Skip to content
2000
image of Exploring Indole-Based Molecules as Novel Therapeutics for Parkinson’s Disease: A Comprehensive Review

Abstract

The primary feature of Parkinson's disease (PD), a progressive neurodegenerative disease that results in both motor and non-motor dysfunctions, is the degeneration of dopaminergic neurons in the substantia nigra. In recent years, indole-based compounds have emerged as promising candidates for developing novel treatments for Parkinson's disease due to their diverse pharmacological properties. Among the significant pathogenic targets against which indole derivatives exhibit potent activity are monoamine oxidase (MAO), NMDA receptors, oxidative stress, and neuroinflammation. This review provides an in-depth analysis of synthetic indole derivatives as potential therapeutic agents for Parkinson’s disease. We explore how these compounds may reduce the pathology associated with Parkinson's disease, identify molecular targets, and analyze the relationships between their structure and activity. We also discuss recent advances in computational and medicinal chemistry that aim to enhance indole structures. Potential challenges and upcoming prospects for the therapeutic application of indole-based therapies are also considered in the review. The ultimate objective of this study is to elucidate the potential applications of synthetic indole derivatives in the development of innovative therapies for Parkinson's disease.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575400809251007055201
2025-10-21
2025-11-01
Loading full text...

Full text loading...

References

  1. Mutch W.J. Dingwall-Fordyce I. Downie A.W. Paterson J.G. Roy S.K. Parkinson’s disease in a Scottish city. BMJ 1986 292 6519 534 536 10.1136/bmj.292.6519.534 2936423
    [Google Scholar]
  2. Betarbet R. Sherer T.B. Greenamyre J.T. Ubiquitin–proteasome system and Parkinson’s diseases. Exp. Neurol. 2005 191 S17 S27 (Suppl.1) 10.1016/j.expneurol.2004.08.021 15629758
    [Google Scholar]
  3. Braak H. Bohl J.R. Müller C.M. Rüb U. de Vos R.A.I. Del Tredici K. Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov. Disord. 2006 21 12 2042 2051 10.1002/mds.21065 17078043
    [Google Scholar]
  4. Cookson M.R. Xiromerisiou G. Singleton A. How genetics research in Parkinson’s disease is enhancing understanding of the common idiopathic forms of the disease. Curr. Opin. Neurol. 2005 18 6 706 711 10.1097/01.wco.0000186841.43505.e6 16280683
    [Google Scholar]
  5. Gilks W.P. Abou-Sleiman P.M. Gandhi S. Jain S. Singleton A. Lees A.J. Shaw K. Bhatia K.P. Bonifati V. Quinn N.P. Lynch J. Healy D.G. Holton J.L. Revesz T. Wood N.W. A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 2005 365 9457 415 416 10.1016/S0140‑6736(05)17830‑1 15680457
    [Google Scholar]
  6. Chung K.K.K. Zhang Y. Lim K.L. Tanaka Y. Huang H. Gao J. Ross C.A. Dawson V.L. Dawson T.M. Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 2001 7 10 1144 1150 10.1038/nm1001‑1144 11590439
    [Google Scholar]
  7. Warner T.T. Schapira A.H.V. Genetic and environmental factors in the cause of Parkinson’s disease. Ann. Neurol. 2003 53 S3 S16 S25 10.1002/ana.10487 12666095
    [Google Scholar]
  8. Bej E. Cesare P. Volpe A.R. d’Angelo M. Castelli V. Oxidative stress and neurodegeneration: Insights and therapeutic strategies for parkinson’s disease. Neurol. Int. 2024 16 3 502 517 10.3390/neurolint16030037 38804477
    [Google Scholar]
  9. Chiu Y.J. Lin C.H. Lin C.Y. Yang P.N. Lo Y.S. Chen Y.C. Chen C.M. Wu Y.R. Yao C.F. Chang K.H. Lee-Chen G.J. Investigating therapeutic effects of indole derivatives targeting inflammation and oxidative stress in neurotoxin-induced cell and mouse models of parkinson’s disease. Int. J. Mol. Sci. 2023 24 3 2642 10.3390/ijms24032642 36768965
    [Google Scholar]
  10. Bennett D.A. Beckett L.A. Murray A.M. Shannon K.M. Goetz C.G. Pilgrim D.M. Evans D.A. Prevalence of parkinsonian signs and associated mortality in a community population of older people. N. Engl. J. Med. 1996 334 2 71 76 10.1056/NEJM199601113340202 8531961
    [Google Scholar]
  11. Group P.S. Group P.S. Pramipexole vs. levodopa as initial treatment for Parkinson disease: A randomized controlled trial. JAMA 2000 284 15 1931 1938 10.1001/jama.284.15.1931 11035889
    [Google Scholar]
  12. Hughes A.J. Daniel S.E. Kilford L. Lees A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992
    [Google Scholar]
  13. Papavasiliou P.S. Cotzias G.C. Düby S.E. Steck A.J. Fehling C. Bell M.A. Levodopa in Parkinsonism: potentiation of central effects with a peripheral inhibitor. N. Engl. J. Med. 1972 286 1 8 14 10.1056/NEJM197201062860102 4550085
    [Google Scholar]
  14. Rajput A.H. Offord K.P. Beard C.M. Kurland L.T. Epidemiology of parkinsonism: Incidence, classification, and mortality. Ann. Neurol. 1984 16 3 278 282 10.1002/ana.410160303 6333204
    [Google Scholar]
  15. Sejvar J.J. Haddad M.B. Tierney B.C. Campbell G.L. Marfin A.A. Van Gerpen J.A. Fleischauer A. Leis A.A. Stokic D.S. Petersen L.R. Neurologic manifestations and outcome of West Nile virus infection. JAMA 2003 290 4 511 515 10.1001/jama.290.4.511 12876094
    [Google Scholar]
  16. Aarsland D. Batzu L. Halliday G.M. Geurtsen G.J. Ballard C. Ray Chaudhuri K. Weintraub D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021 7 1 47 10.1038/s41572‑021‑00280‑3 34210995
    [Google Scholar]
  17. Dorsey R. Sherer T. Okun M.S. Bloem B.R. Ending Parkinson’s Disease: A Prescription for Action. UK Hachette 2020
    [Google Scholar]
  18. Erkkinen M.G. Kim M.O. Geschwind M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2018 10 4 a033118 10.1101/cshperspect.a033118 28716886
    [Google Scholar]
  19. Irvine G.B. El-Agnaf O.M. Shankar G.M. Walsh D.M. Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol. Med. 2008 14 7-8 451 464 10.2119/2007‑00100.Irvine 18368143
    [Google Scholar]
  20. Kasten M. Chade A. Tanner C.M. Epidemiology of Parkinson’s disease. Handb. Clin. Neurol. 2007 83 129 151 10.1016/S0072‑9752(07)83006‑5 18808913
    [Google Scholar]
  21. Sahu R. Shah K. Malviya R. Paliwal D. Sagar S. Singh S. Prajapati B.G. Recent advancement in pyrrolidine moiety for the management of cancer: A review. Results Chem. 2024 7 101301 10.1016/j.rechem.2023.101301
    [Google Scholar]
  22. Thakur A. Singh R. Mehta V. Paliwal D. Role of pyrazole moiety in the treatment of Alzheimer’s disease: A comprehensive review of various synthetic routes and probable mechanisms of action. ChemistrySelect 2025 10 13 e202500130 10.1002/slct.202500130
    [Google Scholar]
  23. Dodd C.A. Synthetic and natural environmental compounds as potential facilitators of mptp-induced parkinsonism. Doctoral Dissertations 2009
    [Google Scholar]
  24. Gartner C.E. Environmental Risk Factors for Parkinson’s Disease. Queensland University of Technology 2006
    [Google Scholar]
  25. Goldman S.M. Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol. 2014 54 1 141 164 10.1146/annurev‑pharmtox‑011613‑135937 24050700
    [Google Scholar]
  26. Huang M. Bargues-Carot A. Riaz Z. Wickham H. Zenitsky G. Jin H. Anantharam V. Kanthasamy A. Kanthasamy A.G. Impact of environmental risk factors on mitochondrial dysfunction, neuroinflammation, protein misfolding, and oxidative stress in the etiopathogenesis of parkinson’s disease. Int. J. Mol. Sci. 2022 23 18 10808 10.3390/ijms231810808 36142718
    [Google Scholar]
  27. Nath B.D. Debnath D. Pervin R. Hossain M.A. Role of Environmental Toxicants and Inflammation in Parkinson’s Disease. Antioxidants and functional foods for neurodegenerative disorders. CRC Press 2021 37 69
    [Google Scholar]
  28. Phom L. Understanding Neurodegeneration and Rescuing Pathology Associated with Parkinsons Disease in Drosophila Model. 2018
    [Google Scholar]
  29. Mondal R. Paliwal D. Thakur A. Sahu R. Budha R.R. Protein Binding Prediction by Computational Methods. Applications of Computational Tools in Drug Design and Development. Singapore Springer Nature 2025 10.1007/978‑981‑96‑4154‑3_13
    [Google Scholar]
  30. Dick F.D. Parkinson’s disease and pesticide exposures. Br. Med. Bull. 2006 79-80 1 219 231 10.1093/bmb/ldl018 17242039
    [Google Scholar]
  31. Sharma S. Rahate K. Kumar R. Novel emerging targets identification in reducing risk of Alzheimer's disease. Cent Nerv Syst. Agents Med. Chem. 2024 10.2174/0118715249333381241012073557
    [Google Scholar]
  32. Grosset D. Taurah L. Burn D.J. MacMahon D. Forbes A. Turner K. Bowron A. Walker R. Findley L. Foster O. Patel K. Clough C. Castleton B. Smith S. Carey G. Murphy T. Hill J. Brechany U. McGee P. Reading S. Brand G. Kelly L. Breen K. Ford S. Baker M. Williams A. Hearne J. Qizilbash N. Chaudhuri K.R. A multicentre longitudinal observational study of changes in self reported health status in people with Parkinson’s disease left untreated at diagnosis. J. Neurol. Neurosurg. Psychiatry 2006 78 5 465 469 10.1136/jnnp.2006.098327 17098846
    [Google Scholar]
  33. Hagell P. Self-reported health in people with Parkinson’s disease left untreated at diagnosis. J. Neurol. Neurosurg. Psychiatry 2006 78 5 442 10.1136/jnnp.2006.109454 17135458
    [Google Scholar]
  34. Hawkes C.M. Diagnosis and treatment of Parkinson’s disease. BMJ 1995 310 6995 1668 10.1136/bmj.310.6995.1668 7795461
    [Google Scholar]
  35. Hughes A.J. Daniel S.E. Ben-Shlomo Y. Lees A.J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002 125 4 861 870 10.1093/brain/awf080 11912118
    [Google Scholar]
  36. Poewe W. Scherfler C. Role of dopamine transporter imaging in investigation of parkinsonian syndromes in routine clinical practice. Mov. Disord. 2003 18 S7 S16 S21 10.1002/mds.10573 14531041
    [Google Scholar]
  37. Schapira A.H.V. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008 7 1 97 109 10.1016/S1474‑4422(07)70327‑7 18093566
    [Google Scholar]
  38. Schapira A.H.V. Olanow C.W. Neuroprotection in Parkinson disease: Mysteries, myths, and misconceptions. JAMA 2004 291 3 358 364 10.1001/jama.291.3.358 14734599
    [Google Scholar]
  39. Schneider S.A. Edwards M.J. Mir P. Cordivari C. Hooker J. Dickson J. Quinn N. Bhatia K.P. Patients with adult‐onset dystonic tremor resembling parkinsonian tremor have scans without evidence of dopaminergic deficit (SWEDDs). Mov. Disord. 2007 22 15 2210 2215 10.1002/mds.21685 17712858
    [Google Scholar]
  40. Sahu R. Shah K. Misbah A. Paliwal D. Sharma N. Rani T. Recent advancement of benzofuran in treatment of Alzheimer’s disease. Indian J. Pharm. Sci. 2023 85 1539 1550
    [Google Scholar]
  41. Group P.S. A controlled trial of rasagiline in early Parkinson disease: The TEMPO Study. Arch. Neurol. 2002 59 12 1937 1943 10.1001/archneur.59.12.1937 12470183
    [Google Scholar]
  42. Lees A.J. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease. BMJ 1995 311 7020 1602 1607 10.1136/bmj.311.7020.1602 8555803
    [Google Scholar]
  43. Imamura A. Uitti R.J. Wszolek Z.K. Dopamine agonist therapy for Parkinson disease and pathological gambling. Parkinsonism Relat. Disord. 2006 12 8 506 508 10.1016/j.parkreldis.2006.02.004 16723269
    [Google Scholar]
  44. Schrag A. Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. Brain 2000 123 11 2297 2305 10.1093/brain/123.11.2297 11050029
    [Google Scholar]
  45. Müller T. Fritze J. Fibrosis associated with dopamine agonist therapy in Parkinson’s disease. Clin. Neuropharmacol. 2003 26 3 109 111 10.1097/00002826‑200305000‑00001 12782910
    [Google Scholar]
  46. Ives N.J. Stowe R.L. Marro J. Counsell C. Macleod A. Clarke C.E. Gray R. Wheatley K. Monoamine oxidase type B inhibitors in early Parkinson’s disease: Meta-analysis of 17 randomised trials involving 3525 patients. BMJ 2004 329 7466 593 10.1136/bmj.38184.606169.AE 15310558
    [Google Scholar]
  47. Fahn S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs. Later L-DOPA. Arch. Neurol. 1999 56 5 529 535 10.1001/archneur.56.5.529 10328247
    [Google Scholar]
  48. Voon V. Hassan K. Zurowski M. Duff-Canning S. de Souza M. Fox S. Lang A.E. Miyasaki J. Prospective prevalence of pathologic gambling and medication association in Parkinson disease. Neurology 2006 66 11 1750 1752 10.1212/01.wnl.0000218206.20920.4d 16769956
    [Google Scholar]
  49. Lees A.J. Stern G.M. Sustained Bromocriptine Therapy in Previously Untreated Patients with Parkinson{\textquoteright}s Disease. J. Neurol. Neurosurg. Psychiatry 1981 44 1020 1023 7334388
    [Google Scholar]
  50. Paliwal D. Rao Gudhanti S.N.K. Yadav D. Raj P. Insight into quantum computing and deep learning approach for drug design. Lett. Drug Des. Discov. 2024 21 1632 1651
    [Google Scholar]
  51. Rahate K.P. Mondal R. Applications of AI in Drug Discovery: Its Challenges, Opportunities, and StrategiesApproaches to Human-Centered AI Healthc. IGI Global Scientific Publishing 2024 86 120 10.4018/979‑8‑3693‑2238‑3.ch005
    [Google Scholar]
  52. Mondal R. Paliwal D. Thakur A. Kaushik N. An insight into the recent advancement in anti-alzheimer’s potential of indole derivatives and their SAR Study. Curr. Top. Med. Chem. 2025 25 24 2848 2863 10.2174/0115680266358563250331175140 40231514
    [Google Scholar]
  53. Darkoh C. Chappell C. Gonzales C. Okhuysen P. A rapid and specific method for the detection of indole in complex biological samples. Appl. Environ. Microbiol. 2015 81 23 8093 8097 10.1128/AEM.02787‑15 26386049
    [Google Scholar]
  54. Mourik T. Theoretical study of indole: Protonation, indolyl radical, tautomers of indole, and its interaction with water. Chem. Phys. 2004 304 3 317 319 10.1016/j.chemphys.2004.07.004
    [Google Scholar]
  55. Lakhdar S. Westermaier M. Terrier F. Goumont R. Boubaker T. Ofial A.R. Mayr H. Nucleophilic reactivities of indoles. J. Org. Chem. 2006 71 24 9088 9095 10.1021/jo0614339 17109534
    [Google Scholar]
  56. Eftink M.R. Selvidge L.A. Callis P.R. Rehms A.A. Photophysics of indole derivatives: Experimental resolution of La and Lb transitions and comparison with theory. J. Phys. Chem. 1990 94 9 3469 3479 10.1021/j100372a022
    [Google Scholar]
  57. Casaril A.M. Domingues M. Bampi S.R. Lourenço D.A. Smaniotto T.Â. Segatto N. Vieira B. Seixas F.K. Collares T. Lenardão E.J. Savegnago L. The antioxidant and immunomodulatory compound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole attenuates depression-like behavior and cognitive impairment developed in a mouse model of breast tumor. Brain Behav. Immun. 2020 84 229 241 10.1016/j.bbi.2019.12.005 31837417
    [Google Scholar]
  58. Bampi S.R. Casaril A.M. Fronza M.G. Domingues M. Vieira B. Begnini K.R. Seixas F.K. Collares T.V. Lenardão E.J. Savegnago L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res. Bull. 2020 161 158 165 10.1016/j.brainresbull.2020.05.008 32470357
    [Google Scholar]
  59. Mondal R. Rahate K. Chaudhary S. Targeting cell signalling pathways with new small molecules in inflammation and cancer. Curr. Top. Med. Chem. 2025 ••• 25 10.2174/0115680266360926250509040743 40357773
    [Google Scholar]
  60. Paliwal D. Mondal R. Thakur A. 2D-QSAR and molecular docking based virtual screening and molecular dynamic simulation of the indole based herbal molecules for the discovery of potent molecules in the treatment of Alzheimer’s disease. In Silico Pharmacol. 2025 13 2 81 10.1007/s40203‑025‑00364‑y 40487340
    [Google Scholar]
  61. Sakinala P. Rahaman K.S. Mounika V. Sathvika K. A comprehensive knowledge on review of indole derivatives. Int. J. Life Sci. Pharma Res. 2021 10.22376/ijpbs/lpr.2021.11.4.P19‑P24
    [Google Scholar]
  62. Samaraweera L. Adomako A. Rodriguez-Gabin A. McDaid H.M. A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC. Sci. Rep. 2017 7 1 1900 10.1038/s41598‑017‑01964‑1 28507307
    [Google Scholar]
  63. Laubach J.P. Moreau P. San-Miguel J.F. Richardson P.G. Panobinostat for the treatment of multiple myeloma. Clin. Cancer Res. 2015 21 21 4767 4773 10.1158/1078‑0432.CCR‑15‑0530 26362997
    [Google Scholar]
  64. Garnock-Jones K.P. Panobinostat: First global approval. Drugs 2015 75 6 695 704 10.1007/s40265‑015‑0388‑8 25837990
    [Google Scholar]
  65. Tamiz A.P. Whittemore E.R. Woodward R.M. Upasani R.B. Keana J.F.W. Structure-Activity relationship for a series of 2-substituted 1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indoles: potent subtype-selective inhibitors of N-methyl-D-aspartate (NMDA) receptors. Bioorg. Med. Chem. Lett. 1999 9 11 1619 1624 10.1016/S0960‑894X(99)00248‑6 10386947
    [Google Scholar]
  66. Yutkin V. Chin J. Apaziquone as an intravesical therapeutic agent for urothelial non-muscle-invasive bladder cancer. Expert Opin. Investig. Drugs 2012 21 2 251 260 10.1517/13543784.2012.646081 22188461
    [Google Scholar]
  67. Arends T.J.H. Alfred Witjes J. Apaziquone for nonmuscle invasive bladder cancer. Urol. Clin. North Am. 2020 47 1 73 82 10.1016/j.ucl.2019.09.009 31757302
    [Google Scholar]
  68. Lee C.R. Plosker G.L. McTavish D. Tropisetron. Drugs 1993 46 5 925 943 10.2165/00003495‑199346050‑00009 7507039
    [Google Scholar]
  69. de Bruijn K.M. Tropisetron. Drugs 1992 43 11 22 10.2165/00003495‑199200433‑00005 1380428
    [Google Scholar]
  70. Metzger R.R. Brown J.M. Sandoval V. Rau K.S. Elwan M.A. Miller G.W. Hanson G.R. Fleckenstein A.E. Inhibitory effect of reserpine on dopamine transporter function. Eur. J. Pharmacol. 2002 456 1-3 39 43 10.1016/S0014‑2999(02)02647‑X 12450567
    [Google Scholar]
  71. Lee K.I. Kim M.J. Koh H. Lee J.I. Namkoong S. Oh W.K. Park J. The anti-hypertensive drug reserpine induces neuronal cell death through inhibition of autophagic flux. Biochem. Biophys. Res. Commun. 2015 462 4 402 408 10.1016/j.bbrc.2015.04.145 25976674
    [Google Scholar]
  72. Neglia D. Fommei E. Carver A.V. Mancini M. Ghione S. Lombardi M. Pisani P. Parker H. D’Amati G. Donato L. Treatment of hypertension with perindopril plus indapamide leads to reverse coronary microvascular remodelling and improved blood flow. J. Hypertens. 2011 29 364 372 10.1097/HJH.0b013e328340a08e 21045728
    [Google Scholar]
  73. Aellig W.H. Clinical pharmacology of pindolol. Am. Heart J. 1982 104 2 346 356 10.1016/0002‑8703(82)90125‑9 6125094
    [Google Scholar]
  74. Artigas F. Adell A. Celada P. Pindolol augmentation of antidepressant response. Curr. Drug Targets 2006 7 2 139 147
    [Google Scholar]
  75. Morin D. Zini R. Ledewyn S. Colonna J.P. Czajka M. Tillement J.P. Binedaline binding to plasma proteins and red blood cells in humans. J. Pharm. Sci. 1985 74 7 727 730 10.1002/jps.2600740706 4032243
    [Google Scholar]
  76. Morin D. Zini R. Urien S. Tillement J.P. Pharmacological profile of binedaline, a new antidepressant drug. J. Pharmacol. Exp. Ther. 1989 249 1 288 296 10.1016/S0022‑3565(25)23253‑0 2540319
    [Google Scholar]
  77. Blier P. de Montigny C. Tardif D. Effects of the two antidepressant drugs mianserin and indalpine on the serotonergic system: Single-cell studies in the rat. Psychopharmacology (Berl.) 1984 84 2 242 249 10.1007/BF00427453 6438684
    [Google Scholar]
  78. Uzan A. Kabouche M. Rataud J. Le Fur G. Pharmacological evidence of a possible tryptaminergic regulation of opiate receptors by using indalpine, a selective 5-HT uptake inhibitor. Neuropharmacology 1980 19 11 1075 1079 10.1016/0028‑3908(80)90104‑5 6255361
    [Google Scholar]
  79. Harman R.E. Meisinger M.A.P. Davis G.E. Kuehl F.A. The metabolites of indomethacin, a new anti-inflammatory drug. J. Pharmacol. Exp. Ther. 1964 143 2 215 220 10.1016/S0022‑3565(25)26715‑5 14163995
    [Google Scholar]
  80. Ernst E. Pittler M.H. Yohimbine for erectile dysfunction: A systematic review and meta-analysis of randomized clinical trials. J. Urol. 1998 159 2 433 436 10.1016/S0022‑5347(01)63942‑9 9649257
    [Google Scholar]
  81. Tam S.W. Worcel M. Wyllie M. Yohimbine: A clinical review. Pharmacol. Ther. 2001 91 3 215 243 10.1016/S0163‑7258(01)00156‑5 11744068
    [Google Scholar]
  82. Lucas S. The pharmacology of indomethacin. Headache 2016 56 2 436 446 10.1111/head.12769 26865183
    [Google Scholar]
  83. Dekhuijzen P.N.R. Koopmans P.P. Pharmacokinetic profile of zafirlukast. Clin. Pharmacokinet. 2002 41 2 105 114 10.2165/00003088‑200241020‑00003 11888331
    [Google Scholar]
  84. Adkins J.C. Brogden R.N. Zafirlukast. Drugs 1998 55 1 121 144 10.2165/00003495‑199855010‑00008 9463793
    [Google Scholar]
  85. Bennasar M.L. Solé D. Roca T. Valldosera M. Exploratory studies toward a total synthesis of pericine (subincanadine E). Tetrahedron 2015 71 15 2246 2254 10.1016/j.tet.2015.02.074
    [Google Scholar]
  86. Maj J. Kotodziejczyk K. Rogóż Z. Skuza G. Roxindole, a potential antidepressant I. Effect on the dopamine system. J. Neural Transm. (Vienna) 1996 103 5 627 641 10.1007/BF01273159 8811507
    [Google Scholar]
  87. Sharma P. Thakur A. Goyal A. Singh Grewal A. Molecular docking, 2D-QSAR and ADMET studies of 4-sulfonyl-2-pyridone heterocycle as a Potential glucokinase activator. Results Chem. 2023 6 101105 10.1016/j.rechem.2023.101105
    [Google Scholar]
  88. Enciu A.M. Nicolescu M.I. Manole C.G. Mureşanu D.F. Popescu L.M. Popescu B.O. Neuroregeneration in neurodegenerative disorders. BMC Neurol. 2011 11 1 75 10.1186/1471‑2377‑11‑75 21699711
    [Google Scholar]
  89. Robakis D. Fahn S. Defining the role of the monoamine oxidase-b inhibitors for parkinson’s disease. CNS Drugs 2015 29 6 433 441 10.1007/s40263‑015‑0249‑8 26164425
    [Google Scholar]
  90. Finberg J.P.M. Rabey J.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front. Pharmacol. 2016 7 340 10.3389/fphar.2016.00340 27803666
    [Google Scholar]
  91. Fernandez H.H. Chen J.J. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy 2007 27 (12)P2 174S 185S 10.1592/phco.27.12part2.174S 18041937
    [Google Scholar]
  92. Rohilla S. Goyal G. Berwal P. Mathur N. A review on indole-triazole molecular hybrids as a leading edge in drug discovery: Current landscape and future perspectives. Curr. Top. Med. Chem. 2024 24 18 1557 1588 10.2174/0115680266307132240509065351 38766822
    [Google Scholar]
  93. Rana N. Grover P. Parkinson’s Disease: Unravelling the medicinal perspectives and recent developments of heterocyclic monoamine oxidase-B inhibitors. CNS Neurol. Disord. Drug Targets 2024 24 4 263 284 10.2174/0118715273340983241018095529
    [Google Scholar]
  94. Chand J. Jupudi S. Ahmad S.F. Emran T.B. Subramanian G. Therapeutic mechanistic study of novel indole derivatives as SIRTUIN3 modulators in Parkinson’s disease with in vitro evaluation. Sci. Rep. 2025 15 1 15196 10.1038/s41598‑025‑99534‑3 40307324
    [Google Scholar]
  95. Anastassova N. Kondeva-Burdina M. Hristova-Avakumova N. Stefanova D. Rangelov M. Todorova N. Yancheva D. Exploring the Potential of Indole-3-acetic Acid Arylhydrazone Hybrids for Parkinson’s Disease Treatment: A comprehensive evaluation of neuroprotective, MAOB inhibitory, and antioxidant properties. ACS Chem. Neurosci. 2025 16 6 1161 1181 10.1021/acschemneuro.4c00838 40066901
    [Google Scholar]
  96. Mo X. Rao D.P. Kaur K. Hassan R. Abdel-Samea A.S. Farhan S.M. Bräse S. Hashem H. Indole Derivatives: A versatile scaffold in modern drug discovery—an updated review on their multifaceted therapeutic applications (2020–2024). Molecules 2024 29 19 4770 10.3390/molecules29194770 39407697
    [Google Scholar]
  97. Nam M.H. Park M. Park H. Kim Y. Yoon S. Sawant V.S. Choi J.W. Park J.H. Park K.D. Min S.J. Lee C.J. Choo H. Indole-Substituted benzothiazoles and benzoxazoles as selective and reversible MAO-B inhibitors for treatment of Parkinson’s disease. ACS Chem. Neurosci. 2017 8 7 1519 1529 10.1021/acschemneuro.7b00050 28332824
    [Google Scholar]
  98. Han Y.S. Kim J.M. Cho J.S. Lee C.S. Kim D.E. Comparison of the Protective Effect of Indole β-carbolines and R-(-)-deprenyl Against Nitrogen Species-Induced Cell Death in Experimental Culture Model of Parkinson’s Disease. J. Clin. Neurol. 2005 1 1 81 91 10.3988/jcn.2005.1.1.81 20396475
    [Google Scholar]
  99. Prins L.H.A. Petzer J.P. Malan S.F. Inhibition of monoamine oxidase by indole and benzofuran derivatives. Eur. J. Med. Chem. 2010 45 10 4458 4466 10.1016/j.ejmech.2010.07.005 20674099
    [Google Scholar]
  100. Chirkova Z.V. Kabanova M.V. Filimonov S.I. Abramov I.G. Petzer A. Petzer J.P. Suponitsky K.Y. An evaluation of synthetic indole derivatives as inhibitors of monoamine oxidase. Bioorg. Med. Chem. Lett. 2016 26 9 2214 2219 10.1016/j.bmcl.2016.03.060 27020523
    [Google Scholar]
  101. Chirkova Z.V. Kabanova M.V. Filimonov S.I. Abramov I.G. Petzer A. Petzer J.P. Firgang S.I. Suponitsky K.Y. Inhibition of monoamine oxidase by indole-5,6-dicarbonitrile derivatives. Bioorg. Med. Chem. Lett. 2015 25 6 1206 1211 10.1016/j.bmcl.2015.01.061 25701250
    [Google Scholar]
  102. Sasidharan R. Manju S.L. Uçar G. Baysal I. Mathew B. Identification of Indole‐Based Chalcones: Discovery of a Potent, Selective, and Reversible Class of MAO‐B Inhibitors. Arch. Pharm. 2016 349 8 627 637 10.1002/ardp.201600088 27373997
    [Google Scholar]
  103. Chirkova Z.V. Kabanova M.V. Filimonov S.I. Abramov I.G. Petzer A. Engelbrecht I. Petzer J.P. Yu Suponitsky K. Veselovsky A.V. An investigation of the monoamine oxidase inhibition properties of pyrrolo[3,4‐ f]indole‐5,7‐dione and indole‐5,6‐dicarbonitrile derivatives. Drug Dev. Res. 2018 79 2 81 93 10.1002/ddr.21425 29570223
    [Google Scholar]
  104. Elsherbeny M.H. Kim J. Gouda N.A. Gotina L. Cho J. Pae A.N. Lee K. Park K.D. Elkamhawy A. Roh E.J. Highly potent, selective, and competitive indole-based mao-b inhibitors protect PC12 cells against 6-hydroxydopamine- and rotenone-induced oxidative stress. Antioxidants 2021 10 10 1641 10.3390/antiox10101641 34679775
    [Google Scholar]
  105. Vrban L. Vianello R. Prominent neuroprotective potential of indole-2-N-methylpropargylamine: High affinity and irreversible inhibition efficiency towards monoamine oxidase b revealed by computational scaffold analysis. Pharmaceuticals 2024 17 10 1292 10.3390/ph17101292 39458932
    [Google Scholar]
  106. Takao K.U.S. Kamauchi H. Sugita Y. Design, synthesis and evaluation of 2-(indolylmethylidene)-2,3-dihydro-1-benzofuran-3-one and 2-(indolyl)-4H-chromen-4-one derivatives as novel monoamine oxidases inhibitors. Bioorg. Chem. 2019 87 594 600 10.1016/j.bioorg.2019.03.042 30933784
    [Google Scholar]
  107. Nash J.E. Brotchie J.M. A common signaling pathway for striatal NMDA and adenosine A2a receptors: implications for the treatment of Parkinson's disease J. Neurosci. 2000 20 (20) 7782 7789 10.1523/JNEUROSCI.20‑20‑07782.2000.
    [Google Scholar]
  108. Carrillo-Mora P. Silva-Adaya D. Villaseñor-Aguayo K. Glutamate in Parkinson’s disease: Role of antiglutamatergic drugs. Basal Ganglia 2013 3 3 147 157 10.1016/j.baga.2013.09.001
    [Google Scholar]
  109. Greenamyre J.T. O’Brien C.F. N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease. Arch. Neurol. 1991 48 9 977 981 10.1001/archneur.1991.00530210109030 1835370
    [Google Scholar]
  110. Hallett P.J. Standaert D.G. Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol. Ther. 2004 102 2 155 174 10.1016/j.pharmthera.2004.04.001 15163596
    [Google Scholar]
  111. Buemi M.R. De Luca L. Chimirri A. Ferro S. Gitto R. Alvarez-Builla J. Alajarin R. Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies. Bioorg. Med. Chem. 2013 21 15 4575 4580 10.1016/j.bmc.2013.05.044 23777828
    [Google Scholar]
  112. Upasani R.B. Keana J.F.W. Department of Chemistry, University of Oregon 1999
  113. Barresi E. Baglini E. Poggetti V. Castagnoli J. Giorgini D. Salerno S. Taliani S. Da Settimo F. Indole-Based compounds in the development of anti-Neurodegenerative agents. Molecules 2024 29 9 2127 10.3390/molecules29092127 38731618
    [Google Scholar]
  114. Mercado G. Castillo V. Soto P. López N. Axten J.M. Sardi S.P. Hoozemans J.J.M. Hetz C. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol. Dis. 2018 112 136 148 10.1016/j.nbd.2018.01.004 29355603
    [Google Scholar]
  115. Kim S. Indu Viswanath A.N. Park J.H. Lee H.E. Park A.Y. Choi J.W. Kim H.J. Londhe A.M. Jang B.K. Lee J. Hwang H. Lim S.M. Pae A.N. Park K.D. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson’s disease animal model. Neuropharmacology 2020 167 107989 10.1016/j.neuropharm.2020.107989 32032607
    [Google Scholar]
  116. Moreira S. Fonseca I. Nunes M.J. Rosa A. Lemos L. Rodrigues E. Carvalho A.N. Outeiro T.F. Rodrigues C.M.P. Gama M.J. Castro-Caldas M. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp. Neurol. 2017 295 77 87 10.1016/j.expneurol.2017.05.009 28552716
    [Google Scholar]
  117. Duarte P. Michalska P. Crisman E. Cuadrado A. León R. Novel Series of Dual NRF2 inducers and selective mao-b inhibitors for the treatment of parkinson’s disease. Antioxidants 2022 11 2 247 10.3390/antiox11020247 35204129
    [Google Scholar]
  118. Wei P.C. Lee-Chen G.J. Chen C.M. Wu Y.R. Chen Y.J. Lin J.L. Lo Y.S. Yao C.F. Chang K.H. Neuroprotection of indole-derivative compound NC001-8 by the regulation of the NRF2 pathway in parkinson’s disease cell models. Oxid. Med. Cell. Longev. 2019 2019 5074367 10.1155/2019/5074367
    [Google Scholar]
  119. Saini N. Akhtar A. Chauhan M. Dhingra N. Pilkhwal Sah S. Protective effect of Indole-3-carbinol, an NF-κB inhibitor in experimental paradigm of Parkinson’s disease: In silico and in vivo studies. Brain Behav. Immun. 2020 90 108 137 10.1016/j.bbi.2020.08.001 32800927
    [Google Scholar]
  120. Chen S.J. Chen C.C. Liao H.Y. Wu Y.W. Liou J.M. Wu M.S. Kuo C.H. Lin C.H. Alteration of Gut Microbial Metabolites in the Systemic Circulation of Patients with Parkinson’s Disease. J. Parkinsons Dis. 2022 12 4 1219 1230 10.3233/JPD‑223179 35342048
    [Google Scholar]
  121. Collins M.A. Neafsey E.J. Matsubara K. Cobuzzi R.J. Rollema H. Indole-N-methylated β-carbolinium ions as potential brain-bioactivated neurotoxins. Brain Res. 1992 570 1-2 154 160 10.1016/0006‑8993(92)90576‑U 1617407
    [Google Scholar]
  122. Shao Y.M. Ma X. Paira P. Tan A. Herr D.R. Lim K.L. Ng C.H. Venkatesan G. Klotz K.N. Federico S. Spalluto G. Cheong S.L. Chen Y.Z. Pastorin G. Discovery of indolylpiperazinylpyrimidines with dual-target profiles at adenosine A2A and dopamine D2 receptors for Parkinson’s disease treatment. PLoS One 2018 13 1 e0188212 10.1371/journal.pone.0188212 29304113
    [Google Scholar]
  123. Senthil Kumar J.B. Kumari R. Luthra P.M. Modulation of indole ring annulation in ergoline template: chemistry, receptor binding and in vivo pharmacology with 6-OHDA model of Parkinson’s disease. Med. Chem. Res. 2016 25 4 596 608 10.1007/s00044‑016‑1502‑5
    [Google Scholar]
  124. Mimori S. Kawada K. Saito R. Takahashi M. Mizoi K. Okuma Y. Hosokawa M. Kanzaki T. Indole-3-propionic acid has chemical chaperone activity and suppresses endoplasmic reticulum stress-induced neuronal cell death. Biochem. Biophys. Res. Commun. 2019 517 4 623 628 10.1016/j.bbrc.2019.07.074 31378367
    [Google Scholar]
  125. De Miranda B.R. Miller J.A. Hansen R.J. Lunghofer P.J. Safe S. Gustafson D.L. Colagiovanni D. Tjalkens R.B. Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2013 345 1 125 138 10.1124/jpet.112.201558 23318470
    [Google Scholar]
  126. Palladino P. Rainetti A. Lettieri M. Pieraccini G. Scarano S. Minunni M. Quantitative Colorimetric Sensing of Carbidopa in Anti-parkinson drugs based on selective reaction with indole-3-carbaldehyde. Sensors 2023 23 22 9142 10.3390/s23229142 38005530
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575400809251007055201
Loading
/content/journals/mrmc/10.2174/0113895575400809251007055201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test