Skip to content
2000
Volume 25, Issue 21
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

The primary feature of Parkinson's disease (PD), a progressive neurodegenerative disease that results in both motor and non-motor dysfunctions, is the degeneration of dopaminergic neurons in the substantia nigra. In recent years, indole-based compounds have emerged as promising candidates for developing novel treatments for Parkinson's disease due to their diverse pharmacological properties. Among the significant pathogenic targets against which indole derivatives exhibit potent activity are monoamine oxidase (MAO), NMDA receptors, oxidative stress, and neuroinflammation. This review provides an in-depth analysis of synthetic indole derivatives as potential therapeutic agents for Parkinson’s disease. We explore how these compounds may reduce the pathology associated with Parkinson's disease, identify molecular targets, and analyze the relationships between their structure and activity. We also discuss recent advances in computational and medicinal chemistry that aim to enhance indole structures. Potential challenges and upcoming prospects for the therapeutic application of indole-based therapies are also considered in the review. The ultimate objective of this study is to elucidate the potential applications of synthetic indole derivatives in the development of innovative therapies for Parkinson's disease.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575400809251007055201
2025-10-21
2026-02-19
Loading full text...

Full text loading...

References

  1. MutchW.J. Dingwall-FordyceI. DownieA.W. PatersonJ.G. RoyS.K. Parkinson’s disease in a Scottish city.BMJ1986292651953453610.1136/bmj.292.6519.534 2936423
    [Google Scholar]
  2. BetarbetR. ShererT.B. GreenamyreJ.T. Ubiquitin–proteasome system and Parkinson’s diseases.Exp. Neurol.2005191S17S27(Suppl. 1)10.1016/j.expneurol.2004.08.021 15629758
    [Google Scholar]
  3. BraakH. BohlJ.R. MüllerC.M. RübU. de VosR.A.I. Del TrediciK. Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered.Mov. Disord.200621122042205110.1002/mds.21065 17078043
    [Google Scholar]
  4. CooksonM.R. XiromerisiouG. SingletonA. How genetics research in Parkinson’s disease is enhancing understanding of the common idiopathic forms of the disease.Curr. Opin. Neurol.200518670671110.1097/01.wco.0000186841.43505.e6 16280683
    [Google Scholar]
  5. GilksW.P. Abou-SleimanP.M. GandhiS. JainS. SingletonA. LeesA.J. ShawK. BhatiaK.P. BonifatiV. QuinnN.P. LynchJ. HealyD.G. HoltonJ.L. ReveszT. WoodN.W. A common LRRK2 mutation in idiopathic Parkinson’s disease.Lancet2005365945741541610.1016/S0140‑6736(05)17830‑1 15680457
    [Google Scholar]
  6. ChungK.K.K. ZhangY. LimK.L. TanakaY. HuangH. GaoJ. RossC.A. DawsonV.L. DawsonT.M. Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease.Nat. Med.20017101144115010.1038/nm1001‑1144 11590439
    [Google Scholar]
  7. WarnerT.T. SchapiraA.H.V. Genetic and environmental factors in the cause of Parkinson’s disease.Ann. Neurol.200353S3S16S2510.1002/ana.10487 12666095
    [Google Scholar]
  8. BejE. CesareP. VolpeA.R. d’AngeloM. CastelliV. Oxidative stress and neurodegeneration: Insights and therapeutic strategies for parkinson’s disease.Neurol. Int.202416350251710.3390/neurolint16030037 38804477
    [Google Scholar]
  9. ChiuY.J. LinC.H. LinC.Y. YangP.N. LoY.S. ChenY.C. ChenC.M. WuY.R. YaoC.F. ChangK.H. Lee-ChenG.J. Investigating therapeutic effects of indole derivatives targeting inflammation and oxidative stress in neurotoxin-induced cell and mouse models of parkinson’s disease.Int. J. Mol. Sci.2023243264210.3390/ijms24032642 36768965
    [Google Scholar]
  10. BennettD.A. BeckettL.A. MurrayA.M. ShannonK.M. GoetzC.G. PilgrimD.M. EvansD.A. Prevalence of parkinsonian signs and associated mortality in a community population of older people.N. Engl. J. Med.19963342717610.1056/NEJM199601113340202 8531961
    [Google Scholar]
  11. GroupP.S. GroupP.S. Pramipexole vs. levodopa as initial treatment for Parkinson disease: A randomized controlled trial.JAMA2000284151931193810.1001/jama.284.15.1931 11035889
    [Google Scholar]
  12. HughesA.J. DanielS.E. KilfordL. LeesA.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases.J. Neurol. Neurosurg. Psychiatry1992
    [Google Scholar]
  13. PapavasiliouP.S. CotziasG.C. DübyS.E. SteckA.J. FehlingC. BellM.A. Levodopa in Parkinsonism: potentiation of central effects with a peripheral inhibitor.N. Engl. J. Med.1972286181410.1056/NEJM197201062860102 4550085
    [Google Scholar]
  14. RajputA.H. OffordK.P. BeardC.M. KurlandL.T. Epidemiology of parkinsonism: Incidence, classification, and mortality.Ann. Neurol.198416327828210.1002/ana.410160303 6333204
    [Google Scholar]
  15. SejvarJ.J. HaddadM.B. TierneyB.C. CampbellG.L. MarfinA.A. Van GerpenJ.A. FleischauerA. LeisA.A. StokicD.S. PetersenL.R. Neurologic manifestations and outcome of West Nile virus infection.JAMA2003290451151510.1001/jama.290.4.511 12876094
    [Google Scholar]
  16. AarslandD. BatzuL. HallidayG.M. GeurtsenG.J. BallardC. Ray ChaudhuriK. WeintraubD. Parkinson disease-associated cognitive impairment.Nat. Rev. Dis. Primers2021714710.1038/s41572‑021‑00280‑3 34210995
    [Google Scholar]
  17. DorseyR. ShererT. OkunM.S. BloemB.R. Ending Parkinson’s Disease: A Prescription for Action.UKHachette2020
    [Google Scholar]
  18. ErkkinenM.G. KimM.O. GeschwindM.D. Clinical neurology and epidemiology of the major neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.2018104a03311810.1101/cshperspect.a033118 28716886
    [Google Scholar]
  19. IrvineG.B. El-AgnafO.M. ShankarG.M. WalshD.M. Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases.Mol. Med.2008147-845146410.2119/2007‑00100.Irvine 18368143
    [Google Scholar]
  20. KastenM. ChadeA. TannerC.M. Epidemiology of Parkinson’s disease.Handb. Clin. Neurol.20078312915110.1016/S0072‑9752(07)83006‑5 18808913
    [Google Scholar]
  21. SahuR. ShahK. MalviyaR. PaliwalD. SagarS. SinghS. PrajapatiB.G. Recent advancement in pyrrolidine moiety for the management of cancer: A review.Results Chem.2024710130110.1016/j.rechem.2023.101301
    [Google Scholar]
  22. ThakurA. SinghR. MehtaV. PaliwalD. Role of pyrazole moiety in the treatment of Alzheimer’s disease: A comprehensive review of various synthetic routes and probable mechanisms of action.ChemistrySelect20251013e20250013010.1002/slct.202500130
    [Google Scholar]
  23. DoddC.A. Synthetic and natural environmental compounds as potential facilitators of mptp-induced parkinsonism.Doctoral Dissertations2009
    [Google Scholar]
  24. GartnerC.E. Environmental Risk Factors for Parkinson’s Disease.Queensland University of Technology2006
    [Google Scholar]
  25. GoldmanS.M. Environmental toxins and Parkinson’s disease.Annu. Rev. Pharmacol. Toxicol.201454114116410.1146/annurev‑pharmtox‑011613‑135937 24050700
    [Google Scholar]
  26. HuangM. Bargues-CarotA. RiazZ. WickhamH. ZenitskyG. JinH. AnantharamV. KanthasamyA. KanthasamyA.G. Impact of environmental risk factors on mitochondrial dysfunction, neuroinflammation, protein misfolding, and oxidative stress in the etiopathogenesis of parkinson’s disease.Int. J. Mol. Sci.202223181080810.3390/ijms231810808 36142718
    [Google Scholar]
  27. NathB.D. DebnathD. PervinR. HossainM.A. Role of Environmental Toxicants and Inflammation in Parkinson’s Disease.Antioxidants and functional foods for neurodegenerative disorders.CRC Press20213769
    [Google Scholar]
  28. PhomL. Understanding Neurodegeneration and Rescuing Pathology Associated with Parkinsons Disease in Drosophila Model.Thesis2018
    [Google Scholar]
  29. MondalR. PaliwalD. ThakurA. SahuR. BudhaR.R. Protein Binding Prediction by Computational Methods.Applications of Computational Tools in Drug Design and Development.SingaporeSpringer Nature202510.1007/978‑981‑96‑4154‑3_13
    [Google Scholar]
  30. DickF.D. Parkinson’s disease and pesticide exposures.Br. Med. Bull.200679-80121923110.1093/bmb/ldl018 17242039
    [Google Scholar]
  31. SharmaS. RahateK. KumarR. Novel emerging targets identification in reducing risk of Alzheimer's disease.Cent. Nerv. Syst. Agents Med. Chem.202410.2174/0118715249333381241012073557
    [Google Scholar]
  32. GrossetD. TaurahL. BurnD.J. MacMahonD. ForbesA. TurnerK. BowronA. WalkerR. FindleyL. FosterO. PatelK. CloughC. CastletonB. SmithS. CareyG. MurphyT. HillJ. BrechanyU. McGeeP. ReadingS. BrandG. KellyL. BreenK. FordS. BakerM. WilliamsA. HearneJ. QizilbashN. ChaudhuriK.R. A multicentre longitudinal observational study of changes in self reported health status in people with Parkinson’s disease left untreated at diagnosis.J. Neurol. Neurosurg. Psychiatry200678546546910.1136/jnnp.2006.098327 17098846
    [Google Scholar]
  33. HagellP. Self-reported health in people with Parkinson’s disease left untreated at diagnosis.J. Neurol. Neurosurg. Psychiatry200678544210.1136/jnnp.2006.109454 17135458
    [Google Scholar]
  34. HawkesC.M. Diagnosis and treatment of Parkinson’s disease.BMJ19953106995166810.1136/bmj.310.6995.1668 7795461
    [Google Scholar]
  35. HughesA.J. DanielS.E. Ben-ShlomoY. LeesA.J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service.Brain2002125486187010.1093/brain/awf080 11912118
    [Google Scholar]
  36. PoeweW. ScherflerC. Role of dopamine transporter imaging in investigation of parkinsonian syndromes in routine clinical practice.Mov. Disord.200318S7S16S2110.1002/mds.10573 14531041
    [Google Scholar]
  37. SchapiraA.H.V. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease.Lancet Neurol.2008719710910.1016/S1474‑4422(07)70327‑7 18093566
    [Google Scholar]
  38. SchapiraA.H.V. OlanowC.W. Neuroprotection in Parkinson disease: Mysteries, myths, and misconceptions.JAMA2004291335836410.1001/jama.291.3.358 14734599
    [Google Scholar]
  39. SchneiderS.A. EdwardsM.J. MirP. CordivariC. HookerJ. DicksonJ. QuinnN. BhatiaK.P. Patients with adult‐onset dystonic tremor resembling parkinsonian tremor have scans without evidence of dopaminergic deficit (SWEDDs).Mov. Disord.200722152210221510.1002/mds.21685 17712858
    [Google Scholar]
  40. SahuR. ShahK. MisbahA. PaliwalD. SharmaN. RaniT. Recent advancement of benzofuran in treatment of Alzheimer’s disease.Indian J. Pharm. Sci.20238515391550
    [Google Scholar]
  41. GroupP.S. A controlled trial of rasagiline in early Parkinson disease: The TEMPO Study.Arch. Neurol.200259121937194310.1001/archneur.59.12.1937 12470183
    [Google Scholar]
  42. LeesA.J. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease.BMJ199531170201602160710.1136/bmj.311.7020.1602 8555803
    [Google Scholar]
  43. ImamuraA. UittiR.J. WszolekZ.K. Dopamine agonist therapy for Parkinson disease and pathological gambling.Parkinsonism Relat. Disord.200612850650810.1016/j.parkreldis.2006.02.004 16723269
    [Google Scholar]
  44. SchragA. QuinnN. Dyskinesias and motor fluctuations in Parkinson’s disease.Brain2000123112297230510.1093/brain/123.11.2297 11050029
    [Google Scholar]
  45. MüllerT. FritzeJ. Fibrosis associated with dopamine agonist therapy in Parkinson’s disease.Clin. Neuropharmacol.200326310911110.1097/00002826‑200305000‑00001 12782910
    [Google Scholar]
  46. IvesN.J. StoweR.L. MarroJ. CounsellC. MacleodA. ClarkeC.E. GrayR. WheatleyK. Monoamine oxidase type B inhibitors in early Parkinson’s disease: Meta-analysis of 17 randomised trials involving 3525 patients.BMJ2004329746659310.1136/bmj.38184.606169.AE 15310558
    [Google Scholar]
  47. FahnS. Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs. Later L-DOPA.Arch. Neurol.199956552953510.1001/archneur.56.5.529 10328247
    [Google Scholar]
  48. VoonV. HassanK. ZurowskiM. Duff-CanningS. de SouzaM. FoxS. LangA.E. MiyasakiJ. Prospective prevalence of pathologic gambling and medication association in Parkinson disease.Neurology200666111750175210.1212/01.wnl.0000218206.20920.4d 16769956
    [Google Scholar]
  49. LeesA.J. SternG.M. Sustained Bromocriptine Therapy in Previously Untreated Patients with Parkinson{\textquoteright}s Disease.J. Neurol. Neurosurg. Psychiatry19814410201023 7334388
    [Google Scholar]
  50. PaliwalD. Rao GudhantiS.N.K. YadavD. RajP. Insight into quantum computing and deep learning approach for drug design.Lett. Drug Des. Discov.20242116321651
    [Google Scholar]
  51. RahateK.P. MondalR. Applications of AI in Drug Discovery: Its Challenges, Opportunities, and StrategiesApproaches to Human-Centered AI Healthc.IGI Global Scientific Publishing20248612010.4018/979‑8‑3693‑2238‑3.ch005
    [Google Scholar]
  52. MondalR. PaliwalD. ThakurA. KaushikN. An insight into the recent advancement in anti-alzheimer’s potential of indole derivatives and their SAR Study.Curr. Top. Med. Chem.202525242848286310.2174/0115680266358563250331175140 40231514
    [Google Scholar]
  53. DarkohC. ChappellC. GonzalesC. OkhuysenP. A rapid and specific method for the detection of indole in complex biological samples.Appl. Environ. Microbiol.201581238093809710.1128/AEM.02787‑15 26386049
    [Google Scholar]
  54. MourikT. Theoretical study of indole: Protonation, indolyl radical, tautomers of indole, and its interaction with water.Chem. Phys.2004304331731910.1016/j.chemphys.2004.07.004
    [Google Scholar]
  55. LakhdarS. WestermaierM. TerrierF. GoumontR. BoubakerT. OfialA.R. MayrH. Nucleophilic reactivities of indoles.J. Org. Chem.200671249088909510.1021/jo0614339 17109534
    [Google Scholar]
  56. EftinkM.R. SelvidgeL.A. CallisP.R. RehmsA.A. Photophysics of indole derivatives: Experimental resolution of La and Lb transitions and comparison with theory.J. Phys. Chem.19909493469347910.1021/j100372a022
    [Google Scholar]
  57. CasarilA.M. DominguesM. BampiS.R. LourençoD.A. SmaniottoT.Â. SegattoN. VieiraB. SeixasF.K. CollaresT. LenardãoE.J. SavegnagoL. The antioxidant and immunomodulatory compound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole attenuates depression-like behavior and cognitive impairment developed in a mouse model of breast tumor.Brain Behav. Immun.20208422924110.1016/j.bbi.2019.12.005 31837417
    [Google Scholar]
  58. BampiS.R. CasarilA.M. FronzaM.G. DominguesM. VieiraB. BegniniK.R. SeixasF.K. CollaresT.V. LenardãoE.J. SavegnagoL. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice.Brain Res. Bull.202016115816510.1016/j.brainresbull.2020.05.008 32470357
    [Google Scholar]
  59. MondalR. RahateK. ChaudharyS. Targeting cell signalling pathways with new small molecules in inflammation and cancer.Curr. Top. Med. Chem.20252510.2174/0115680266360926250509040743 40357773
    [Google Scholar]
  60. PaliwalD. MondalR. ThakurA. 2D-QSAR and molecular docking based virtual screening and molecular dynamic simulation of the indole based herbal molecules for the discovery of potent molecules in the treatment of Alzheimer’s disease.In Silico Pharmacol.20251328110.1007/s40203‑025‑00364‑y 40487340
    [Google Scholar]
  61. SakinalaP. RahamanK.S. MounikaV. SathvikaK. A comprehensive knowledge on review of indole derivatives.Int. J. Life Sci. Pharma Res.202110.22376/ijpbs/lpr.2021.11.4.P19‑P24
    [Google Scholar]
  62. SamaraweeraL. AdomakoA. Rodriguez-GabinA. McDaidH.M. A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC.Sci. Rep.201771190010.1038/s41598‑017‑01964‑1 28507307
    [Google Scholar]
  63. LaubachJ.P. MoreauP. San-MiguelJ.F. RichardsonP.G. Panobinostat for the treatment of multiple myeloma.Clin. Cancer Res.201521214767477310.1158/1078‑0432.CCR‑15‑0530 26362997
    [Google Scholar]
  64. Garnock-JonesK.P. Panobinostat: First global approval.Drugs201575669570410.1007/s40265‑015‑0388‑8 25837990
    [Google Scholar]
  65. TamizA.P. WhittemoreE.R. WoodwardR.M. UpasaniR.B. KeanaJ.F.W. Structure-Activity relationship for a series of 2-substituted 1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indoles: potent subtype-selective inhibitors of N-methyl-D-aspartate (NMDA) receptors.Bioorg. Med. Chem. Lett.19999111619162410.1016/S0960‑894X(99)00248‑6 10386947
    [Google Scholar]
  66. YutkinV. ChinJ. Apaziquone as an intravesical therapeutic agent for urothelial non-muscle-invasive bladder cancer.Expert Opin. Investig. Drugs201221225126010.1517/13543784.2012.646081 22188461
    [Google Scholar]
  67. ArendsT.J.H. Alfred WitjesJ. Apaziquone for nonmuscle invasive bladder cancer.Urol. Clin. North Am.2020471738210.1016/j.ucl.2019.09.009 31757302
    [Google Scholar]
  68. LeeC.R. PloskerG.L. McTavishD. Tropisetron.Drugs199346592594310.2165/00003495‑199346050‑00009 7507039
    [Google Scholar]
  69. de BruijnK.M. Tropisetron.Drugs199243112210.2165/00003495‑199200433‑00005 1380428
    [Google Scholar]
  70. MetzgerR.R. BrownJ.M. SandovalV. RauK.S. ElwanM.A. MillerG.W. HansonG.R. FleckensteinA.E. Inhibitory effect of reserpine on dopamine transporter function.Eur. J. Pharmacol.20024561-3394310.1016/S0014‑2999(02)02647‑X 12450567
    [Google Scholar]
  71. LeeK.I. KimM.J. KohH. LeeJ.I. NamkoongS. OhW.K. ParkJ. The anti-hypertensive drug reserpine induces neuronal cell death through inhibition of autophagic flux.Biochem. Biophys. Res. Commun.2015462440240810.1016/j.bbrc.2015.04.145 25976674
    [Google Scholar]
  72. NegliaD. FommeiE. CarverA.V. ManciniM. GhioneS. LombardiM. PisaniP. ParkerH. D’AmatiG. DonatoL. Treatment of hypertension with perindopril plus indapamide leads to reverse coronary microvascular remodelling and improved blood flow.J. Hypertens.20112936437210.1097/HJH.0b013e328340a08e 21045728
    [Google Scholar]
  73. AelligW.H. Clinical pharmacology of pindolol.Am. Heart J.1982104234635610.1016/0002‑8703(82)90125‑9 6125094
    [Google Scholar]
  74. ArtigasF. AdellA. CeladaP. Pindolol augmentation of antidepressant response.Current Drug Targets2006Feb 1;7(2):139-47.
    [Google Scholar]
  75. MorinD. ZiniR. LedewynS. ColonnaJ.P. CzajkaM. TillementJ.P. Binedaline binding to plasma proteins and red blood cells in humans.J. Pharm. Sci.198574772773010.1002/jps.2600740706 4032243
    [Google Scholar]
  76. MorinD. ZiniR. UrienS. TillementJ.P. Pharmacological profile of binedaline, a new antidepressant drug.J. Pharmacol. Exp. Ther.1989249128829610.1016/S0022‑3565(25)23253‑0 2540319
    [Google Scholar]
  77. BlierP. de MontignyC. TardifD. Effects of the two antidepressant drugs mianserin and indalpine on the serotonergic system: Single-cell studies in the rat.Psychopharmacology (Berl.)198484224224910.1007/BF00427453 6438684
    [Google Scholar]
  78. UzanA. KaboucheM. RataudJ. Le FurG. Pharmacological evidence of a possible tryptaminergic regulation of opiate receptors by using indalpine, a selective 5-HT uptake inhibitor.Neuropharmacology198019111075107910.1016/0028‑3908(80)90104‑5 6255361
    [Google Scholar]
  79. HarmanR.E. MeisingerM.A.P. DavisG.E. KuehlF.A. The metabolites of indomethacin, a new anti-inflammatory drug.J. Pharmacol. Exp. Ther.1964143221522010.1016/S0022‑3565(25)26715‑5 14163995
    [Google Scholar]
  80. ErnstE. PittlerM.H. Yohimbine for erectile dysfunction: A systematic review and meta-analysis of randomized clinical trials.J. Urol.1998159243343610.1016/S0022‑5347(01)63942‑9 9649257
    [Google Scholar]
  81. TamS.W. WorcelM. WyllieM. Yohimbine: A clinical review.Pharmacol. Ther.200191321524310.1016/S0163‑7258(01)00156‑5 11744068
    [Google Scholar]
  82. LucasS. The pharmacology of indomethacin.Headache201656243644610.1111/head.12769 26865183
    [Google Scholar]
  83. DekhuijzenP.N.R. KoopmansP.P. Pharmacokinetic profile of zafirlukast.Clin. Pharmacokinet.200241210511410.2165/00003088‑200241020‑00003 11888331
    [Google Scholar]
  84. AdkinsJ.C. BrogdenR.N. Zafirlukast.Drugs199855112114410.2165/00003495‑199855010‑00008 9463793
    [Google Scholar]
  85. BennasarM.L. SoléD. RocaT. ValldoseraM. Exploratory studies toward a total synthesis of pericine (subincanadine E).Tetrahedron201571152246225410.1016/j.tet.2015.02.074
    [Google Scholar]
  86. MajJ. KotodziejczykK. RogóżZ. SkuzaG. Roxindole, a potential antidepressant I. Effect on the dopamine system.J. Neural Transm. (Vienna)1996103562764110.1007/BF01273159 8811507
    [Google Scholar]
  87. SharmaP. ThakurA. GoyalA. Singh GrewalA. Molecular docking, 2D-QSAR and ADMET studies of 4-sulfonyl-2-pyridone heterocycle as a Potential glucokinase activator.Results Chem.2023610110510.1016/j.rechem.2023.101105
    [Google Scholar]
  88. EnciuA.M. NicolescuM.I. ManoleC.G. MureşanuD.F. PopescuL.M. PopescuB.O. Neuroregeneration in neurodegenerative disorders.BMC Neurol.20111117510.1186/1471‑2377‑11‑75 21699711
    [Google Scholar]
  89. RobakisD. FahnS. Defining the role of the monoamine oxidaseb inhibitors for parkinson’s disease.CNS Drugs201529643344110.1007/s40263‑015‑0249‑8 26164425
    [Google Scholar]
  90. FinbergJ.P.M. RabeyJ.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology.Front. Pharmacol.2016734010.3389/fphar.2016.00340 27803666
    [Google Scholar]
  91. FernandezH.H. ChenJ.J. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease.Pharmacotherapy20072712P2174S185S10.1592/phco.27.12part2.174S 18041937
    [Google Scholar]
  92. RohillaS. GoyalG. BerwalP. MathurN. A review on indole-triazole molecular hybrids as a leading edge in drug discovery: Current landscape and future perspectives.Curr. Top. Med. Chem.202424181557158810.2174/0115680266307132240509065351 38766822
    [Google Scholar]
  93. RanaN. GroverP. Parkinson’s Disease: Unravelling the medicinal perspectives and recent developments of heterocyclic monoamine oxidase-B inhibitors.CNS Neurol. Disord. Drug Targets202424426328410.2174/0118715273340983241018095529
    [Google Scholar]
  94. ChandJ. JupudiS. AhmadS.F. EmranT.B. SubramanianG. Therapeutic mechanistic study of novel indole derivatives as SIRTUIN3 modulators in Parkinson’s disease with in vitro evaluation.Sci. Rep.20251511519610.1038/s41598‑025‑99534‑3 40307324
    [Google Scholar]
  95. AnastassovaN. Kondeva-BurdinaM. Hristova-AvakumovaN. StefanovaD. RangelovM. TodorovaN. YanchevaD. Exploring the Potential of Indole-3-acetic Acid Arylhydrazone Hybrids for Parkinson’s Disease Treatment: A comprehensive evaluation of neuroprotective, MAOB inhibitory, and antioxidant properties.ACS Chem. Neurosci.20251661161118110.1021/acschemneuro.4c00838 40066901
    [Google Scholar]
  96. MoX. RaoD.P. KaurK. HassanR. Abdel-SameaA.S. FarhanS.M. BräseS. HashemH. Indole Derivatives: A versatile scaffold in modern drug discovery—an updated review on their multifaceted therapeutic applications (2020–2024).Molecules20242919477010.3390/molecules29194770 39407697
    [Google Scholar]
  97. NamM.H. ParkM. ParkH. KimY. YoonS. SawantV.S. ChoiJ.W. ParkJ.H. ParkK.D. MinS.J. LeeC.J. ChooH. Indole-Substituted benzothiazoles and benzoxazoles as selective and reversible MAO-B inhibitors for treatment of Parkinson’s disease.ACS Chem. Neurosci.2017871519152910.1021/acschemneuro.7b00050 28332824
    [Google Scholar]
  98. HanY.S. KimJ.M. ChoJ.S. LeeC.S. KimD.E. Comparison of the Protective Effect of Indole β-carbolines and R-(-)-deprenyl Against Nitrogen Species-Induced Cell Death in Experimental Culture Model of Parkinson’s Disease.J. Clin. Neurol.200511819110.3988/jcn.2005.1.1.81 20396475
    [Google Scholar]
  99. PrinsL.H.A. PetzerJ.P. MalanS.F. Inhibition of monoamine oxidase by indole and benzofuran derivatives.Eur. J. Med. Chem.201045104458446610.1016/j.ejmech.2010.07.005 20674099
    [Google Scholar]
  100. ChirkovaZ.V. KabanovaM.V. FilimonovS.I. AbramovI.G. PetzerA. PetzerJ.P. SuponitskyK.Y. An evaluation of synthetic indole derivatives as inhibitors of monoamine oxidase.Bioorg. Med. Chem. Lett.20162692214221910.1016/j.bmcl.2016.03.060 27020523
    [Google Scholar]
  101. ChirkovaZ.V. KabanovaM.V. FilimonovS.I. AbramovI.G. PetzerA. PetzerJ.P. FirgangS.I. SuponitskyK.Y. Inhibition of monoamine oxidase by indole-5,6-dicarbonitrile derivatives.Bioorg. Med. Chem. Lett.20152561206121110.1016/j.bmcl.2015.01.061 25701250
    [Google Scholar]
  102. SasidharanR. ManjuS.L. UçarG. BaysalI. MathewB. Identification of Indole‐Based Chalcones: Discovery of a Potent, Selective, and Reversible Class of MAO‐B Inhibitors.Arch. Pharm.2016349862763710.1002/ardp.201600088 27373997
    [Google Scholar]
  103. ChirkovaZ.V. KabanovaM.V. FilimonovS.I. AbramovI.G. PetzerA. EngelbrechtI. PetzerJ.P. Yu SuponitskyK. VeselovskyA.V. An investigation of the monoamine oxidase inhibition properties of pyrrolo[3,4‐ f]indole‐5,7‐dione and indole‐5,6‐dicarbonitrile derivatives.Drug Dev. Res.2018792819310.1002/ddr.21425 29570223
    [Google Scholar]
  104. ElsherbenyM.H. KimJ. GoudaN.A. GotinaL. ChoJ. PaeA.N. LeeK. ParkK.D. ElkamhawyA. RohE.J. Highly potent, selective, and competitive indole-based mao-b inhibitors protect PC12 cells against 6-hydroxydopamine- and rotenone-induced oxidative stress.Antioxidants20211010164110.3390/antiox10101641 34679775
    [Google Scholar]
  105. VrbanL. VianelloR. Prominent neuroprotective potential of indole-2-N-methylpropargylamine: High affinity and irreversible inhibition efficiency towards monoamine oxidase b revealed by computational scaffold analysis.Pharmaceuticals20241710129210.3390/ph17101292 39458932
    [Google Scholar]
  106. TakaoK.U.S. KamauchiH. SugitaY. Design, synthesis and evaluation of 2-(indolylmethylidene)-2,3-dihydro-1-benzofuran-3-one and 2-(indolyl)-4H-chromen-4-one derivatives as novel monoamine oxidases inhibitors.Bioorg. Chem.20198759460010.1016/j.bioorg.2019.03.042 30933784
    [Google Scholar]
  107. NashJ.E. BrotchieJ.M. A common signaling pathway for striatal NMDA and adenosine A2a receptors: implications for the treatment of Parkinson's disease.J. Neurosci.200020207782778910.1523/JNEUROSCI.20‑20‑07782.2000
    [Google Scholar]
  108. Carrillo-MoraP. Silva-AdayaD. Villaseñor-AguayoK. Glutamate in Parkinson’s disease: Role of antiglutamatergic drugs.Basal Ganglia20133314715710.1016/j.baga.2013.09.001
    [Google Scholar]
  109. GreenamyreJ.T. O’BrienC.F. N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease.Arch. Neurol.199148997798110.1001/archneur.1991.00530210109030 1835370
    [Google Scholar]
  110. HallettP.J. StandaertD.G. Rationale for and use of NMDA receptor antagonists in Parkinson’s disease.Pharmacol. Ther.2004102215517410.1016/j.pharmthera.2004.04.001 15163596
    [Google Scholar]
  111. BuemiM.R. De LucaL. ChimirriA. FerroS. GittoR. Alvarez-BuillaJ. AlajarinR. Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies.Bioorg. Med. Chem.201321154575458010.1016/j.bmc.2013.05.044 23777828
    [Google Scholar]
  112. UpasaniR.B. KeanaJ.F.W. Department of Chemistry, University of Oregon,1999
    [Google Scholar]
  113. BarresiE. BagliniE. PoggettiV. CastagnoliJ. GiorginiD. SalernoS. TalianiS. Da SettimoF. Indole-Based compounds in the development of anti-Neurodegenerative agents.Molecules2024299212710.3390/molecules29092127 38731618
    [Google Scholar]
  114. MercadoG. CastilloV. SotoP. LópezN. AxtenJ.M. SardiS.P. HoozemansJ.J.M. HetzC. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease.Neurobiol. Dis.201811213614810.1016/j.nbd.2018.01.004 29355603
    [Google Scholar]
  115. KimS. Indu ViswanathA.N. ParkJ.H. LeeH.E. ParkA.Y. ChoiJ.W. KimH.J. LondheA.M. JangB.K. LeeJ. HwangH. LimS.M. PaeA.N. ParkK.D. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson’s disease animal model.Neuropharmacology202016710798910.1016/j.neuropharm.2020.107989 32032607
    [Google Scholar]
  116. MoreiraS. FonsecaI. NunesM.J. RosaA. LemosL. RodriguesE. CarvalhoA.N. OuteiroT.F. RodriguesC.M.P. GamaM.J. Castro-CaldasM. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease.Exp. Neurol.2017295778710.1016/j.expneurol.2017.05.009 28552716
    [Google Scholar]
  117. DuarteP. MichalskaP. CrismanE. CuadradoA. LeónR. Novel Series of Dual NRF2 inducers and selective mao-b inhibitors for the treatment of parkinson’s disease.Antioxidants202211224710.3390/antiox11020247 35204129
    [Google Scholar]
  118. WeiP.C. Lee-ChenG.J. ChenC.M. WuY.R. ChenY.J. LinJ.L. LoY.S. YaoC.F. ChangK.H. Neuroprotection of indole-derivative compound NC001-8 by the regulation of the NRF2 pathway in parkinson’s disease cell models.Oxid. Med. Cell. Longev.20192019507436710.1155/2019/5074367
    [Google Scholar]
  119. SainiN. AkhtarA. ChauhanM. DhingraN. Pilkhwal SahS. Protective effect of Indole-3-carbinol, an NF-κB inhibitor in experimental paradigm of Parkinson’s disease: In silico and in vivo studies.Brain Behav. Immun.20209010813710.1016/j.bbi.2020.08.001 32800927
    [Google Scholar]
  120. ChenS.J. ChenC.C. LiaoH.Y. WuY.W. LiouJ.M. WuM.S. KuoC.H. LinC.H. Alteration of Gut Microbial Metabolites in the Systemic Circulation of Patients with Parkinson’s Disease.J. Parkinsons Dis.20221241219123010.3233/JPD‑223179 35342048
    [Google Scholar]
  121. CollinsM.A. NeafseyE.J. MatsubaraK. CobuzziR.J. RollemaH. Indole-N-methylated β-carbolinium ions as potential brain-bioactivated neurotoxins.Brain Res.19925701-215416010.1016/0006‑8993(92)90576‑U 1617407
    [Google Scholar]
  122. ShaoY.M. MaX. PairaP. TanA. HerrD.R. LimK.L. NgC.H. VenkatesanG. KlotzK.N. FedericoS. SpallutoG. CheongS.L. ChenY.Z. PastorinG. Discovery of indolylpiperazinylpyrimidines with dual-target profiles at adenosine A2A and dopamine D2 receptors for Parkinson’s disease treatment.PLoS One2018131e018821210.1371/journal.pone.0188212 29304113
    [Google Scholar]
  123. Senthil KumarJ.B. KumariR. LuthraP.M. Modulation of indole ring annulation in ergoline template: chemistry, receptor binding and in vivo pharmacology with 6-OHDA model of Parkinson’s disease.Med. Chem. Res.201625459660810.1007/s00044‑016‑1502‑5
    [Google Scholar]
  124. MimoriS. KawadaK. SaitoR. TakahashiM. MizoiK. OkumaY. HosokawaM. KanzakiT. Indole-3-propionic acid has chemical chaperone activity and suppresses endoplasmic reticulum stress-induced neuronal cell death.Biochem. Biophys. Res. Commun.2019517462362810.1016/j.bbrc.2019.07.074 31378367
    [Google Scholar]
  125. De MirandaB.R. MillerJ.A. HansenR.J. LunghoferP.J. SafeS. GustafsonD.L. ColagiovanniD. TjalkensR.B. Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model of Parkinson’s disease.J. Pharmacol. Exp. Ther.2013345112513810.1124/jpet.112.201558 23318470
    [Google Scholar]
  126. PalladinoP. RainettiA. LettieriM. PieracciniG. ScaranoS. MinunniM. Quantitative Colorimetric Sensing of Carbidopa in Anti-parkinson drugs based on selective reaction with indole-3-carbaldehyde.Sensors20232322914210.3390/s23229142 38005530
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575400809251007055201
Loading
/content/journals/mrmc/10.2174/0113895575400809251007055201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test