Skip to content
2000
image of The Roles, Mechanisms, and Clinical Significance of Long Non-coding RNA MSC-AS1 in Cancer

Abstract

Musculin antisense RNA 1 (MSC-AS1) is a long non-coding RNA (lncRNA) located on human chromosome 8q13.3-q21.11. Emerging evidence shows that MSC-AS1 is either upregulated or downregulated in 16 types of human cancers, and is associated with clinical pathological features and patient prognosis in 12 of these cancers. It is widely believed that the dysregulation of MSC-AS1 contributes to tumor cell growth, metastasis, epithelial-mesenchymal transition (EMT) progression, metabolic reprogramming, and drug resistance formation. Mechanistically, MSC-AS1 can act as a competing endogenous RNA (ceRNA) by sponging 14 miRNAs to affect the expression of downstream mRNAs, or it may directly interact with proteins, both of which contribute to the activation of the PI3K/AKT and Wnt/β-catenin signaling pathways. Our review study suggests that MSC-AS1 is a potential cancer biomarker and therapeutic target. In summary, we have explained the research on MSC-AS1 related to cancer treatment, its expression patterns, functional characteristics, and molecular mechanisms in malignant tumors. We have further emphasized its significance in clinical prognosis and therapeutic applications.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575398488250831213920
2025-09-15
2025-11-06
Loading full text...

Full text loading...

References

  1. Kiri S. Ryba T. Cancer, metastasis, and the epigenome. Mol. Cancer 2024 23 1 154 10.1186/s12943‑024‑02069‑w 39095874
    [Google Scholar]
  2. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  3. Hwang E.S. Reading J. Yu J. Dotto G.P. Grady W.M. Czerniak B. Serrano M. Pre-cancer: From diagnosis to intervention opportunities. Cancer Cell 2023 41 4 637 640 10.1016/j.ccell.2023.03.012 37037612
    [Google Scholar]
  4. Nojima T. Proudfoot N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol. 2022 23 6 389 406 10.1038/s41580‑021‑00447‑6 35079163
    [Google Scholar]
  5. Sun J. Zhang Y. Li B. Dong Y. Sun C. Zhang F. Jin L. Chen D. Wang W. PITPNA-AS1 abrogates the inhibition of miR-876-5p on WNT5A to facilitate hepatocellular carcinoma progression. Cell Death Dis. 2019 10 11 844 10.1038/s41419‑019‑2067‑2 31700026
    [Google Scholar]
  6. Feng Y. Wu F. Wu Y. Guo Z. Ji X. LncRNA DGUOK-AS1 facilitates non-small cell lung cancer growth and metastasis through increasing TRPM7 stability via m6A modification. Transl. Oncol. 2023 32 101661 10.1016/j.tranon.2023.101661 37037089
    [Google Scholar]
  7. Li B. Zhao R. Qiu W. Pan Z. Zhao S. Qi Y. Qiu J. Zhang S. Guo Q. Fan Y. Xu H. Li M. Li G. Xue H. The N 6 -methyladenosine-mediated lncRNA WEE2-AS1 promotes glioblastoma progression by stabilizing RPN2. Theranostics 2022 12 14 6363 6379 10.7150/thno.74600 36168628
    [Google Scholar]
  8. Lonsdale J. Thomas J. Salvatore M. Phillips R. Lo E. Shad S. Hasz R. Walters G. Garcia F. Young N. Foster B. Moser M. Karasik E. Gillard B. Ramsey K. Sullivan S. Bridge J. Magazine H. Syron J. Fleming J. Siminoff L. Traino H. Mosavel M. Barker L. Jewell S. Rohrer D. Maxim D. Filkins D. Harbach P. Cortadillo E. Berghuis B. Turner L. Hudson E. Feenstra K. Sobin L. Robb J. Branton P. Korzeniewski G. Shive C. Tabor D. Qi L. Groch K. Nampally S. Buia S. Zimmerman A. Smith A. Burges R. Robinson K. Valentino K. Bradbury D. Cosentino M. Diaz-Mayoral N. Kennedy M. Engel T. Williams P. Erickson K. Ardlie K. Winckler W. Getz G. DeLuca D. MacArthur D. Kellis M. Thomson A. Young T. Gelfand E. Donovan M. Meng Y. Grant G. Mash D. Marcus Y. Basile M. Liu J. Zhu J. Tu Z. Cox N.J. Nicolae D.L. Gamazon E.R. Im, H.K.; Konkashbaev, A.; Pritchard, J.; Stevens, M.; Flutre, T.; Wen, X.; Dermitzakis, E.T.; Lappalainen, T.; Guigo, R.; Monlong, J.; Sammeth, M.; Koller, D.; Battle, A.; Mostafavi, S.; McCarthy, M.; Rivas, M.; Maller, J.; Rusyn, I.; Nobel, A.; Wright, F.; Shabalin, A.; Feolo, M.; Sharopova, N.; Sturcke, A.; Paschal, J.; Anderson, J.M.; Wilder, E.L.; Derr, L.K.; Green, E.D.; Struewing, J.P.; Temple, G.; Volpi, S.; Boyer, J.T.; Thomson, E.J.; Guyer, M.S.; Ng, C.; Abdallah, A.; Colantuoni, D.; Insel, T.R.; Koester, S.E.; Little, A.R.; Bender, P.K.; Lehner, T.; Yao, Y.; Compton, C.C.; Vaught, J.B.; Sawyer, S.; Lockhart, N.C.; Demchok, J.; Moore, H.F. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013 45 6 580 585 10.1038/ng.2653 23715323
    [Google Scholar]
  9. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  10. Wang X. Lu J. Immunotherapy for hepatocellular carcinoma. Chin. Med. J. (Engl.) 2024 137 15 1765 1776 10.1097/CM9.0000000000003060 38855876
    [Google Scholar]
  11. Kou X. Zhu J. Xie X. Hao M. Zhao Y. Expression of lncRNA MSC-AS1 in hepatocellular carcinoma cell lines and its effect on proliferation, apoptosis, and migration. Turk. J. Gastroenterol. 2021 31 12 860 867 10.5152/tjg.2020.19485 33625998
    [Google Scholar]
  12. Fu Q. Yu Z. Phosphoglycerate kinase 1 (PGK1) in cancer: A promising target for diagnosis and therapy. Life Sci. 2020 256 117863 10.1016/j.lfs.2020.117863 32479953
    [Google Scholar]
  13. Cao C. Zhong Q. Lu L. Huang B. Li J. Meng L. Wei H. Long noncoding RNA MSC‐AS1 promotes hepatocellular carcinoma oncogenesis via inducing the expression of phosphoglycerate kinase 1. Cancer Med. 2020 9 14 5174 5184 10.1002/cam4.3080 32489020
    [Google Scholar]
  14. Gu J.X. Zhang X. Miao R.C. Xiang X.H. Fu Y.N. Zhang J.Y. Liu C. Qu K. Six-long non-coding RNA signature predicts recurrence-free survival in hepatocellular carcinoma. World J. Gastroenterol. 2019 25 2 220 232 10.3748/wjg.v25.i2.220 30670911
    [Google Scholar]
  15. Xu Q. Wang Y. Huang W. Identification of immune-related lncRNA signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma. Int. Immunopharmacol. 2021 92 107333 10.1016/j.intimp.2020.107333 33486322
    [Google Scholar]
  16. Zhou P. Lu Y. Zhang Y. Wang L. Construction of an immune-related Six-lncRNA signature to predict the outcomes, immune cell infiltration, and immunotherapy response in patients with hepatocellular carcinoma. Front. Oncol. 2021 11 661758 10.3389/fonc.2021.661758 34277410
    [Google Scholar]
  17. Xia X. Zhang H. Xia P. Zhu Y. Liu J. Xu K. Yuan Y. Identification of glycolysis-related lncRNAs and the novel lncRNA WAC-AS1 promotes glycolysis and tumor progression in hepatocellular carcinoma. Front. Oncol. 2021 11 733595 10.3389/fonc.2021.733595 34527595
    [Google Scholar]
  18. Chen Z.A. Tian H. Yao D.M. Zhang Y. Feng Z.J. Yang C.J. Identification of a ferroptosis-related signature model including mRNAs and lncRNAs for predicting prognosis and immune activity in hepatocellular carcinoma. Front. Oncol. 2021 11 738477 10.3389/fonc.2021.738477 34568075
    [Google Scholar]
  19. Zhu L. Zhang X.P. Xu S. Hu M.G. Zhao Z.M. Zhao G.D. Xiao Z.H. Liu R. Identification of a CD4+ conventional T cells-related lncRNAs signature associated with hepatocellular carcinoma prognosis, therapy, and tumor microenvironment. Front. Immunol. 2023 13 1111246 10.3389/fimmu.2022.1111246 36700197
    [Google Scholar]
  20. Jiménez D.J. Javed A. Rubio-Tomás T. Seye-Loum N. Barceló C. Clinical and preclinical targeting of oncogenic pathways in pdac: Targeted therapeutic approaches for the deadliest cancer. Int. J. Mol. Sci. 2024 25 5 2860 10.3390/ijms25052860 38474109
    [Google Scholar]
  21. Ferguson F.M. Doctor Z.M. Ficarro S.B. Browne C.M. Marto J.A. Johnson J.L. Yaron T.M. Cantley L.C. Kim N.D. Sim T. Berberich M.J. Kalocsay M. Sorger P.K. Gray N.S. Discovery of covalent CDK14 inhibitors with Pan-TAIRE family specificity. Cell Chem. Biol. 2019 26 6 804 817.e12 10.1016/j.chembiol.2019.02.015 30930164
    [Google Scholar]
  22. Sun Y. Wang P. Yang W. Shan Y. Zhang Q. Wu H. The role of lncRNA MSC-AS1/miR-29b-3p axis-mediated CDK14 modulation in pancreatic cancer proliferation and Gemcitabine-induced apoptosis. Cancer Biol. Ther. 2019 20 6 729 739 10.1080/15384047.2018.1529121 30915884
    [Google Scholar]
  23. Gong Y. Bao L. Xu T. Yi X. Chen J. Wang S. Pan Z. Huang P. Ge M. The tumor ecosystem in head and neck squamous cell carcinoma and advances in ecotherapy. Mol. Cancer 2023 22 1 68 10.1186/s12943‑023‑01769‑z 37024932
    [Google Scholar]
  24. Duan Y. Zhou M. Ye B. Yue K. Qiao F. Wang Y. Lai Q. Wu Y. Cao J. Wu Y. Wang X. Jing C. Hypoxia-induced miR-5100 promotes exosome-mediated activation of cancer-associated fibroblasts and metastasis of head and neck squamous cell carcinoma. Cell Death Dis. 2024 15 3 215 10.1038/s41419‑024‑06587‑9 38485986
    [Google Scholar]
  25. Yang C. Zheng X. Identification of a hypoxia-related lncrna biomarker signature for head and neck squamous cell carcinoma. J. Oncol. 2022 2022 1 13 10.1155/2022/6775496 35096063
    [Google Scholar]
  26. Huang H. Yao Y. Deng X. Huang Z. Chen Y. Wang Z. Hong H. Huang H. Lin T. Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int. J. Oncol. 2023 63 2 97 10.3892/ijo.2023.5545 37417358
    [Google Scholar]
  27. Chen Y.P. Chan A.T.C. Le Q.T. Blanchard P. Sun Y. Ma J. Nasopharyngeal carcinoma. Lancet 2019 394 10192 64 80 10.1016/S0140‑6736(19)30956‑0 31178151
    [Google Scholar]
  28. Yao H. Yang L. Tian L. Guo Y. Li Y. LncRNA MSC-AS1 aggravates nasopharyngeal carcinoma progression by targeting miR-524-5p/nuclear receptor subfamily 4 group A member 2 (NR4A2). Cancer Cell Int. 2020 20 1 138 10.1186/s12935‑020‑01202‑1 32368184
    [Google Scholar]
  29. Dongre A. Weinberg R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019 20 2 69 84 10.1038/s41580‑018‑0080‑4 30459476
    [Google Scholar]
  30. Huang J. Chan S.C. Ko S. Lok V. Zhang L. Lin X. Lucero-Prisno D.E. Xu W. Zheng Z.J. Elcarte E. Withers M. Wong M.C. Updated disease distributions, risk factors, and trends of laryngeal cancer: A global analysis of cancer registries. Int. J. Surg. 2024 110 2 810 819 38000050
    [Google Scholar]
  31. Liu Y. Meng W. Cao H. Wang B. Identification of MSC-AS1, a novel lncRNA for the diagnosis of laryngeal cancer. Eur. Arch. Otorhinolaryngol. 2021 278 4 1107 1118 10.1007/s00405‑020‑06427‑4 33079247
    [Google Scholar]
  32. Zhang S. Wu Q. Cheng W. YTHDC1-Mediated lncRNA MSC-AS1 m6A modification potentiates laryngeal squamous cell carcinoma development via repressing ATXN7 transcription. Mol. Biotechnol. 2024 38637450
    [Google Scholar]
  33. Widagdo J. Anggono V. Wong J.J.L. The multifaceted effects of YTHDC1-mediated nuclear m6A recognition. Trends Genet. 2022 38 4 325 332 10.1016/j.tig.2021.11.005 34920906
    [Google Scholar]
  34. Dehingia B. Milewska M. Janowski M. Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep. 2022 23 9 e55146 10.15252/embr.202255146 35993175
    [Google Scholar]
  35. Yasuda T. Wang Y.A. Gastric cancer immunosuppressive microenvironment heterogeneity: Implications for therapy development. Trends Cancer 2024 10 7 627 642 10.1016/j.trecan.2024.03.008 38600020
    [Google Scholar]
  36. Jin X. Qiao L. Fan H. Liao C. Zheng J. Wang W. Ma X. Yang M. Sun X. Zhao W. Long non-coding RNA MSC-AS1 facilitates the proliferation and glycolysis of gastric cancer cells by regulating PFKFB3 expression. Int. J. Med. Sci. 2021 18 2 546 554 10.7150/ijms.51947 33390824
    [Google Scholar]
  37. Liu Y. Li L. Wu X. Qi H. Gao Y. Li Y. Chen D. MSC-AS1 induced cell growth and inflammatory mediators secretion through sponging miR-142-5p/DDX5 in gastric carcinoma. Aging 2021 13 7 10387 10395 10.18632/aging.202800 33819916
    [Google Scholar]
  38. Yang W. Ge F. Lu S. Shan Z. Peng L. Chai J. Liu H. Li B. Zhang Z. Huang J. Hua Y. Zhang Y. LncRNA MSC-AS1 is a diagnostic biomarker and predicts poor prognosis in patients with gastric cancer by integrated bioinformatics analysis. Front. Med. 2021 8 795427 10.3389/fmed.2021.795427 34926534
    [Google Scholar]
  39. Fan Z. Wang Y. Niu R. Identification of the three subtypes and the prognostic characteristics of stomach adenocarcinoma: Analysis of the hypoxia-related long non-coding RNAs. Funct. Integr. Genomics 2022 22 5 919 936 10.1007/s10142‑022‑00867‑3 35665866
    [Google Scholar]
  40. Shima T. Taniguchi K. Inomata Y. Arima J. Lee S.W. Glycolysis in gastrointestinal stromal tumor: A brief overview. Neoplasia 2024 55 101022 10.1016/j.neo.2024.101022 38943997
    [Google Scholar]
  41. Chen L. Gao Y. Yang H. Su Y. Zhang Y. Lou L. Wang X. Ding D. Long non-coding RNA MSC-AS1 confers imatinib resistance of gastrointestinal stromal tumor cells by activating FNDC1 and ANLN-mediated PI3K/AKT pathway. Hum. Cell 2025 38 2 38 10.1007/s13577‑024‑01167‑7 39751699
    [Google Scholar]
  42. Chen L. Liu J. Wang L. Yang X. Jiang Q. Ji F. Xu Y. Fan X. Zhou Z. Fu C. Up-regulated FNDC1 accelerates stemness and chemoradiation resistance in colorectal cancer cells. Biochem. Biophys. Res. Commun. 2022 602 84 90 10.1016/j.bbrc.2022.02.038 35255438
    [Google Scholar]
  43. Ting Z. Wu Z. Yang C. Li Z. Huang H. Gan J. Li N. Li X. Lyu J. Wu Y. Qin S. lncRNA CERS6-AS1 upregulates the expression of ANLN by sponging miR-424-5p to promote the progression and drug resistance of lung adenocarcinoma. Noncoding RNA Res. 2024 9 1 221 235 10.1016/j.ncrna.2023.11.013 38094657
    [Google Scholar]
  44. Ciardiello F. Ciardiello D. Martini G. Napolitano S. Tabernero J. Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J. Clin. 2022 72 4 372 401 10.3322/caac.21728 35472088
    [Google Scholar]
  45. He C. Wang X. Du M. Dong Y. LncRNA MSC-AS1 promotes colorectal cancer progression by regulating miR-325/TRIM14 Axis. J. Oncol. 2021 2021 1 10 10.1155/2021/9954214 34054957
    [Google Scholar]
  46. Li X. Zhou F. Niu K. Wang Y. Shi Y. Li Y. Gao X. Zhao W. Chen T. Zhang Y. Emerging discoveries on the role of TRIM14: From diseases to immune regulation. Cell Death Discov. 2024 10 1 513 10.1038/s41420‑024‑02276‑w 39719450
    [Google Scholar]
  47. Wei X. Li X. Hu S. Cheng J. Cai R. Regulation of ferroptosis in lung adenocarcinoma. Int. J. Mol. Sci. 2023 24 19 14614 10.3390/ijms241914614 37834062
    [Google Scholar]
  48. Denisenko T.V. Budkevich I.N. Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018 9 2 117 10.1038/s41419‑017‑0063‑y 29371589
    [Google Scholar]
  49. Li S. Yang S. Qiu C. Sun D. LncRNA MSC-AS1 facilitates lung adenocarcinoma through sponging miR-33b-5p to up-regulate GPAM. Biochem. Cell Biol. 2021 99 2 241 248 10.1139/bcb‑2020‑0239 33821667
    [Google Scholar]
  50. Yang Y. Yang T. Zhao Z. Zhang H. Yuan P. Wang G. Zhao Z. An J. Lyu Z. Xing J. Li J. Down-regulation of BMAL1 by MiR-494-3p promotes hepatocellular carcinoma growth and metastasis by increasing gpam-mediated lipid biosynthesis. Int. J. Biol. Sci. 2022 18 16 6129 6144 10.7150/ijbs.74951 36439870
    [Google Scholar]
  51. Young M. Jackson-Spence F. Beltran L. Day E. Suarez C. Bex A. Powles T. Szabados B. Renal cell carcinoma. Lancet 2024 404 10451 476 491 10.1016/S0140‑6736(24)00917‑6 39033764
    [Google Scholar]
  52. Rose T.L. Kim W.Y. Renal cell carcinoma. JAMA 2024 332 12 1001 1010 10.1001/jama.2024.12848 39196544
    [Google Scholar]
  53. Hu Z. Li L. Cheng P. Liu Q. Zheng X. Peng F. Zhang Q. lncRNA MSC‐AS1 activates Wnt/β‐catenin signaling pathway to modulate cell proliferation and migration in kidney renal clear cell carcinoma via miR‐3924/WNT5A. J. Cell. Biochem. 2020 121 10 4085 4093 10.1002/jcb.29594 31916281
    [Google Scholar]
  54. Bueno M.L.P. Saad S.T.O. Roversi F.M. WNT5A in tumor development and progression: A comprehensive review. Biomed. Pharmacother. 2022 155 113599 10.1016/j.biopha.2022.113599 36089446
    [Google Scholar]
  55. Tufail M. Wu C. WNT5A: A double-edged sword in colorectal cancer progression. Mutat. Res. Rev. Mutat. Res. 2023 792 108465 10.1016/j.mrrev.2023.108465 37495091
    [Google Scholar]
  56. Yasinjan F. Xing Y. Geng H. Guo R. Yang L. Liu Z. Wang H. Immunotherapy: A promising approach for glioma treatment. Front. Immunol. 2023 14 1255611 10.3389/fimmu.2023.1255611 37744349
    [Google Scholar]
  57. Zeng Z. Chen Y. Geng X. Zhang Y. Wen X. Yan Q. Wang T. Ling C. Xu Y. Duan J. Zheng K. Sun Z. NcRNAs: Multi angle participation in the regulation of glioma chemotherapy resistance (Review). Int. J. Oncol. 2022 60 6 76 10.3892/ijo.2022.5366 35506469
    [Google Scholar]
  58. Tomar M.S. Kumar A. Srivastava C. Shrivastava A. Elucidating the mechanisms of temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim. Biophys. Acta Rev. Cancer 2021 1876 2 188616 10.1016/j.bbcan.2021.188616 34419533
    [Google Scholar]
  59. Li C. Feng S. Chen L. MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway. Mol. Cell. Biochem. 2021 476 2 699 713 10.1007/s11010‑020‑03937‑x 33106913
    [Google Scholar]
  60. Charlesworth A. Meijer H.A. de Moor C.H. Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip. Rev. RNA 2013 4 4 437 461 10.1002/wrna.1171 23776146
    [Google Scholar]
  61. Liu Z. Gu S. Wu K. Li L. Dong C. Wang W. Zhou Y. CircRNA-DOPEY2 enhances the chemosensitivity of esophageal cancer cells by inhibiting CPEB4-mediated Mcl-1 translation. J. Exp. Clin. Cancer Res. 2021 40 1 361 10.1186/s13046‑021‑02149‑5 34781999
    [Google Scholar]
  62. Chen C. Xie L. Ren T. Huang Y. Xu J. Guo W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021 500 1 10 10.1016/j.canlet.2020.12.024 33359211
    [Google Scholar]
  63. Shoaib Z. Fan T.M. Irudayaraj J.M.K. Osteosarcoma mechanobiology and therapeutic targets. Br. J. Pharmacol. 2022 179 2 201 217 10.1111/bph.15713 34679192
    [Google Scholar]
  64. Lilienthal I. Herold N. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: A review of current and future strategies. Int. J. Mol. Sci. 2020 21 18 6885 10.3390/ijms21186885 32961800
    [Google Scholar]
  65. Tippett V.L. Tattersall L. Ab Latif N.B. Shah K.M. Lawson M.A. Gartland A. The strategy and clinical relevance of in vitro models of MAP resistance in osteosarcoma: A systematic review. Oncogene 2023 42 4 259 277 10.1038/s41388‑022‑02529‑x 36434179
    [Google Scholar]
  66. Zhang L. Zhao G. Ji S. Yuan Q. Zhou H. Downregulated long non-coding RNA MSC-AS1 inhibits osteosarcoma progression and increases sensitivity to cisplatin by binding to MicroRNA-142. Med. Sci. Monit. 2020 26 e921594 10.12659/MSM.921594 32155139
    [Google Scholar]
  67. Long G.V. Swetter S.M. Menzies A.M. Gershenwald J.E. Scolyer R.A. Cutaneous melanoma. Lancet 2023 402 10400 485 502 10.1016/S0140‑6736(23)00821‑8 37499671
    [Google Scholar]
  68. Ma Y. Jin Y. Li C. Liu Y. Wang D. LncRNA MSC‐AS1 motivates the development of melanoma by binding to miR‐302a‐3p and recruiting IGF2BP2 to elevate LEF1 expression. Exp. Dermatol. 2021 30 12 1764 1774 10.1111/exd.14427 34218464
    [Google Scholar]
  69. Goding C.R. Arnheiter H. MITF—the first 25 years. Genes Dev. 2019 33 15-16 983 1007 10.1101/gad.324657.119 31123060
    [Google Scholar]
  70. Zhao X. Shan Q. Xue H.H. TCF1 in T cell immunity: A broadened frontier. Nat. Rev. Immunol. 2022 22 3 147 157 10.1038/s41577‑021‑00563‑6 34127847
    [Google Scholar]
  71. Villareal M.O. Kume S. Neffati M. Isoda H. Upregulation of mitf by phenolic compounds-rich Cymbopogon schoenanthus treatment promotes melanogenesis in b16 melanoma cells and human epidermal melanocytes. BioMed Res. Int. 2017 2017 1 11 10.1155/2017/8303671 29359158
    [Google Scholar]
  72. Tian T. Luo B. Shen G. Ji G. LncRNA MSC-AS1, as an oncogene in melanoma, promotes the proliferation and glutaminolysis by regulating the miR-330-3p/YAP1 axis. Anticancer Drugs 2022 33 10 1012 1023 10.1097/CAD.0000000000001390 36206100
    [Google Scholar]
  73. Hensley C.T. Wasti A.T. DeBerardinis R.J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 2013 123 9 3678 3684 10.1172/JCI69600 23999442
    [Google Scholar]
  74. Szulzewsky F. Holland E.C. Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev. Biol. 2021 475 205 221 10.1016/j.ydbio.2020.12.018 33428889
    [Google Scholar]
  75. Carvajal R.D. Sacco J.J. Jager M.J. Eschelman D.J. Olofsson Bagge R. Harbour J.W. Chieng N.D. Patel S.P. Joshua A.M. Piperno-Neumann S. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol. 2023 20 2 99 115 10.1038/s41571‑022‑00714‑1 36600005
    [Google Scholar]
  76. Pan H. Wang H. Zhang X. Yang F. Fan X. Zhang H. Chromosomal instability-associated MAT1 lncRNA insulates MLL1-guided histone methylation and accelerates tumorigenesis. Cell Rep. 2022 41 11 111829 10.1016/j.celrep.2022.111829 36516779
    [Google Scholar]
  77. Ning Y. Deng C. Li C. Peng W. Yan C. Ran J. Chen W. Liu Y. Xia J. Ye L. Wei Z. Xiang T. PCDH20 inhibits esophageal squamous cell carcinoma proliferation and migration by suppression of the mitogen-activated protein kinase 9/AKT/β-catenin pathway. Front. Oncol. 2022 12 937716 10.3389/fonc.2022.937716 36248995
    [Google Scholar]
  78. Jun L. Chen W. Han L. Yanmin L. Qinglei Z. Pengfei Z. Protocadherin 20 promotes ferroptosis by suppressing the expression of Sirtuin 1 and promoting the acetylation of nuclear factor erythroid 2-related factor 2 in hepatocellular carcinoma. Int. J. Biochem. Cell Biol. 2023 156 106363 10.1016/j.biocel.2023.106363 36641129
    [Google Scholar]
  79. Cosgrove M.S. Patel A. Mixed lineage leukemia: A structure–function perspective of the MLL1 protein. FEBS J. 2010 277 8 1832 1842 10.1111/j.1742‑4658.2010.07609.x 20236310
    [Google Scholar]
  80. Zhang S. Lin T. Xiong X. Chen C. Tan P. Wei Q. Targeting histone modifiers in bladder cancer therapy - preclinical and clinical evidence. Nat. Rev. Urol. 2024 21 8 495 511 10.1038/s41585‑024‑00857‑z 38374198
    [Google Scholar]
  81. Luo J. Xu J. Ou L. Zhou Y. Yun H. Yang Y. Wu X. Wang Y. Role of hypermethylated-lncRNAs in the prognosis of bladder cancer patients. J. Int. Med. Res. 2021 49 10 03000605211049946 10.1177/03000605211049946 34617815
    [Google Scholar]
  82. Chen K. Xing J. Yu W. Xia Y. Zhang Y. Cheng F. Rao T. Identification and validation of hub genes associated with bladder cancer by integrated bioinformatics and experimental assays. Front. Oncol. 2021 11 782981 10.3389/fonc.2021.782981 34988018
    [Google Scholar]
  83. Wang L. Wang X. Zhu X. Zhong L. Jiang Q. Wang Y. Tang Q. Li Q. Zhang C. Wang H. Zou D. Drug resistance in ovarian cancer: From mechanism to clinical trial. Mol. Cancer 2024 23 1 66 10.1186/s12943‑024‑01967‑3 38539161
    [Google Scholar]
  84. Zhao Y. Yuan D. Zhu D. Xu T. Huang A. Jiang L. Liu C. Qian H. Bu X. LncRNA-MSC-AS1 inhibits the ovarian cancer progression by targeting miR-425-5p. J. Ovarian Res. 2021 14 1 109 10.1186/s13048‑021‑00857‑2 34454554
    [Google Scholar]
  85. Wu Z. Guo J. Zhang Y. Liu J. Ma H. Tang Y. MiR-425-5p accelerated the proliferation, migration, and invasion of ovarian cancer cells via targeting AFF4. J. Ovarian Res. 2021 14 1 138 10.1186/s13048‑021‑00894‑x 34686190
    [Google Scholar]
  86. Zhou X. Zhang C. Yu H. Feng Z. Bai X. Mei Y. Li L. Li X. Gou X. Deng Y. The MEF2A/SNHG16/miR-425-5p/NOTCH2 axis induces gemcitabine resistance by inhibiting ferroptosis in the starving bladder tumor microenvironment. Cell. Signal. 2024 122 111337 10.1016/j.cellsig.2024.111337 39121977
    [Google Scholar]
  87. Wu H. Shang J. Zhan W. Liu J. Ning H. Chen N. miR 425 5p promotes cell proliferation, migration and invasion by directly targeting FOXD3 in hepatocellular carcinoma cells. Mol. Med. Rep. 2019 20 2 1883 1892 10.3892/mmr.2019.10427 31257522
    [Google Scholar]
  88. Wasim S. Lee S.Y. Kim J. Complexities of prostate cancer. Int. J. Mol. Sci. 2022 23 22 14257 10.3390/ijms232214257 36430730
    [Google Scholar]
  89. Tonmoy M.I.Q. Fariha A. Hami I. Kar K. Reza H.A. Bahadur N.M. Hossain M.S. Computational epigenetic landscape analysis reveals association of CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1 lncRNAs in prostate cancer progression through aberrant methylation. Sci. Rep. 2022 12 1 10260 10.1038/s41598‑022‑13381‑0 35715447
    [Google Scholar]
  90. Badowski C. He B. Garmire L.X. Blood-derived lncRNAs as biomarkers for cancer diagnosis: The good, the bad and the beauty. NPJ Precis. Oncol. 2022 6 1 40 10.1038/s41698‑022‑00283‑7 35729321
    [Google Scholar]
  91. Morrissey D.V. Lockridge J.A. Shaw L. Blanchard K. Jensen K. Breen W. Hartsough K. Machemer L. Radka S. Jadhav V. Vaish N. Zinnen S. Vargeese C. Bowman K. Shaffer C.S. Jeffs L.B. Judge A. MacLachlan I. Polisky B. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 2005 23 8 1002 1007 10.1038/nbt1122 16041363
    [Google Scholar]
  92. Singh P. Singh A. Shah S. Vataliya J. Mittal A. Chitkara D. RNA interference nanotherapeutics for treatment of glioblastoma multiforme. Mol. Pharm. 2020 17 11 4040 4066 10.1021/acs.molpharmaceut.0c00709 32902291
    [Google Scholar]
  93. Alnefaie G.O. A review of the complex interplay between chemoresistance and lncRNAs in lung cancer. J. Transl. Med. 2024 22 1 1109 10.1186/s12967‑024‑05877‑2 39639388
    [Google Scholar]
  94. Burel S.A. Hart C.E. Cauntay P. Hsiao J. Machemer T. Katz M. Watt A. Bui H. Younis H. Sabripour M. Freier S.M. Hung G. Dan A. Prakash T.P. Seth P.P. Swayze E.E. Bennett C.F. Crooke S.T. Henry S.P. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res. 2016 44 5 2093 2109 10.1093/nar/gkv1210 26553810
    [Google Scholar]
  95. Shen W. De Hoyos C.L. Sun H. Vickers T.A. Liang X. Crooke S.T. Acute hepatotoxicity of 2′ fluoro-modified 5–10–5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 2018 46 5 2204 2217 10.1093/nar/gky060 29390093
    [Google Scholar]
  96. Chen C. Liu W.R. Zhang B. Zhang L.M. Li C.G. Liu C. Zhang H. Huo Y.S. Ma Y.C. Tian P.F. Qi Q. Li J.J. Tang Z. Zhang Z.F. Giaccone G. Yue D.S. Wang C.L. LncRNA H19 downregulation confers erlotinib resistance through upregulation of PKM2 and phosphorylation of AKT in EGFR-mutant lung cancers. Cancer Lett. 2020 486 58 70 10.1016/j.canlet.2020.05.009 32439420
    [Google Scholar]
  97. Senn J.J. Burel S. Henry S.P. Non-CpG-containing antisense 2′-methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll-like receptor 9 or myeloid differentiation factor 88. J. Pharmacol. Exp. Ther. 2005 314 3 972 979 10.1124/jpet.105.084004 15919763
    [Google Scholar]
  98. Shen W. Liang X. Sun H. Crooke S.T. 2′-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res. 2015 43 9 4569 4578 10.1093/nar/gkv298 25855809
    [Google Scholar]
  99. Zhen S. Li X. Application of crispr-cas9 for long noncoding RNA genes in cancer research. Hum. Gene Ther. 2019 30 1 3 9 10.1089/hum.2018.063 30045635
    [Google Scholar]
  100. Wang T. Yao Y. Hu X. Zhao Y. Message in hand: The application of CRISPRi, RNAi, and LncRNA in adenocarcinoma. Med. Oncol. 2022 39 10 148 10.1007/s12032‑022‑01727‑7 35834017
    [Google Scholar]
  101. Chen Y. Li Z. Chen X. Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B 2021 11 2 340 354 10.1016/j.apsb.2020.10.001 33643816
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575398488250831213920
Loading
/content/journals/mrmc/10.2174/0113895575398488250831213920
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: biomarker ; LncRNA ; therapeutic target ; Cancer ; oligonucleotides ; MSC-AS1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test