Mini Reviews in Medicinal Chemistry - Volume 25, Issue 20, 2025
Volume 25, Issue 20, 2025
-
-
The Role of 3D Printing in Revolutionizing Pharmaceuticals and Medicine
More LessAuthors: Reena Singh, Atif Khurshid Wani, Lukas Peter, Kristina Randlova, Jan Hruska, Chirag Chopra and Kamil KucaThree-dimensional (3D) printing is a transformative technology that has significantly influenced multiple sectors, including aviation, defence, architecture, and, more recently, healthcare and pharmaceuticals. Despite its growing adoption, there remain gaps in consolidated knowledge regarding its material versatility, regulatory considerations, and real-world implementation in clinical and pharmaceutical settings. Challenges related to biocompatibility, scalability, and the standardization of printed products hinder its full integration into medical practice. Addressing these issues requires a comprehensive understanding of the technological foundation, materials, and evolving applications of 3D printing in medicine. This review aims to provide an in-depth analysis of current advances, limitations, and prospects of 3D printing in healthcare. A systematic literature search was conducted using PubMed, Scopus, Web of Science, and Google Scholar databases, focusing on peer-reviewed articles published between 2010 and 2024. The review highlights key fabrication techniques, material innovations, clinical applications, and integration with emerging technologies, addressing critical challenges and opportunities for advancing personalized medicine.
-
-
-
Bruton’s Tyrosine Kinase Inhibitors: A Versatile Therapeutic Approach for Cancer, Autoimmune Disorders, GVHD and COVID-19
More LessAuthors: Swati Paliwal, Uma Agarwal and Rajiv Kumar TonkRecent trends have shown the development of various medicinally important compounds that specifically target B-cell receptor (BCR) pathways at various segments that have a major role in Bruton’s tyrosine kinase (BTK) receptor, which belongs to the family of kinases. These kinases are usually situated close to the cell membrane due to which they participate in upstream processing of BCR signalling. Various molecules have been potentialized to target these signalling pathways of these kinase receptors in order to achieve a pharmacological effect. Given the central role of BTK in immunity, BTK inhibition represents a promising therapeutic approach for the treatment of multiple diseases. BTK inhibitors work by regulating B-cell receptor signalling along with inflammatory pathways and immune cell interactions, offering more advanced treatment options compared to traditional therapies. In addition to BTK inhibitors, an extensive knowledge of the pharmacological mechanisms underlying the blockage of these receptors is necessary in order to more accurately forecast when and where a patient could need combination therapy or just one medication. Efforts have been made to facilitate translational discoveries, drug re-purposing concepts, and further development of precision medicine products. This thorough literature study has focused on studies published until June 2025.
-
-
-
Research Progress in Mutagenesis Techniques for Aspergillus fumigatus and the Biological Activities of Fumagillin
More LessAuthors: Songlin Fu, Pengfei Du and Zili FengAs the main fermentation product of Aspergillus fumigatus (A. fumigatus), fumagillin is directly related to the gene of A. fumigatus and exhibits a variety of biological activities. However, its clinical application is limited by low yield and toxicity. It is of great significance to improve the yield and safety of fumagillin using A. fumigatus. Currently, research on fumagillin at home and abroad primarily focuses on a single direction and lacks a systematic review of its biosynthesis, structure-activity relationship, and strain modification technology, as well as a comprehensive theoretical framework. This study systematically reviews the biosynthesis mechanism, activity characteristics, and targeted strain modification technology of fumagillin, providing theoretical support for breakthroughs in production, toxicity regulation, and clinical transformation of fumagillin.
-
-
-
The Art and Science of Antidiabetic Medications and Obesity Management
More LessAuthors: Shalini K. Sawhney, Anandi Kapri, Gaurav Chaudhary and Bhumika ChauhanGlucose control remains the primary target in the treatment of both Type 1 and Type 2 diabetes. Glycemia plays a major role in preventing both macrovascular and microvascular complications. Some diabetes medications can also affect body weight. This article describes the various categories of antidiabetic medications and their effects on weight and HbA1c (Hemoglobin A1c) levels in patients with Type 1 and Type 2 diabetes. The weight and glycemic control effects of antidiabetic drugs approved for the management of weight loss are also reviewed in this article. Several types of medications are available that work through different mechanisms to help lower blood glucose levels. The risk of weight gain or weight loss depends on both the medication used and lifestyle factors such as diet and exercise. A reduction in glycosuria is the primary reason for weight gain; however, reducing calorie intake can help minimize this effect. Nevertheless, due to limited access to adequate nutrition education, many people are unable to complement changes in medical therapy with necessary lifestyle adjustments. Some diabetes medications can cause weight loss by getting rid of extra glucose from the body or lowering the amount of glucose our liver makes. Some diabetes medications have little to no effect on weight for most people, and healthcare professionals sometimes refer to these as “weight-neutral” diabetes medications. Certain medications promote weight loss in addition to exerting extra-glycemic and extra-pancreatic effects, which positively impact cardiovascular risk by reducing both mortality and morbidity. Verification and further explanation of the actual mechanisms underlying the life-prolonging effects of these antidiabetic medications are still needed. Their effects on biomarkers that mimic calorie restriction in patients also require confirmation. Additional research should be conducted to clarify the details of lifespan extension. Furthermore, when herbs are administered alongside antidiabetic medicines, they may alter the pharmacokinetic and pharmacodynamic properties of the drugs, rendering them less effective or potentiating their activity and producing adverse effects.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month