.Y. YanS. LvY.F. RenF.C. HuJ.M. ZhouJ. Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale.Carbohydr. Polym.202024111632610.1016/j.carbpol.2020.116326 32507202
    [Google Scholar]
  87. LaiM.C. LiuW.Y. LiouS.S. LiuI.M. The protective effects of moscatilin against methylglyoxal-induced neurotoxicity via the regulation of p38/JNK MAPK pathways in PC12 neuron-like cells.Food Chem. Toxicol.202014011136910.1016/j.fct.2020.111369 32325188
    [Google Scholar]
  88. ChenH. NieQ. HuJ. HuangX. YinJ. NieS. Multiomics approach to explore the amelioration mechanisms of glucomannans on the metabolic disorder of type 2 diabetic rats.J. Agric. Food Chem.20216982632264510.1021/acs.jafc.0c07871 33606525
    [Google Scholar]
  89. LvM. LiangQ. HeX. DuX. LiuY. LiuY. FangC. Hypoglycemic effects of Dendrobium officinale leaves.Front. Pharmacol.202314116302810.3389/fphar.2023.1163028 37361228
    [Google Scholar]
  90. WangH.Y. LiQ.M. YuN.J. ChenW.D. ZhaX.Q. WuD.L. PanL.H. DuanJ. LuoJ.P. Dendrobium huoshanense polysaccharide regulates hepatic glucose homeostasis and pancreatic β-cell function in type 2 diabetic mice.Carbohydr. Polym.2019211394810.1016/j.carbpol.2019.01.101 30824102
    [Google Scholar]
  91. XuH. ZhangZ. ZhangY. CuanS. JiaZ. A plasma metabolomic analysis revealed the metabolic regulatory mechanism of the water extract of Dendrobium huoshanense in improving streptozotocin-induced type 1 diabetes model rats.J. Nat. Med.202579475077210.1007/s11418‑025‑01909‑3 40394369
    [Google Scholar]
  92. LiC. WangY. HuangZ. ZhangY. LiJ. ZhangQ. SimpsonB.K. WangJ. Hypoglycemic effect of polysaccharides of Dendrobium officinale compound on type 2 diabetic mice.J. Funct. Foods202310610557910.1016/j.jff.2023.105579
    [Google Scholar]
  93. ChenH. NieQ. HuJ. HuangX. HuangW. NieS. Metabolism amelioration of Dendrobium officinale polysaccharide on type II diabetic rats.Food Hydrocoll.202010210558210.1016/j.foodhyd.2019.105582
    [Google Scholar]
  94. ChuC. LiT. PedersenH.A. KongstadK.T. YanJ. StaerkD. Antidiabetic constituents of Dendrobium officinale as determined by high-resolution profiling of radical scavenging and α-glucosidase and α-amylase inhibition combined with HPLC-PDA-HRMS-SPE-NMR analysis.Phytochem. Lett.201931475210.1016/j.phytol.2019.03.002
    [Google Scholar]
  95. ThantM.T. ChatsumpunN. MekboonsonglarpW. SritularakB. LikhitwitayawuidK. New fluorene derivatives from Dendrobium gibsonii and their α-glucosidase inhibitory activity.Molecules20202521493110.3390/molecules25214931 33113779
    [Google Scholar]
  96. ZhangT. OuyangH. MeiX. LuB. YuZ. ChenK. WangZ. JiL. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia‐mediated ERK1/2–NF‐κB signaling pathway.FASEB J.20193311117761179010.1096/fj.201802614RRR 31365278
    [Google Scholar]
  97. ChenX. ChenC. FuX. Dendrobium officinale polysaccharide alleviates type 2 diabetes mellitus by restoring gut microbiota and repairing intestinal barrier via the LPS/TLR4/TRIF/NF-kB axis.J. Agric. Food Chem.20237131119291194010.1021/acs.jafc.3c02429 37526282
    [Google Scholar]
  98. InthongkaewP. ChatsumpunN. SupasuteekulC. KitisripanyaT. PutalunW. LikhitwitayawuidK. SritularakB. α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum.Rev. Bras. Farmacogn.201727448048710.1016/j.bjp.2017.05.005
    [Google Scholar]
  99. ZhengH. PanL. XuP. ZhuJ. WangR. ZhuW. HuY. GaoH. An NMR-based metabolomic approach to unravel the preventive effect of water-soluble extract from Dendrobium officinale Kimura & Migo on streptozotocin-induced diabetes in mice.Molecules2017229154310.3390/molecules22091543 28914810
    [Google Scholar]
  100. XuY.Y. XuY.S. WangY. WuQ. LuY.F. LiuJ. ShiJ.S. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice.J. Pharm. Pharmacol.201769101409141710.1111/jphp.12778 28722145
    [Google Scholar]
  101. ZhangZ. ZhangD. DouM. LiZ. ZhangJ. ZhaoX. Dendrobium officinale Kimura et Migo attenuates diabetic cardiomyopathy through inhibiting oxidative stress, inflammation and fibrosis in streptozotocin-induced mice.Biomed. Pharmacother.2016841350135810.1016/j.biopha.2016.10.074 27802903
    [Google Scholar]
  102. YuZ. GongC. LuB. YangL. ShengY. JiL. WangZ. Dendrobium chrysotoxum Lindl. alleviates diabetic retinopathy by preventing retinal inflammation and tight junction protein decrease.J. Diabetes Res.2015201551831710.1155/2015/518317
    [Google Scholar]
  103. YuliantiE. MercurianiI.S. SugiyartoL. HuangT.C. Antidiabetic molecular mechanisms of active compounds from several orchids.Sci. Edu. Res. J.20239837338610.29303/jppipa.v9i8.3940
    [Google Scholar]
  104. KootiW. FarokhipourM. AsadzadehZ. Ashtary-LarkyD. Asadi-SamaniM. The role of medicinal plants in the treatment of diabetes: A systematic review.Electron. Physician2016811832184210.19082/1832 26955456
    [Google Scholar]
  105. HeS. LuZ. LiR. ChenC. FuX. KongK.W. IsmailA. ZhangX. WangZ. Chemical composition, antioxidant activity, α-glucosidase inhibitory activity, and metabolomic profiling of Dendrobium officinale across diverse growing regions and cultivation modes.Food Biosci.20256810671410.1016/j.fbio.2025.106714
    [Google Scholar]
  106. GutierrezR.M.P. Evaluation of the hypoglycemic and hypolipidemic effects of triterpenoids from Prosthechea michuacana in streptozotocin-induced type 2 diabetic mice.Pharmacologia20134317017910.5567/pharmacologia.2013.170.179
    [Google Scholar]
  107. HunyadiA. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites.Med. Res. Rev.20193962505253310.1002/med.21592 31074028
    [Google Scholar]
  108. PaudelM.R. ChandM.B. PantB. PantB. Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum.Biomolecules20199947810.3390/biom9090478 31547263
    [Google Scholar]
  109. YehW-J. HsiaS-M. LeeW-H. WuC-H. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings.Yao Wu Shi Pin Fen Xi20172518492 28911546
    [Google Scholar]
  110. YuliantiE. Sunarti; Wahyuningsih, M.S.H. The effect of Kappaphycus alvarezii fraction on plasma glucose, advanced glycation end-products formation, and renal RAGE gene expression.Heliyon2021710597810.1016/j.heliyon.2021.e05978 33521358
    [Google Scholar]
  111. Di SottoA. LocatelliM. MaconeA. TonioloC. CesaS. CarradoriS. EufemiM. MazzantiG. Di GiacomoS. Hypoglycemic, antiglycation, and cytoprotective properties of a phenol-rich extract from waste peel of Punica granatum L. var. Dente di Cavallo DC2.Molecules20192417310310.3390/molecules24173103 31461832
    [Google Scholar]
  112. NamW. NamS.H. KimS.P. LevinC. FriedmanM. Anti-adipogenic and anti-obesity activities of purpurin in 3T3-L1 preadipocyte cells and in mice fed a high-fat diet.BMC Complement. Altern. Med.201919136410.1186/s12906‑019‑2756‑5 31829180
    [Google Scholar]
  113. LianzaM. PoliF. NascimentoA.M. Soares da SilvaA. da FonsecaT.S. ToledoM.V. SimasR.C. ChavesA.R. LeitãoG.G. LeitãoS.G. In vitro α-glucosidase inhibition by Brazilian medicinal plant extracts characterised by ultra-high performance liquid chromatography coupled to mass spectrometry.J. Enzyme Inhib. Med. Chem.202237155456210.1080/14756366.2021.2022658 35152818
    [Google Scholar]
  114. KaabiY.A. Potential roles of anti-inflammatory plant-derived bioactive compounds targeting inflammation in microvascular complications of diabetes.Molecules20222721735210.3390/molecules27217352 36364178
    [Google Scholar]
  115. JainA. SarsaiyaS. GongQ. WuQ. ShiJ. Dendrobium nobile in the management of diabetes and related complications.Dendrobium nobile: Research and Therapeutic Applications.United KingdomCABI Publishing2025809910.1079/9781800627987.0006
    [Google Scholar]
  116. LiJ. HuangH.Y. WangY.Z. Optimized determination of phenolic compounds in Dendrobium officinale stems by reverse-phase high performance liquid chromatography.J. Liq. Chromatogr. Relat. Technol.201841950851610.1080/10826076.2018.1470983
    [Google Scholar]
  117. MaH. ZhangK. JiangQ. DaiD. LiH. BiW. ChenD.D.Y. Characterization of plant polysaccharides from Dendrobium officinale by multiple chromatographic and mass spectrometric techniques.J. Chromatogr. A20181547293610.1016/j.chroma.2018.03.006 29555359
    [Google Scholar]
  118. MaR.J. YangL. BaiX. LiJ.Y. YuanM.Y. WangY.Q. XieY. HuJ.M. ZhouJ. Phenolic constituents with antioxidative, tyrosinase inhibitory and anti-aging activities from Dendrobium loddigesii Rolfe.Nat. Prod. Bioprospect.20199532933610.1007/s13659‑019‑00219‑y 31630376
    [Google Scholar]
  119. NamB. JangH.J. HanA.R. KimY.R. JinC.H. JungC.H. KangK.B. KimS.H. HongM.J. KimJ.B. RyuH.W. Chemical and biological profiles of Dendrobium in two different species, their hybrid, and gamma-irradiated mutant lines of the hybrid based on LC-QToF MS and cytotoxicity analysis.Plants2021107137610.3390/plants10071376 34371579
    [Google Scholar]
  120. GaoC. WuX. YangZ. QinL. WuD. FanQ. ZhaoY. TanD. LiJ. ZhangJ. HeY. Quantitative analysis of six sesquiterpene glycosides from Dendrobium nobile Lindl. under different growth conditions by high‐performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry in MRM mode.Phytochem. Anal.20243551249126010.1002/pca.3356 38659238
    [Google Scholar]
  121. RaoD. HuY. ZhaoR. LiH. ChunZ. ZhengS. Quantitative identification of antioxidant basis for Dendrobium nobile flower by high performance liquid chromatography‐tandem mass spectrometry.Int. J. Anal. Chem.20222022111610.1155/2022/9510598 36032803
    [Google Scholar]
  122. HsiehY.H. ChuangW.C. LeeM.C. FanY.H. HuangN.K. ChenJ.J. Bioaffinity ultrafiltration combined with hplc-esi-qtof-ms/ms for screening potential bioactive components from the stems of Dendrobium fimbriatum and in silico analysis.Antioxidants202413891810.3390/antiox13080918 39199164
    [Google Scholar]
  123. LiangZ.Y. ZhangJ.Y. HuangY.C. ZhouC.J. WangY.W. ZhouC.H. XingS.P. ShunQ.S. XuY.X. WeiG. Identification of flavonoids in Dendrobium huoshanense and comparison with those in allied species of Dendrobium by TLC, HPLC and HPLC coupled with electrospray ionization multi‐stage tandem MS analyses.J. Sep. Sci.2019425jssc.20180102110.1002/jssc.201801021 30663861
    [Google Scholar]
  124. LiuH. MuD. LinT. LiQ. A simple method for the screening and measurement of phenols in Dendrobium chrysotoxum by a miniature mass detector using a matrix solid‐phase dispersion method.J. Anal. Methods Chem.2019201911910.1155/2019/6737632 30809414
    [Google Scholar]
  125. PengdeeC. SritularakB. PutalunW. Optimization of microwave-assisted extraction of phenolic compounds in Dendrobium formosum Roxb. ex Lindl. and glucose uptake activity.S. Afr. J. Bot.202013242343110.1016/j.sajb.2020.06.009
    [Google Scholar]
  126. CorrellD.S. Vanilla-its botany, history, cultivation and economic import.Econ. Bot.19537429135810.1007/BF02930810
    [Google Scholar]
  127. HinsleyA. de BoerH.J. FayM.F. GaleS.W. GardinerL.M. GunasekaraR.S. KumarP. MastersS. MetusalaD. RobertsD.L. VeldmanS. WongS. PhelpsJ. A review of the trade in orchids and its implications for conservation.Bot. J. Linn. Soc.2018186443545510.1093/botlinnean/box083
    [Google Scholar]
  128. KasparekM. GrimmU. European trade in Turkish Salep with special reference to Germany.Econ. Bot.199953439640610.1007/BF02866718
    [Google Scholar]
  129. KaputoM.T. The role of ashes and sodium bicarbonate in a simulated meat product from chikanda tuber (Satyria siva).Food Chem.199655211511910.1016/0308‑8146(95)00073‑9
    [Google Scholar]
  130. DecaryR. Quelques plantes aromatiques et à parfum de la flore deMadagascar (Some aromatic and fragrant plants from the Flora of Madagascar).J. Agric. Tradit. Bot. Appl.195527416422
    [Google Scholar]
  131. BulpittC.J. LiY. BulpittP.F. WangJ. The use of orchids in Chinese medicine.J. R. Soc. Med.20071001255856310.1177/0141076807100012014 18065708
    [Google Scholar]
  132. KongJ-M. GohN-K. ChiaL-S. ChiaT-F. Recent advances in traditional plant drugs and orchids.Acta Pharmacol. Sin.2003241721 12511224
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575402987250917093529
Loading
/content/journals/mrmc/10.2174/0113895575402987250917093529
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): dendrobium; Orchids; phenolic acid; phytochemistry; SAR; therapeutic potential
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test