Skip to content
2000
image of The Art and Science of Antidiabetic Medications and Obesity Management

Abstract

Glucose control remains the primary target in the treatment of both Type 1 and Type 2 diabetes. Glycemia plays a major role in preventing both macrovascular and microvascular complications. Some diabetes medications can also affect body weight. This article describes the various categories of antidiabetic medications and their effects on weight and HbA1c (Hemoglobin A1c) levels in patients with Type 1 and Type 2 diabetes. The weight and glycemic control effects of antidiabetic drugs approved for the management of weight loss are also reviewed in this article. Several types of medications are available that work through different mechanisms to help lower blood glucose levels. The risk of weight gain or weight loss depends on both the medication used and lifestyle factors such as diet and exercise. A reduction in glycosuria is the primary reason for weight gain; however, reducing calorie intake can help minimize this effect. Nevertheless, due to limited access to adequate nutrition education, many people are unable to complement changes in medical therapy with necessary lifestyle adjustments. Some diabetes medications can cause weight loss by getting rid of extra glucose from the body or lowering the amount of glucose our liver makes. Some diabetes medications have little to no effect on weight for most people, and healthcare professionals sometimes refer to these as “weight-neutral” diabetes medications. Certain medications promote weight loss in addition to exerting extra-glycemic and extra-pancreatic effects, which positively impact cardiovascular risk by reducing both mortality and morbidity. Verification and further explanation of the actual mechanisms underlying the life-prolonging effects of these antidiabetic medications are still needed. Their effects on biomarkers that mimic calorie restriction in patients also require confirmation. Additional research should be conducted to clarify the details of lifespan extension. Furthermore, when herbs are administered alongside antidiabetic medicines, they may alter the pharmacokinetic and pharmacodynamic properties of the drugs, rendering them less effective or potentiating their activity and producing adverse effects.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575413887251001111806
2025-10-16
2025-11-03
Loading full text...

Full text loading...

References

  1. Lazzaroni E. Ben Nasr M. Loretelli C. Pastore I. Plebani L. Lunati M.E. Vallone L. Bolla A.M. Rossi A. Montefusco L. Ippolito E. Berra C. D’Addio F. Zuccotti G.V. Fiorina P. Anti-diabetic drugs and weight loss in patients with type 2 Diabetes. Pharmacological Research 2021 171 105782 10.1016/j.phrs.2021.105782 34302978
    [Google Scholar]
  2. Zimmet P. Alberti K.G.M.M. Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001 414 6865 782 787 10.1038/414782a 11742409
    [Google Scholar]
  3. Bhupathiraju S.N. Hu F.B. Epidemiology of obesity and Diabetes and their cardiovascular complications. Circ. Res. 2016 118 11 1723 1735 10.1161/CIRCRESAHA.115.306825 27230638
    [Google Scholar]
  4. Karastergiou K. Mohamed-Ali V. The autocrine and paracrine roles of adipokines. Mol. Cell. Endocrinol. 2010 318 1-2 69 78 10.1016/j.mce.2009.11.011 19948207
    [Google Scholar]
  5. Ortega M.A. Fraile-Martínez O. Naya I. García-Honduvilla N. Álvarez-Mon M. Buján J. Asúnsolo Á. de la Torre B. Type 2 diabetes mellitus associated with obesity (diabesity). The central role of gut microbiota and its translational applications. Nutrients 2020 12 9 2749 10.3390/nu12092749
    [Google Scholar]
  6. Golay A. Metformin and body weight. Int. J. Obes. 2008 32 1 61 72 10.1038/sj.ijo.0803695 17653063
    [Google Scholar]
  7. Montefusco L. D’Addio F. Loretelli C. Ben Nasr M. Garziano M. Rossi A. Pastore I. Plebani L. Lunati M.E. Bolla A.M. Porta M.D. Piuri G. Rocchio F. Abdelsalam A. Assi E. Barichella M. Maestroni A. Usuelli V. Loreggian L. Muzio F. Zuccotti G.V. Cazzola R. Fiorina P. Anti-inflammatory effects of diet and caloric restriction in metabolic syndrome. J. Endocrinol. Invest. 2021 44 11 2407 2415 10.1007/s40618‑021‑01638‑y
    [Google Scholar]
  8. Wing R.R. Lang W. Wadden T.A. Safford M. Knowler W.C. Bertoni A.G. Hill J.O. Brancati F.L. Peters A. Wagenknecht L. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 Diabetes. Diabetes Care 2011 34 7 1481 1486.Look AHEAD Research Group. 10.2337/dc10‑2415 21593294
    [Google Scholar]
  9. Franz M.J. VanWormer J.J. Crain A.L. Boucher J.L. Histon T. Caplan W. Bowman J.D. Pronk N.P. Weight-loss outcomes: A systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 2007 107 10 1755 1767 10.1016/j.jada.2007.07.017 17904936
    [Google Scholar]
  10. Hollander P. Anti diabetes and anti-obesity medications: Effect on weight in people with diabetes. Diabetes Spectr. 2007 20 3 159 165 10.2337/diaspect.20.3.159
    [Google Scholar]
  11. Genuth S. Insights from the diabetes control and complications trial/epidemiology of diabetes interventions and complications study on the use of intensive glycemic treatment to reduce the risk of complications of type 1 diabetes. Endocr Pract, 2006 12, Suppl. 1 41 10.4158/EP.12.S1.34 16627378
    [Google Scholar]
  12. Rathsman B. Rosfors S. Sjöholm Å. Nyström T. Early signs of atherosclerosis are associated with insulin resistance in non-obese adolescent and young adults with type 1 diabetes. Cardiovasc. Diabetol. 2012 11 1 145 10.1186/1475‑2840‑11‑145 23185996
    [Google Scholar]
  13. Gordon J. Evans M. McEwan P. Bain S. Vora J. Evaluation of insulin use and value for money in type 2 diabetes in the United kingdom. Diabetes Ther. 2013 4 1 51 66 10.1007/s13300‑012‑0018‑3 23296753
    [Google Scholar]
  14. Alberti K.G.M.M. Zimmet P. Shaw J. Metabolic syndrome—a new world‐wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 2006 23 5 469 480 10.1111/j.1464‑5491.2006.01858.x 16681555
    [Google Scholar]
  15. Nathan D.M. Cleary P.A. Backlund J.Y. Genuth S.M. Lachin J.M. Orchard T.J. Raskin P. Zinman B. Intensive diabetes treatment and cardiovascular disease in patients with type 1 Diabetes. N. Engl. J. Med. 2005 353 25 2643 2653 10.1056/NEJMoa052187 16371630
    [Google Scholar]
  16. Nathan D.M. Buse J.B. Davidson M.B. Heine R.J. Holman R.R. Sherwin R. Zinman B. Management of hyperglycemia in type 2 Diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement from the American Diabetes Association and the European Association for the study of Diabetes. Diabetes Care 2006 29 8 1963 1972 10.2337/dc06‑9912 16873813
    [Google Scholar]
  17. Standards of medical care in diabetes--2007 Diabetes Care 2007 30, Suppl 1 S41. 10.2337/dc07‑S004 17192377
    [Google Scholar]
  18. Skyler J. Jovanovic L. Klioze S. Reis J. Duggan W. Sustained efficacy and tolerability of inhaled insulin (Exubera) therapy over 2-years: Patients with type 1 diabetes. Diabetologia 2006 49 1
    [Google Scholar]
  19. Rosenstock J. Klioze S. Foyt H. Ogawa M. St. Aubin L. Duggan W. nhaled human insulin (Exubera) therapy shows sustained efficacy and is well tolerated over a 2-year period in patients with type 2 diabetes (T2DM) Diabetes 2006 55, Suppl 1
    [Google Scholar]
  20. Rosenstock J. Hassman D.R. Madder R.D. Brazinsky S.A. Farrell J. Khutoryansky N. Hale P.M. Repaglinide versus nateglinide monotherapy: A randomized, multicenter study. Diabetes Care 2004 27 6 1265 1270 10.2337/diacare.27.6.1265 15161773
    [Google Scholar]
  21. Ahima R.S. Adipose tissue as an endocrine organ. Obesity 2006 14 S8 5 249S 10.1038/oby.2006.317 17021375
    [Google Scholar]
  22. Foretz M. Guigas B. Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 Diabetes mellitus. Nat. Rev. Endocrinol. 2019 15 10 569 589 10.1038/s41574‑019‑0242‑2 31439934
    [Google Scholar]
  23. Forslund K. Hildebrand F. Nielsen T. Falony G. Le Chatelier E. Sunagawa S. Prifti E. Vieira-Silva S. Gudmundsdottir V. Krogh Pedersen H. Arumugam M. Kristiansen K. Yvonne Voigt A. Vestergaard H. Hercog R. Igor Costea P. Roat Kultima J. Li J. Jørgensen T. Levenez F. Dore J. Bjørn Nielsen H. Brunak S. Raes J. Hansen T. Wang J. Dusko Ehrlich S. Bork P. Pedersen O. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015 528 7581 262 266 10.1038/nature15766 26633628
    [Google Scholar]
  24. Sun L. Xie C. Wang G. Wu Y. Wu Q. Wang X. Liu J. Deng Y. Xia J. Chen B. Zhang S. Yun C. Lian G. Zhang X. Zhang H. Bisson W.H. Shi J. Gao X. Ge P. Liu C. Krausz K.W. Nichols R.G. Cai J. Rimal B. Patterson A.D. Wang X. Gonzalez F.J. Jiang C. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 2018 24 12 1919 1929 10.1038/s41591‑018‑0222‑4 30397356
    [Google Scholar]
  25. Morita Y. Nogami M. Sakaguchi K. Okada Y. Hirota Y. Sugawara K. Tamori Y. Zeng F. Murakami T. Ogawa W. Enhanced release of glucose into the intraluminal space of the intestine associated with metformin treatment as revealed by [18F]Fluorodeoxyglucose PET-MRI. Diabetes Care 2020 43 8 1796 1802 10.2337/dc20‑0093 32493754
    [Google Scholar]
  26. Scarpello J.H.B. Howlett H.C.S. Metformin therapy and clinical uses. Diab. Vasc. Dis. Res. 2008 5 3 157 167 10.3132/dvdr.2008.027 18777488
    [Google Scholar]
  27. Yerevanian A. Soukas A.A. Metformin: Mechanisms in human obesity and weight loss. Curr. Obes. Rep. 2019 8 2 156 164 10.1007/s13679‑019‑00335‑3 30874963
    [Google Scholar]
  28. Islam H. Townsend L.K. McKie G.L. Medeiros P.J. Gurd B.J. Hazell T.J. Potential involvement of lactate and interleukin-6 in the appetite-regulatory hormonal response to an acute exercise bout. J. Appl. Physiol. 2017 123 3 614 623 10.1152/japplphysiol.00218.2017 28684587
    [Google Scholar]
  29. Napolitano A. Miller S. Nicholls A.W. Baker D. Van Horn S. Thomas E. Rajpal D. Spivak A. Brown J.R. Nunez D.J. Novel gut-based pharmacology of metformin in patients with type 2 Diabetes mellitus. PLoS One 2014 9 7 e100778 10.1371/journal.pone.0100778 24988476
    [Google Scholar]
  30. DeFronzo R.A. Buse J.B. Kim T. Burns C. Skare S. Baron A. Fineman M. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: Results from two randomised trials. Diabetologia 2016 59 8 1645 1654 10.1007/s00125‑016‑3992‑6 27216492
    [Google Scholar]
  31. Kuhre R.E. Wewer Albrechtsen N.J. Larsen O. Jepsen S.L. Balk-Møller E. Andersen D.B. Deacon C.F. Schoonjans K. Reimann F. Gribble F.M. Albrechtsen R. Hartmann B. Rosenkilde M.M. Holst J.J. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol. Metab. 2018 11 84 95 10.1016/j.molmet.2018.03.007 29656109
    [Google Scholar]
  32. Lewin A. Lipetz R. Wu J. Schwartz S. Comparison of extended-release metformin in combination with a sulfonylurea (glyburide) to sulfonylurea monotherapy in adult patients with type 2 Diabetes: A multicenter, double-blind, randomized, controlled, phase III study. Clin. Ther. 2007 29 5 844 855 10.1016/j.clinthera.2007.05.013 17697903
    [Google Scholar]
  33. Kahn S.E. Haffner S.M. Heise M.A. Herman W.H. Holman R.R. Jones N.P. Kravitz B.G. Lachin J.M. O’Neill M.C. Zinman B. Viberti G. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 2006 355 23 2427 2443 10.1056/NEJMoa066224 17145742
    [Google Scholar]
  34. Díez R. García J.J. Diez M.J. Sierra M. Sahagun A.M. Fernández N. Influence of Plantago ovata husk (dietary fiber) on the bioavailability and other pharmacokinetic parameters of metformin in Diabetic rabbits. BMC Complement. Altern. Med. 2017 17 1 298 10.1186/s12906‑017‑1809‑x 28592281
    [Google Scholar]
  35. Vellanki P. Bean R. Oyedokun F.A. Pasquel F.J. Smiley D. Farrokhi F. Newton C. Peng L. Umpierrez G.E. Randomized controlled trial of insulin fpageation for correction of bedtime hyperglycemia in hospitalized patients with type 2 diabetes. Diabetes Care 2015 38 4 568 574 10.2337/dc14‑1796 25665812
    [Google Scholar]
  36. Kvapil M. Swatko A. Hilberg C. Shestakova M. Biphasic insulin aspart 30 plus metformin: An effective combination in type 2 diabetes. Diabetes Obes. Metab. 2006 8 1 39 48 10.1111/j.1463‑1326.2005.00492.x 16367881
    [Google Scholar]
  37. Virtanen K.A. Hällsten K. Parkkola R. Janatuinen T. Lönnqvist F. Viljanen T. Rönnemaa T. Knuuti J. Huupponen R. Lönnroth P. Nuutila P. Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 Diabetic subjects. Diabetes 2003 52 2 283 290 10.2337/diabetes.52.2.283 12540598
    [Google Scholar]
  38. Nauck M.A. Meier J.J. Incretin hormones: Their role in health and disease. Pharmacol. Res. 2021 20 Suppl. 1 5 21 10.1111/dom.13129 29364588
    [Google Scholar]
  39. Rowlands J. Heng J. Newsholme P. Carlessi R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front. Endocrinol. 2018 9 672 10.3389/fendo.2018.00672 30532733
    [Google Scholar]
  40. Ratner R.E. Maggs D. Nielsen L.L. Stonehouse A.H. Poon T. Zhang B. Bicsak T.A. Brodows R.G. Kim D.D. Long‐term effects of exenatide therapy over 82 weeks on glycaemic control and weight in over‐weight metformin‐treated patients with type 2 Diabetes mellitus. Diabetes Obes. Metab. 2006 8 4 419 428 10.1111/j.1463‑1326.2006.00589.x 16776749
    [Google Scholar]
  41. Buse J.B. Henry R.R. Han J. Kim D.D. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfo nylurea-treated patients with type 2 diabetes. Diabetes Care 2004 27 2628 2635 10.2337/diacare.27.11.2628 15504997
    [Google Scholar]
  42. Kendall D.M. Riddle M.C. Rosenstock J. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonyl urea. Diabetes Care 2005 28 1083 1091 10.2337/diacare.28.5.1083 15855571
    [Google Scholar]
  43. Samms R.J. Coghlan M.P. Sloop K.W. How may GIP enhance the therapeutic efficacy of GLP-1? Trends Endocrinol. Metab. 2020 31 6 410 421 10.1016/j.tem.2020.02.006 32396843
    [Google Scholar]
  44. Mohammad S. Ramos L.S. Buck J. Levin L.R. Rubino F. McGraw T.E. Gastric inhibitory peptide controls adipose insulin sensitivity via activation of cAMP-response nlm-binding protein and p110β isoform of phosphatidylinositol 3-kinase. J. Biol. Chem. 2011 286 50 43062 43070 10.1074/jbc.M111.289009 22027830
    [Google Scholar]
  45. Engeli S. Jordan J. Novel metabolic drugs and blood pressure: Implications for the treatment of obese hypertensive patients? Curr. Hypertens. Rep. 2013 15 5 470 474 10.1007/s11906‑013‑0374‑z 23933756
    [Google Scholar]
  46. Ahmann A.J. Capehorn M. Charpentier G. Dotta F. Henkel E. Lingvay I. Holst A.G. Annett M.P. Aroda V.R. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): A 56-week, open-label, randomized clinical trial. Diabetes Care 2018 41 2 258 266 10.2337/dc17‑0417 29246950
    [Google Scholar]
  47. Wu P. Wen W. Li J. Xu J. Zhao M. Chen H. Sun J. Systematic review and meta- analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm. Metab. Res. 2019 51 8 487 494 10.1055/a‑0958‑2441 31408894
    [Google Scholar]
  48. Ferrannini E. Muscelli E. Frascerra S. Baldi S. Mari A. Heise T. Broedl U.C. Woerle H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 2014 124 2 499 508 10.1172/JCI72227 24463454
    [Google Scholar]
  49. Bolinder J. Ljunggren Ö. Johansson L. Wilding J. Langkilde A.M. Sjöström C.D. Sugg J. Parikh S. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes. Metab. 2014 16 2 159 169 10.1111/dom.12189 23906445
    [Google Scholar]
  50. Vasilakou D. Karagiannis T. Athanasiadou E. Mainou M. Liakos A. Bekiari E. Sarigianni M. Matthews D.R. Tsapas A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013 159 4 262 274 10.7326/0003‑4819‑159‑4‑201308200‑00007 24026259
    [Google Scholar]
  51. Stenlöf K. Cefalu W.T. Kim K.A. Alba M. Usiskin K. Tong C. Canovatchel W. Meininger G. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 Diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes. Metab. 2013 15 4 372 382 10.1111/dom.12054 23279307
    [Google Scholar]
  52. Neal B. Perkovic V. Mahaffey K.W. de Zeeuw D. Fulcher G. Erondu N. Shaw W. Law G. Desai M. Matthews D.R. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 2017 377 7 644 657 10.1056/NEJMoa1611925 28605608
    [Google Scholar]
  53. Rosenstock J. Aggarwal N. Polidori D. Zhao Y. Arbit D. Usiskin K. Capuano G. Canovatchel W. Canagliflozin D.I.A. Study G. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 2012 35 6 1232 1238 10.2337/dc11‑1926 22492586
    [Google Scholar]
  54. Ferrannini E. Ramos S.J. Salsali A. Tang W. List J.F. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: A randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010 33 10 2217 2224 10.2337/dc10‑0612 20566676
    [Google Scholar]
  55. Wiviott S.D. Raz I. Bonaca M.P. Mosenzon O. Kato E.T. Cahn A. Silverman M.G. Zelniker T.A. Kuder J.F. Murphy S.A. Bhatt D.L. Leiter L.A. McGuire D.K. Wilding J.P.H. Ruff C.T. Gause-Nilsson I.A.M. Fredriksson M. Johansson P.A. Langkilde A.M. Sabatine M.S. Dapagliflozin and cardiovascular outcomes in type 2 Diabetes. N. Engl. J. Med. 2019 380 4 347 357 10.1056/NEJMoa1812389 30415602
    [Google Scholar]
  56. Bailey C.J. Gross J.L. Hennicken D. Iqbal N. Mansfield T.A. List J.F. Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: A randomized, double-blind, placebo-controlled 102-week trial. BMC Med. 2013 11 1 43 10.1186/1741‑7015‑11‑43 23425012
    [Google Scholar]
  57. Nauck M.A. Del Prato S. Meier J.J. Durán-García S. Rohwedder K. Elze M. Parikh S.J. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 Diabetes who have inadequate glycemic control with metformin: A randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 2011 34 9 2015 2022 10.2337/dc11‑0606 21816980
    [Google Scholar]
  58. Häring H.U. Merker L. Seewaldt-Becker E. Weimer M. Meinicke T. Broedl U.C. Woerle H.J. Empagliflozin as add-on to metformin in patients with type 2 diabetes: A 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 2014 37 6 1650 1659 10.2337/dc13‑2105 24722494
    [Google Scholar]
  59. Kovacs C.S. Seshiah V. Swallow R. Jones R. Rattunde H. Woerle H.J. Broedl U.C. Empagliflozin improves glycaemic and weight control as add‐on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: A 24‐week, randomized, placebo‐controlled trial. Diabetes Obes. Metab. 2014 16 2 147 158 10.1111/dom.12188 23906415
    [Google Scholar]
  60. Rosenstock J. Frias J. Páll D. Charbonnel B. Pascu R. Saur D. Darekar A. Huyck S. Shi H. Lauring B. Terra S.G. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes. Metab. 2018 20 3 520 529 10.1111/dom.13103 28857451
    [Google Scholar]
  61. Dagogo-Jack S. Liu J. Eldor R. Amorin G. Johnson J. Hille D. Liao Y. Huyck S. Golm G. Terra S.G. Mancuso J.P. Engel S.S. Lauring B. Efficacy and safety of the addition of ertugliflozin in patients with type 2 Diabetes mellitus inadequately controlled with metformin and sitagliptin: The VERTIS SITA2 placebo‐controlled randomized study. Diabetes Obes. Metab. 2018 20 3 530 540 10.1111/dom.13116 28921862
    [Google Scholar]
  62. Pratley R.E. Eldor R. Raji A. Golm G. Huyck S.B. Qiu Y. Sunga S. Johnson J. Terra S.G. Mancuso J.P. Engel S.S. Lauring B. Ertugliflozin plus sitagliptin versus either individual agent over 52 weeks in patients with type 2 Diabetes mellitus inadequately controlled with metformin: The VERTIS FACTORIAL randomized trial. Diabetes Obes. Metab. 2018 20 5 1111 1120 10.1111/dom.13194 29266675
    [Google Scholar]
  63. Bolinder J. Ljunggren Ö. Kullberg J. Johansson L. Wilding J. Langkilde A.M. Sugg J. Parikh S. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J. Clin. Endocrinol. Metab. 2012 97 3 1020 1031 10.1210/jc.2011‑2260 22238392
    [Google Scholar]
  64. Berhan A. Barker A. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: A meta-analysis of randomized double-blind controlled trials. BMC Endocr. Disord. 2013 13 1 58 10.1186/1472‑6823‑13‑58 24341330
    [Google Scholar]
  65. Yang X.P. Lai D. Zhong X.Y. Shen H.P. Huang Y.L. Efficacy and safety of canagliflozin in subjects with type 2 diabetes: Systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2014 70 10 1149 1158 10.1007/s00228‑014‑1730‑x 25124541
    [Google Scholar]
  66. Thomas M.C. Cherney D.Z.I. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 2018 61 10 2098 2107 10.1007/s00125‑018‑4669‑0 30132034
    [Google Scholar]
  67. Kosiborod M. Lam C.S.P. Kohsaka S. Kim D.J. Karasik A. Shaw J. Tangri N. Goh S.Y. Thuresson M. Chen H. Surmont F. Hammar N. Fenici P. Kosiborod M. Cavender M.A. Fu A.Z. Wilding J.P. Khunti K. Norhammar A. Birkeland K. Jørgensen M.E. Holl R.W. Lam C.S.P. Gulseth H.L. Carstensen B. Bollow E. Franch-Nadal J. García Rodríguez L.A. Karasik A. Tangri N. Kohsaka S. Kim D.J. Shaw J. Arnold S. Goh S-Y. Hammar N. Fenici P. Bodegård J. Chen H. Surmont F. Nahrebne K. Blak B.T. Wittbrodt E.T. Saathoff M. Noguchi Y. Tan D. Williams M. Lee H.W. Greenbloom M. Kaidanovich-Beilin O. Yeo K.K. Bee Y.M. Khoo J. Koong A. Lau Y.H. Gao F. Tan W.B. Kadir H.A. Ha K.H. Lee J. Chodick G. Melzer Cohen C. Whitlock R. Cea Soriano L. Fernándex Cantero O. Riehle E. Ilomaki J. Magliano D. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs. J. Am. Coll. Cardiol. 2018 71 23 2628 2639 10.1016/j.jacc.2018.03.009 29540325
    [Google Scholar]
  68. Zelniker T.A. Wiviott S.D. Raz I. Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Sabatine, M.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019 393 10166 31 39 10.1016/S0140‑6736(18)32590‑X 30424892
    [Google Scholar]
  69. Gingell J.J. Burns E.R. Hay D.L. Activity of pramlintide, rat and human amylin but not Aβ1-42 at human amylin receptors. Endocrinology 2014 155 1 21 26 10.1210/en.2013‑1658 24169554
    [Google Scholar]
  70. Wielinga P.Y. Löwenstein C. Muff S. Munz M. Woods S.C. Lutz T.A. Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol. Behav. 2010 101 1 45 52 10.1016/j.physbeh.2010.04.012 20416330
    [Google Scholar]
  71. Hollander P.A. Levy P. Fineman M.S. Maggs D.G. Shen L.Z. Strobel S.A. Weyer C. Kolterman O.G. Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: A 1-year randomized controlled trial. Diabetes Care 2003 26 3 784 790 10.2337/diacare.26.3.784 12610038
    [Google Scholar]
  72. Hollander P. Maggs D.G. Ruggles J.A. Fineman M. Shen L. Kolterman O.G. Weyer C. Effect of pramlintide on weight in overweight and obese insulin-treated type 2 Diabetes patients. Obes. Res. 2004 12 661 668 10.1038/oby.2004.76 15090634
    [Google Scholar]
  73. Ratner R.E. Dickey R. Fineman M. Maggs D.G. Shen L. Strobel S.A. Weyer C. Kolterman O.G. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long‐term glycaemic and weight control in Type 1 diabetes mellitus: A 1‐year, randomized controlled trial. Diabet. Med. 2004 21 11 1204 1212 10.1111/j.1464‑5491.2004.01319.x 15498087
    [Google Scholar]
  74. Rosak C. Mertes G. Critical evaluation of the role of acarbose in the treatment of diabetes: Patient considerations. Diabetes Metab. Syndr. Obes. 2012 5 357 367 10.2147/DMSO.S28340 23093911
    [Google Scholar]
  75. Wesling M. D’Souza J. J. Diabetes: How to manage overweight and obesity in type 2 Diabetes mellitus. Drugs Context 2022 11 2021 11 17 10.7573/dic.2021‑11‑7
    [Google Scholar]
  76. Hwang J.Y. Zhang J. Kang M.J. Lee S.K. Kim H.A. Kim J.J. Kim J.I. Hypoglycemic and hypolipidemic effects of Saururus chinensis Baill in streptozotocin-induced diabetic rats. Nutr. Res. Pract. 2007 1 2 100 104 10.4162/nrp.2007.1.2.100 20535394
    [Google Scholar]
  77. Chiasson J.L. Josse R.G. Gomis R. Hanefeld M. Karasik A. Laakso M. Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomised trial. Lancet 2002 359 9323 2072 2077 10.1016/S0140‑6736(02)08905‑5 12086760
    [Google Scholar]
  78. Douek I.F. Allen S.E. Ewings P. Gale E.A.M. Bingley P.J. Continuing metformin when starting insulin in patients with Type 2 diabetes: A double‐blind randomized placebo‐controlled trial. Diabet. Med. 2005 22 5 634 640 10.1111/j.1464‑5491.2005.01475.x 15842521
    [Google Scholar]
  79. Drucker D.J. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 2003 26 10 2929 2940 10.2337/diacare.26.10.2929 14514604
    [Google Scholar]
  80. Ahrén B. Landin-Olsson M. Jansson P.A. Svensson M. Holmes D. Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J. Clin. Endocrinol. Metab. 2004 89 5 2078 2084 10.1210/jc.2003‑031907 15126524
    [Google Scholar]
  81. Scott R. Wu M. Sanchez M. Stein P. Efficacy and tolerability of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy over 12 weeks in patients with type 2 Diabetes. Int. J. Clin. Pract. 2007 61 1 171 180 10.1111/j.1742‑1241.2006.01246.x 17156104
    [Google Scholar]
  82. Aschner P. Kipnes M.S. Lunceford J.K. Sanchez M. Mickel C. Williams-Herman D.E. Effect of the dipeptidyl peptidase-4 inhibitor si tagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 2006 29 2632 2637 10.2337/dc06‑0703 17130196
    [Google Scholar]
  83. Patel D.K. Prasad S.K. Kumar R. Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012 2 4 320 330 10.1016/S2221‑1691(12)60032‑X 23569923
    [Google Scholar]
  84. Okoli C.O. Obidike I.C. Ezike A.C. Akah P.A. Salawu O.A. Studies on the possible mechanisms of antidiabetic activity of extract of aerial parts of Phyllanthus niruri. Pharm. Biol. 2011 49 3 248 255 10.3109/13880209.2010.501456 21323477
    [Google Scholar]
  85. Hong S.H. Heo J.I. Kim J.H. Kwon S.O. Yeo K.M. Bakowska-Barczak A.M. Kolodziejczyk P. Ryu O.H. Choi M.K. Kang Y.H. Lim S.S. Suh H.W. Huh S.O. Lee J.Y. Antidiabetic and Beta cell-protection activities of purple corn anthocyanins. Biomol. Ther. 2013 21 4 284 289 10.4062/biomolther.2013.016 24244813
    [Google Scholar]
  86. Nduka S.O. Daniel A.L. Ilodigwe E.E. Adimorah U. Mbagwu S.I. Pharmacodynamic herb-drug interactions: The effects of Azadirachta indica leaf extracts on two commonly used second generation sulfonylu reas. World J. Pharm. Sci. 2015 4 7 1702 1711
    [Google Scholar]
  87. Poonam T. Prakash G.P. Kumar L.V. Influence of Allium sativum extract on the hypoglycemic activity of glibenclamide: An approach to possible herb-drug interaction dmdi 2013 8 4 225 230 10.1515/dmdi‑2013‑0031 24114899
    [Google Scholar]
  88. Al-Omari I. Afifi F. Salha A. Therapeutic effect and possible herb drug interactions of ginger (Zingiber officinale Roscoe, Zingiberaceae) crude extract with glibenclamide and insulin. Pharmacogn. Commun. 2012 2 1 12 20 10.5530/pc.2012.1.4
    [Google Scholar]
  89. Fakeye T.O. Oladipupo T. Showande O. Ogunremi Y. Effects of coadministration of extract of Carica papaya Linn (family cariaceae) on activity of two oral hypoglycemic agents on activity of two oral hypoglycemic agents. Trop. J. Pharm. Res. 2007 6 1 671 678 10.4314/tjpr.v6i1.14645
    [Google Scholar]
  90. Idakwoji P.A. Salawu O.A. Maiha B.B. Obidike I. Tijani A.Y. Co-administeration of ethanolic leaf extract of Moringa oleifera and metformin improves glucose, lipid and protein profiles of diabetic wistar rats. Biokemistri 2015 27 3 123 138
    [Google Scholar]
  91. Michael U.A. David B.U. Theophine C.O. Philip F.U. Ogochukwu A.M. Benson V.A. Antidiabetic effect of combined aqueous leaf extract of vernonia amygdalina and metformin in rats. J. Basic Clin. Pharm. 2010 1 3 197 202 24825988
    [Google Scholar]
  92. Aluefua O.F. Chika A. Muhammad A.A. Usman A. Interactions between herbs and antidiabetic drugs: A systematic review. J. Pharmacol. 2017 11 5-6 6 17 10.3923/rjpharm.2017.6.17
    [Google Scholar]
  93. Charbonnel B. Karasik A. Liu J. Wu M. Meininger G. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care 2006 29 12 2638 2643.Sitagliptin Study 020 Group 10.2337/dc06‑0706 17130197
    [Google Scholar]
  94. Nuffer W.A. Trujillo J.M. Liraglutide: A new option for the treatment of obesity. Pharmacotherapy 2015 35 10 926 934 10.1002/phar.1639 26497479
    [Google Scholar]
  95. Frias J.P. Nauck M.A. Van J. Kutner M.E. Cui X. Benson C. Urva S. Gimeno R.E. Milicevic Z. Robins D. Haupt A. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018 392 10160 2180 2193 10.1016/S0140‑6736(18)32260‑8 30293770
    [Google Scholar]
  96. Berra C. Manfrini R. Regazzoli D. Radaelli M.G. Disoteo O. Sommese C. Fiorina P. Ambrosio G. Folli F. Blood pressure control in type 2 diabetes mellitus with arterial hypertension. The important ancillary role of SGLT2-inhibitors and GLP1-receptor agonists. Pharmacol. Res. 2020 160 105052 10.1016/j.phrs.2020.105052 32650058
    [Google Scholar]
  97. Shintani H. Shintani T. Effects of antidiabetic drugs that cause glucose excretion directly from the body on mortality. Medicine in Drug Discovery 2020 8 100062 100066 10.1016/j.medidd.2020.100062
    [Google Scholar]
  98. Brantley S.J. Argikar A.A. Lin Y.S. Nagar S. Paine M.F. Herb-drug interactions: Challenges and opportunities for improved predictions. Drug Metab. Dispos. 2014 42 3 301 317 10.1124/dmd.113.055236 24335390
    [Google Scholar]
  99. Neergheen-Bhujun V.S. Underestimating the toxicological challenges associated with the use of herbal medicinal products in developing countries. Biomed. Res. Int 2012 2013 804086 10.1155/2013/804086
    [Google Scholar]
  100. Jyothi M. Joyl G. Kumar A. Naveen K. A review on herbal drug interactions. Int. J. Pharmacy 2011 1 18 31
    [Google Scholar]
  101. Lu WI Lu DP mpact of chinese herbal medicine on American society and health care system: Perspective and concern. Evid Based Comple ment Altern Med eCAM 2014 2014 251891 10.1155/2014/251891
    [Google Scholar]
  102. Bensoussan A. Lee S. Murray C. Bourchier S. van der Kooy F. Pearson J.L. Liu J. Chang D. Khoo C.S. Choosing chemical markers for quality assurance of complex herbal medicines: Development and application of the herb MaRS criteria. Clin. Pharmacol. Ther. 2015 97 6 628 640 10.1002/cpt.100 25704128
    [Google Scholar]
  103. Ip S.P. Zhao M. Xian Y. Chen M. Zong Y. Tjong Y.W. Tsai S.H. Sung J.J.Y. Bensoussan A. Berman B. Fong H.H.S. Che C.T. Quality assurance for Chinese herbal formulae: Standardization of IBS-20, a 20-herb preparation. Chin. Med. 2010 5 1 8 10.1186/1749‑8546‑5‑8 20175906
    [Google Scholar]
  104. Arun R. Sravya S. Roja C. A review on standardisation of herbal formula tion. Int. J. Phytother 2012 2 2012 74 88
    [Google Scholar]
  105. Shinde V.M. Dhalwal K. Potdar M. Mahadik K.R. Kakasaheb R. Mahadik I. Application of quality control principles to herbal drugs. Int. J. Phytomed. 2009 1 1 4 8 10.5138/ijpm.2009.0975.0185.05786
    [Google Scholar]
  106. Kalyankar T.M. Wadherl S.J. Dangel S.S. Attar M.S. Pattewar A.M. Analysis of herbal drugs: A review. Asian J. Med. and Analt. Chem. 2014 01 2014 12 20
    [Google Scholar]
  107. Flower A. Witt C. Liu J. Ulrich-Merzenich G. Muir K. Yu H. Prude M. Lewith G. GP-TCM Unabridged guidelines for randomised controlled trials investigating Chinese herbal medicine (CHM). Eur. J. Integr. Med. 2014 6 2 186 210 10.1016/j.eujim.2013.07.011
    [Google Scholar]
  108. Chavez M.L. Jordan M.A. Chavez P.I. Evidence-based drug–herbal interactions. Life Sci. 2006 78 18 2146 2157 10.1016/j.lfs.2005.12.009 16427091
    [Google Scholar]
  109. Del Prete A Scalera A Iadevaia MD Miranda A Zulli C Gaeta L Tuccillo C Federico A Loguercio, C Herbal products: Benefits, limits, and appli cations in chronic liver disease Evid Based Complement Altern Med. eCAM 2012 2012 837939 10.1155/2012/837939
    [Google Scholar]
  110. Ge B Zhang Z Zuo Z Updates on the clinical evidenced herb warfarin interactions. Evid Based Complement Altern Med. eCAM 2014 2014 957362 10.1155/2014/957362
    [Google Scholar]
  111. Hussain M.S. Patient counseling about herbal-drug interactions. Afr. J. Tradit. Complement. Altern. Med. 2011 8 5 Suppl. 152 163 10.4314/ajtcam.v8i5S.8 22754069
    [Google Scholar]
  112. Yaheya M. Ismail M. Herb–drug interactions and patient counselling. Int. J. Pharm. Pharm. Sci. 2009 1 151 161
    [Google Scholar]
  113. Al-Ramahi R. Jaradat N. Shalalfeh R. Nasir S. Manasra Y. Shalalfeh I. Esam Y. Evaluation of potential drug- herb interactions among a group of Palestinian patients with chronic diseases. BMC Complement. Altern. Med. 2015 15 1 221 10.1186/s12906‑015‑0764‑7 26162600
    [Google Scholar]
  114. Al-Arifi M.N. Availability and needs of herbal medicinal information resources at community pharmacy, Riyadh region, Saudi Arabia. Saudi Pharm. J. 2013 21 4 351 360 10.1016/j.jsps.2012.11.004 24227954
    [Google Scholar]
  115. Gupta R.C. Chang D. Nammi S. Bensoussan A. Bilinski K. Roufogalis B.D. Interactions between antidiabetic drugs and herbs: An overview of mechanisms of action and clinical implications. Diabetol. Metab. Syndr. 2017 9 1 59 10.1186/s13098‑017‑0254‑9 28770011
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575413887251001111806
Loading
/content/journals/mrmc/10.2174/0113895575413887251001111806
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Glycemia ; glycosuria ; morbidity ; antidiabetic drugs insulin ; mortality
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test