Skip to content
2000
image of The Role of 3D Printing in Revolutionizing Pharmaceuticals and Medicine

Abstract

Three-dimensional (3D) printing is a transformative technology that has significantly influenced multiple sectors, including aviation, defence, architecture, and, more recently, healthcare and pharmaceuticals. Despite its growing adoption, there remain gaps in consolidated knowledge regarding its material versatility, regulatory considerations, and real-world implementation in clinical and pharmaceutical settings. Challenges related to biocompatibility, scalability, and the standardization of printed products hinder its full integration into medical practice. Addressing these issues requires a comprehensive understanding of the technological foundation, materials, and evolving applications of 3D printing in medicine. This review aims to provide an in-depth analysis of current advances, limitations, and prospects of 3D printing in healthcare. A systematic literature search was conducted using PubMed, Scopus, Web of Science, and Google Scholar databases, focusing on peer-reviewed articles published between 2010 and 2024. The review highlights key fabrication techniques, material innovations, clinical applications, and integration with emerging technologies, addressing critical challenges and opportunities for advancing personalized medicine.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575381660250930170819
2025-10-16
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/mrmc/10.2174/0113895575381660250930170819/BMS-MRMC-2024-466.html?itemId=/content/journals/mrmc/10.2174/0113895575381660250930170819&mimeType=html&fmt=ahah

References

  1. Trenfield S.J. Awad A. Goyanes A. Gaisford S. Basit A.W. 3D printing pharmaceuticals: Drug development to frontline care. Trends Pharmacol. Sci. 2018 39 5 440 451 10.1016/j.tips.2018.02.006 29534837
    [Google Scholar]
  2. Javaid M. Haleem A. Singh R.P. Suman R. 3D printing applications for healthcare research and development. Glob. Health J. 2022 6 4 217 226 10.1016/j.glohj.2022.11.001
    [Google Scholar]
  3. Senbekov M. Saliev T. Bukeyeva Z. Almabayeva A. Zhanaliyeva M. Aitenova N. Toishibekov Y. Fakhradiyev I. The recent progress and applications of digital technologies in healthcare: A review. Int. J. Telemed. Appl. 2020 2020 8830200 10.1155/2020/8830200 33343657
    [Google Scholar]
  4. Prendergast M.E. Burdick J.A. Recent advances in enabling technologies in 3D printing for precision medicine. Adv. Mater. 2020 32 13 1902516 10.1002/adma.201902516 31512289
    [Google Scholar]
  5. Li N. Khan S.B. Chen S. Aiyiti W. Zhou J. Lu B. Promising new horizons in medicine: Medical advancements with nanocomposite manufacturing via 3D printing. Polymers 2023 15 20 4122 10.3390/polym15204122 37896366
    [Google Scholar]
  6. Cheng Q.J. Grand challenges and perspectives in biomedical analysis and diagnostics. Front. Anal. Sci. 2021 1 700386 10.3389/frans.2021.700386
    [Google Scholar]
  7. Ghosh U. Ning S. Wang Y. Kong Y.L. Addressing unmet clinical needs with 3D printing technologies. Adv. Healthc. Mater. 2018 7 17 1800417 10.1002/adhm.201800417 30004185
    [Google Scholar]
  8. Kalaskar D.M. 3D Printing in Medicine. Woodhead Publishing 2022
    [Google Scholar]
  9. Ramaraju H. Akman R.E. Safranski D.L. Hollister S.J. Designing biodegradable shape memory polymers for tissue repair. Adv. Funct. Mater. 2020 30 44 2002014 10.1002/adfm.202002014
    [Google Scholar]
  10. Shidid D.P. Design and manufacture of patient specific orthopaedic implants using selective laser melting (SLM) technology.. Doctoral Philosphy, school of aerospace mechanical and manufacturing engineering college of science engineering and health RMIT university 2016
  11. Abdollahiyan P. Oroojalian F. Mokhtarzadeh A. de la Guardia M. Hydrogel‐based 3d bioprinting for bone and cartilage tissue engineering. Biotechnol. J. 2020 15 12 2000095 10.1002/biot.202000095 32869529
    [Google Scholar]
  12. Fatimi A. Okoro O.V. Podstawczyk D. Siminska-Stanny J. Shavandi A. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: A review. Gels 2022 8 3 179 10.3390/gels8030179 35323292
    [Google Scholar]
  13. Wang Y. Li J. Li Y. Yang B. Biomimetic bioinks of nanofibrillar polymeric hydrogels for 3D bioprinting. Nano Today 2021 39 101180 10.1016/j.nantod.2021.101180
    [Google Scholar]
  14. Zub K. Hoeppener S. Schubert U.S. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv. Mater. 2022 34 31 2105015 10.1002/adma.202105015 35338719
    [Google Scholar]
  15. Pugliese L. Marconi S. Negrello E. Mauri V. Peri A. Gallo V. Auricchio F. Pietrabissa A. The clinical use of 3D printing in surgery. Updates Surg. 2018 70 3 381 388 10.1007/s13304‑018‑0586‑5 30167991
    [Google Scholar]
  16. Alzoubi L. Aljabali A.A.A. Tambuwala M.M. Empowering precision medicine: The impact of 3D printing on personalized therapeutic. AAPS PharmSciTech 2023 24 8 228 10.1208/s12249‑023‑02682‑w 37964180
    [Google Scholar]
  17. Karakurt I. Lin L. 3D printing technologies: Techniques, materials, and post-processing. Curr. Opin. Chem. Eng. 2020 28 134 143 10.1016/j.coche.2020.04.001
    [Google Scholar]
  18. Bozkurt Y. Karayel E. 3D printing technology; methods, biomedical applications, future opportunities and trends. J. Mater. Res. Technol. 2021 14 1430 1450 10.1016/j.jmrt.2021.07.050
    [Google Scholar]
  19. Akhtar N. Wani A.K. Jan M. Sinha S. Devkota H.P. Li Z. Amin-Ul Mannan M. Prakash A. Lactoferrin and activated protein C: Potential role in prevention of cancer progression and recurrence. Int. J. Mol. Cell. Med. 2023 12 1 86 99 10.22088/IJMCM.BUMS.12.1.86 37942258
    [Google Scholar]
  20. El-Zahaby S.A. Kaur L. Sharma A. Prasad A.G. Wani A.K. Singh R. Zakaria M.Y. Lipoplexes’ structure, preparation, and role in managing different diseases. AAPS PharmSciTech 2024 25 5 131 10.1208/s12249‑024‑02850‑6 38849687
    [Google Scholar]
  21. Mishra A. Srivastava V. Biomaterials and 3D printing techniques used in the medical field. J. Med. Eng. Technol. 2021 45 4 290 302 10.1080/03091902.2021.1893845 33929285
    [Google Scholar]
  22. Fan D. Li Y. Wang X. Zhu T. Wang Q. Cai H. Li W. Tian Y. Liu Z. Progressive 3D printing technology and its application in medical materials. Front. Pharmacol. 2020 11 122 10.3389/fphar.2020.00122 32265689
    [Google Scholar]
  23. Saha R. Sarkar M. Choudhury S.S. Kumar H. Bhatt G. Bhattacharya S. Evolution of 3D printing technology in fabrication of microfluidic devices and biological applications: A comprehensive review. J. Micromanufacturing 2024 7 1 110 140 10.1177/25165984241237357
    [Google Scholar]
  24. Shaikh S. History and evolution of 3D printing. In: 3D Printing in Prosthetics and Orthotics Biomedical Materials for Multi-functional Applications. Singapore Springer 2024 10.1007/978‑981‑97‑4913‑3_1
    [Google Scholar]
  25. Liaw C.Y. Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication 2017 9 2 024102 10.1088/1758‑5090/aa7279 28589921
    [Google Scholar]
  26. Becconi M. De Zio S. Falciani F. Santamaria M. Malferrari M. Rapino S. Nano-electrochemical characterization of a 3D bioprinted cervical tumor model. Cancers 2023 15 4 1327 10.3390/cancers15041327 36831668
    [Google Scholar]
  27. Sawhney G. Bhardwaj A.R. Sanu K. Bhattacharya D. Singh M. Dhanjal D.S. Ayub A. Wani A.K. Suman S. Singh R. Chopra C. Chapter 20 -Nanotechnology at the forefront of liver cancer diagnosis. In:Nanophototherapy. Chapter 20 Manivasagan P. Venkatesan J. Jang E.S. Elsevier 2025 575 593 10.1016/B978‑0‑443‑13937‑6.00004‑4
    [Google Scholar]
  28. Wani A.K. Singh R. Akhtar N. Prakash A. Nepovimova E. Oleksak P. Chrienova Z. Alomar S. Chopra C. Kuca K. Targeted inhibition of the PI3K/Akt/mTOR signaling axis: Potential for sarcoma therapy. Mini Rev. Med. Chem. 2024 24 16 1496 1520 10.2174/0113895575270904231129062137 38265369
    [Google Scholar]
  29. Srinivasan D. Meignanamoorthy M. Ravichandran M. Mohanavel V. Alagarsamy S.V. Chanakyan C. Sakthivelu S. Karthick A. Prabhu T.R. Rajkumar S. 3D printing manufacturing techniques, materials, and applications: An overview. Adv. Mater. Sci. Eng. 2021 2021 1 5756563 10.1155/2021/5756563
    [Google Scholar]
  30. Aimar A. Palermo A. Innocenti B. 3D printing in medicine. Woodhead 2019
    [Google Scholar]
  31. Müller-Heupt L.K. Wiesmann-Imilowski N. Schröder S. Groß J. Ziskoven P.C. Bani P. Kämmerer P.W. Schiegnitz E. Eckelt A. Eckelt J. Ritz U. Opatz T. Al-Nawas B. Synatschke C.V. Deschner J. Oxygen-releasing hyaluronic acid-based dispersion with controlled oxygen delivery for enhanced periodontal tissue engineering. Int. J. Mol. Sci. 2023 24 6 5936 10.3390/ijms24065936 36983008
    [Google Scholar]
  32. Espinoza S.M. Patil H.I. San Martin-Martinez E. Pimentel R.C. Ige P.P. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. Int. J. Polym. Mater. Polym. Biomater, 2019 69 2 85 126 10.1080/00914037.2018.1539990
    [Google Scholar]
  33. Kirillova A. Yeazel T.R. Asheghali D. Petersen S.R. Dort S. Gall K. Becker M.L. Fabrication of biomedical scaffolds using biodegradable polymers. Chem. Rev. 2021 121 18 11238 11304 10.1021/acs.chemrev.0c01200 33856196
    [Google Scholar]
  34. Bajpai P. Bajpai M. Development of a high performance hybrid epoxy silicone resin for coatings. Pigm. Resin Technol. 2010 39 2 96 100 10.1108/03699421011028680
    [Google Scholar]
  35. Haleem A. Javaid M. 3D scanning applications in medical field: A literature-based review. Clin. Epidemiol. Glob. Health 2019 7 2 199 210 10.1016/j.cegh.2018.05.006
    [Google Scholar]
  36. Jin Y. Li X. Campbell R.I. Ji S. Visualizing the hotspots and emerging trends of 3D printing through scientometrics. Rapid Prototyping J. 2018 24 5 801 812 10.1108/RPJ‑05‑2017‑0100
    [Google Scholar]
  37. Paul S.C. van Zijl G.P.A.G. Tan M.J. Gibson I. A review of 3D concrete printing systems and materials properties: Current status and future research prospects. Rapid Prototyping J. 2018 24 4 784 798 10.1108/RPJ‑09‑2016‑0154
    [Google Scholar]
  38. Ryder G. Ion B. Green G. Harrison D. Wood B. Wood B. Rapid design and manufacture tools in architecture. Autom. Construct. 2002 11 3 279 290 10.1016/S0926‑5805(00)00111‑4
    [Google Scholar]
  39. Dwivedi G. Srivastava S.K. Srivastava R.K. Analysis of barriers to implement additive manufacturing technology in the indian automotive sector. Int. J. Phys. Distrib. Logist. Manag. 2017 47 10 972 991 10.1108/IJPDLM‑07‑2017‑0222
    [Google Scholar]
  40. Buswell R.A. Soar R.C. Gibb A.G.F. Thorpe A. Freeform construction: Mega-scale rapid manufacturing for construction. Autom. Construct. 2007 16 2 224 231 10.1016/j.autcon.2006.05.002
    [Google Scholar]
  41. Koyratty B.N.S. Aumjaud B. Amnee Neeliah S. Food additive control: A survey among selected consumers and manufacturers. Br. Food J. 2014 116 2 353 372 10.1108/BFJ‑05‑2012‑0125
    [Google Scholar]
  42. Liu F. Xie S. Wang Y. Yu J. Meng Q. Preparation of the polymerizable titania oriented to 3D printing and the laser-induced crystallization. Rapid Prototyping J. 2018 24 9 1421 1427 10.1108/RPJ‑03‑2017‑0041
    [Google Scholar]
  43. Skawiński I. Goetzendorf-Grabowski T. FDM 3D printing method utility assessment in small RC aircraft design. Aircr. Eng. Aerosp. Technol. 2019 91 6 865 872 10.1108/AEAT‑07‑2018‑0189
    [Google Scholar]
  44. Nsengimana J. Van der Walt J. Pei E. Miah M. Effect of post-processing on the dimensional accuracy of small plastic additive manufactured parts. Rapid Prototyping J. 2019 25 1 1 12 10.1108/RPJ‑09‑2016‑0153
    [Google Scholar]
  45. Tiwari S.K. Pande S. Agrawal S. Bobade S.M. Selection of selective laser sintering materials for different applications. Rapid Prototyping J. 2015 21 6 630 648 10.1108/RPJ‑03‑2013‑0027
    [Google Scholar]
  46. Awasthi S. Verma T. Agarwal M. Singh J.V. Srivastava N.M. Nichter M. Developing effective health communication messages for community acquired pneumonia in children under five years of age: A rural North Indian qualitative study. Clin. Epidemiol. Glob. Health 2017 5 3 107 116 10.1016/j.cegh.2017.01.001
    [Google Scholar]
  47. Bistolfi A. Giustra F. Bosco F. Sabatini L. Aprato A. Bracco P. Bellare A. Ultra-high molecular weight polyethylene (UHMWPE) for hip and knee arthroplasty: The present and the future. J. Orthop. 2021 25 98 106 10.1016/j.jor.2021.04.004 33994706
    [Google Scholar]
  48. Pei E. Shen J. Watling J. Direct 3D printing of polymers onto textiles: Experimental studies and applications. Rapid Prototyping J. 2015 21 5 556 571 10.1108/RPJ‑09‑2014‑0126
    [Google Scholar]
  49. Sayed S. Gamil M. Fath El-Bab A. Nakamura K. Tsuchiya T. Tabata O. Abd El-Moneim A. Graphene film development on flexible substrate using a new technique: Temperature dependency of gauge factor for graphene-based strain sensors. Sens. Rev. 2016 36 2 140 147 10.1108/SR‑07‑2015‑0114
    [Google Scholar]
  50. Drummer D. Cifuentes-Cuéllar S. Rietzel D. Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyping J. 2012 18 6 500 507 10.1108/13552541211272045
    [Google Scholar]
  51. Grasso M. Azzouz L. Ruiz-Hincapie P. Zarrelli M. Ren G. Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens. Rapid Prototyping J. 2018 24 8 1337 1346 10.1108/RPJ‑04‑2017‑0055
    [Google Scholar]
  52. Hamad K. Kaseem M. Yang H.W. Deri F. Ko Y.G. Properties and medical applications of polylactic acid: A review. Express Polym. Lett. 2015 9 5 435 455 10.3144/expresspolymlett.2015.42
    [Google Scholar]
  53. Lee K. Cha C. Advanced polymer-based bioink technology for printing soft biomaterials. Macromol. Res. 2020 28 8 689 702 10.1007/s13233‑020‑8134‑9
    [Google Scholar]
  54. Chimene D. Lennox K.K. Kaunas R.R. Gaharwar A.K. Advanced bioinks for 3D printing: A materials science perspective. Ann. Biomed. Eng. 2016 44 6 2090 2102 10.1007/s10439‑016‑1638‑y 27184494
    [Google Scholar]
  55. Pradeep P.V. Paul L. Review on novel biomaterials and innovative 3D printing techniques in biomedical applications. Mater. Today Proc. 2022 58 96 103 10.1016/j.matpr.2022.01.072
    [Google Scholar]
  56. Morgan F.L.C. Moroni L. Baker M.B. Dynamic bioinks to advance bioprinting. Adv. Healthc. Mater. 2020 9 15 1901798 10.1002/adhm.201901798 32100963
    [Google Scholar]
  57. Daminabo S.C. Goel S. Grammatikos S.A. Nezhad H.Y. Thakur V.K. Fused deposition modeling-based additive manufacturing (3D printing): Techniques for polymer material systems. Mater. Today Chem. 2020 16 100248 10.1016/j.mtchem.2020.100248
    [Google Scholar]
  58. Kapetaniou C. Rieple A. Pilkington A. Frandsen T. Pisano P. Building the layers of a new manufacturing taxonomy: How 3D printing is creating a new landscape of production eco-systems and competitive dynamics. Technol. Forecast. Soc. Change 2018 128 22 35 10.1016/j.techfore.2017.10.011
    [Google Scholar]
  59. Gao W. Zhang Y. Ramanujan D. Ramani K. Chen Y. Williams C.B. Wang C.C.L. Shin Y.C. Zhang S. Zavattieri P.D. The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. 2015 69 65 89 10.1016/j.cad.2015.04.001
    [Google Scholar]
  60. Top N. Şahin İ. Gökçe H. Gökçe H. Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: State of the art. J. Mater. Res. 2021 36 19 3725 3745 10.1557/s43578‑021‑00156‑y
    [Google Scholar]
  61. Ng O.L. Chan T. Learning as making: Using 3D computer‐aided design to enhance the learning of shape and space in STEM‐integrated ways. Br. J. Educ. Technol. 2019 50 1 294 308 10.1111/bjet.12643
    [Google Scholar]
  62. Ayub A. Wani A.K. Chopra C. Sharma D.K. Amin O. Wani A.W. Singh A. Manzoor S. Singh R. Advancing dye degradation: integrating microbial metabolism, photocatalysis, and nanotechnology for eco-friendly solutions. Bacteria 2025 4 1 15 10.3390/bacteria4010015
    [Google Scholar]
  63. Mustapha K.B. Metwalli K.M. A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur. Polym. J. 2021 156 110591 10.1016/j.eurpolymj.2021.110591
    [Google Scholar]
  64. Hu C. Qin Q.H. Advances in fused deposition modeling of discontinuous fiber/polymer composites. Curr. Opin. Solid State Mater. Sci. 2020 24 5 100867 10.1016/j.cossms.2020.100867
    [Google Scholar]
  65. Stewart S. Domínguez-Robles J. McIlorum V. Mancuso E. Lamprou D. Donnelly R. Larrañeta E. Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing. Pharmaceutics 2020 12 2 105 10.3390/pharmaceutics12020105 32013052
    [Google Scholar]
  66. Giri S. Trewyn B.G. Stellmaker M.P. Lin V.S.Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. 2005 44 32 5038 5044 10.1002/anie.200501819 16038000
    [Google Scholar]
  67. Healy A.V. Fuenmayor E. Doran P. Geever L.M. Higginbotham C.L. Lyons J.G. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics 2019 11 12 645 10.3390/pharmaceutics11120645 31816898
    [Google Scholar]
  68. Fina F. Goyanes A. Madla C.M. Awad A. Trenfield S.J. Kuek J.M. Patel P. Gaisford S. Basit A.W. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int. J. Pharm. 2018 547 1-2 44 52 10.1016/j.ijpharm.2018.05.044 29787894
    [Google Scholar]
  69. Walczak R. Adamski K. Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips. J. Micromech. Microeng. 2015 25 8 085013 10.1088/0960‑1317/25/8/085013
    [Google Scholar]
  70. Kondiah P.J. Kondiah P.P.D. Choonara Y.E. Marimuthu T. Pillay V. A 3D bioprinted pseudo-bone drug delivery scaffold for bone tissue engineering. Pharmaceutics 2020 12 2 166 10.3390/pharmaceutics12020166 32079221
    [Google Scholar]
  71. Wani A.K. Rahayu F. Ben Amor I. Quadir M. Murianingrum M. Parnidi P. Ayub A. Supriyadi S. Sakiroh S. Saefudin S. Kumar A. Latifah E. Environmental resilience through artificial intelligence: Innovations in monitoring and management. Environ. Sci. Pollut. Res. Int. 2024 31 12 18379 18395 10.1007/s11356‑024‑32404‑z 38358626
    [Google Scholar]
  72. Bakhtiar S.M. Butt H.A. Zeb S. Quddusi D.M. Gul S. Dilshad E. 3D printing technologies and their applications in biomedical science. Omics technologies and bio-engineering. Elsevier 2018 167 189 10.1016/B978‑0‑12‑804659‑3.00010‑5
    [Google Scholar]
  73. Ayub A. Rahayu F. Khamidah A. Antarlina S.S. Iswari K. Supriyadi K. Mufidah E. Singh A. Chopra C. Wani A.K. Harnessing microalgae as a bioresource for nutraceuticals: Advancing bioactive compound exploration and shaping the future of health and functional food innovation. Disc. Appl. Sci. 2025 7 5 389 10.1007/s42452‑025‑06916‑3
    [Google Scholar]
  74. Sun Z. Insights into 3D printing in medical applications. Quant. Imaging Med. Surg. 2019 9 1 1 5 10.21037/qims.2019.01.03 30788241
    [Google Scholar]
  75. Ayub A. Wani A.K. Singh R. Singh A. Américo-Pinheiro J.H.P. Muzamil S. Dar M.A. Rahayu F. Application of computational and in silico strategies for sustainable future biofuels and bioenergy. Recent Trends in Lignocellulosic Biofuels and Bioenergy. Dar M.A. Zabed H.M. Shahnawaz M. Singapore Springer 2025 10.1007/978‑981‑96‑4636‑4_14
    [Google Scholar]
  76. Hann S.Y. Cui H. Esworthy T. Miao S. Zhou X. Lee S. Fisher J.P. Zhang L.G. Recent advances in 3D printing: Vascular network for tissue and organ regeneration. Transl. Res. 2019 211 46 63 10.1016/j.trsl.2019.04.002 31004563
    [Google Scholar]
  77. Do A.V. Khorsand B. Geary S.M. Salem A.K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 2015 4 12 1742 1762 10.1002/adhm.201500168 26097108
    [Google Scholar]
  78. Shen H. Fan C. You Z. Xiao Z. Zhao Y. Dai J. Advances in biomaterial‐based spinal cord injury repair. Adv. Funct. Mater. 2022 32 13 2110628 10.1002/adfm.202110628
    [Google Scholar]
  79. Bouten C.V.C. Cheng C. Vermue I.M. Gawlitta D. Passier R. Cardiovascular tissue engineering and regeneration: A plead for further knowledge convergence. Tissue Eng. Part A 2022 28 11-12 525 541 10.1089/ten.tea.2021.0231 35382591
    [Google Scholar]
  80. Fuchs S. Ernst A.U. Wang L.H. Shariati K. Wang X. Liu Q. Ma M. Hydrogels in emerging technologies for type 1 diabetes. Chem. Rev. 2021 121 18 11458 11526 10.1021/acs.chemrev.0c01062 33370102
    [Google Scholar]
  81. Bhat A.A. Ayub A. Wani A.K. Bioactive compounds in active food packaging (ACP): Health and safety considerations. Green Materials for Active Food. Packaging; Islam, Su. Shahid M. Singapore Springer 2025 10.1007/978‑981‑96‑0369‑5_10
    [Google Scholar]
  82. Zhang Y. 3D printing for cancer diagnosis: What unique advantages are gained? ACS Mater. Au 2023 3 6 620 635 10.1021/acsmaterialsau.3c00046 38089653
    [Google Scholar]
  83. Serrano D.R. Terres M.C. Lalatsa A. Applications of 3D printing in cancer. J. 3D Print Med. 2018 115 127
    [Google Scholar]
  84. Bhuskute H. Shende P. Prabhakar B. 3D printed personalized medicine for cancer: Applications for betterment of diagnosis, prognosis and treatment. AAPS PharmSciTech 2021 23 1 8 10.1208/s12249‑021‑02153‑0 34853934
    [Google Scholar]
  85. Hughes A.M. Kolb A.D. Shupp A.B. Shine K.M. Bussard K.M. Printing the pathway forward in bone metastatic cancer research: Applications of 3D engineered models and bioprinted scaffolds to recapitulate the bone–tumor niche. Cancers 2021 13 3 507 10.3390/cancers13030507 33572757
    [Google Scholar]
  86. Wan L. Neumann C.A. LeDuc P.R. Tumor-on-a-chip for integrating a 3D tumor microenvironment: Chemical and mechanical factors. Lab Chip 2020 20 5 873 888 10.1039/C9LC00550A 32025687
    [Google Scholar]
  87. Wani A.K. Prakash A. Sena S. Akhtar N. Singh R. Chopra C. Ariyanti E.E. Mudiana D. Yulia N.D. Rahayu F. Unraveling molecular signatures in rare bone tumors and navigating the cancer pathway landscapes for targeted therapeutics. Crit. Rev. Oncol. Hematol. 2024 196 104291 10.1016/j.critrevonc.2024.104291 38346462
    [Google Scholar]
  88. Wani A.K. Akhtar N. Mir T.G. Singh R. Jha P.K. Mallik S.K. Sinha S. Tripathi S.K. Jain A. Jha A. Devkota H.P. Prakash A. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules 2023 13 2 194 10.3390/biom13020194 36830564
    [Google Scholar]
  89. Shukla P. Yeleswarapu S. Heinrich M.A. Prakash J. Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication 2022 14 3 032002 10.1088/1758‑5090/ac6d11 35512666
    [Google Scholar]
  90. Saberian E. Jenča A. Petrášová A. Zare-Zardini H. Ebrahimifar M. Application of scaffold-based drug delivery in oral cancer treatment: A novel approach. Pharmaceutics 2024 16 6 802 10.3390/pharmaceutics16060802 38931923
    [Google Scholar]
  91. De Souza R. Zahedi P. Allen C.J. Piquette-Miller M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv. 2010 17 6 365 375 10.3109/10717541003762854 20429844
    [Google Scholar]
  92. Augustine R. Kalva S.N. Ahmad R. Zahid A.A. Hasan S. Nayeem A. McClements L. Hasan A. 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy. Transl. Oncol. 2021 14 4 101015 10.1016/j.tranon.2021.101015 33493799
    [Google Scholar]
  93. Germain N. Dhayer M. Dekiouk S. Marchetti P. Current advances in 3D bioprinting for cancer modeling and personalized medicine. Int. J. Mol. Sci. 2022 23 7 3432 10.3390/ijms23073432 35408789
    [Google Scholar]
  94. Stanciu J. Tariman, JD Liquid biopsy: A tool for the diagnostic and prognostic evaluation of cancers. Clin. J. Oncol. Nurs. 2020 24 1 19 21 10.1188/20.CJON.19‑21 31961840
    [Google Scholar]
  95. Soda N. Clack K. Shiddiky M.J.A. Recent advances in liquid biopsy technologies for cancer biomarker detection. Sens. Diagn. 2022 1 3 343 375 10.1039/D2SD00010E
    [Google Scholar]
  96. Singh H. Chopra C. Singh H. Malgotra V. Khurshid Wani A. Singh Dhanjal D. Sharma I. Nepovimova E. Alomar S. Singh R. Sharma V. Kuca K. Gut-brain axis and Alzheimer’s disease: Therapeutic interventions and strategies. J. Funct. Foods 2024 112 105915 10.1016/j.jff.2023.105915
    [Google Scholar]
  97. El-Zahaby S.A. Wani A.K. Akhtar N. Sharma A. Fighting carcinogenesis with plant metabolites by weakening proliferative signaling and disabling replicative immortality networks of rapidly dividing and invading cancerous cells. Curr. Drug Deliv. 2023 20 4 371 386 10.2174/1567201819666220414085606 35422214
    [Google Scholar]
  98. Zhang R. Akhtar N. Wani A.K. Raza K. Kaushik V. Discovering deleterious single nucleotide polymorphisms of human AKT1 oncogene: An in silico study. Life 2023 13 7 1532 10.3390/life13071532 37511907
    [Google Scholar]
  99. Li Y. Liu J. Xu S. Wang J. 3D Bioprinting: An important tool for tumor microenvironment research. Int. J. Nanomedicine 2023 18 18 8039 8057 10.2147/IJN.S435845 38164264
    [Google Scholar]
  100. Zou S. Ye J. Wei Y. Xu J. Characterization of 3D-bioprinted in vitro lung cancer models using RNA-sequencing techniques. Bioengineering 2023 10 6 667 10.3390/bioengineering10060667 37370598
    [Google Scholar]
  101. Dai X. Shao Y. Tian X. Cao X. Ye L. Gao P. Cheng H. Wang X. Fusion between glioma stem cells and mesenchymal stem cells promotes malignant progression in 3D-bioprinted models. ACS Appl. Mater. Interfaces 2022 14 31 35344 35356 10.1021/acsami.2c06658 35881920
    [Google Scholar]
  102. Zhao Y. Yao R. Ouyang L. Ding H. Zhang T. Zhang K. Cheng S. Sun W. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 2014 6 3 035001 10.1088/1758‑5082/6/3/035001 24722236
    [Google Scholar]
  103. Wang P. Sun L. Li C. Jin B. Yang H. Wu B. Mao Y. Study on drug screening multicellular model for colorectal cancer constructed by three-dimensional bioprinting technology. Int. J. Bioprint. 2023 9 3 694 10.18063/ijb.694 37273979
    [Google Scholar]
  104. Chen H. Cheng Y. Wang X. Wang J. Shi X. Li X. Tan W. Tan Z. 3D printed in vitro tumor tissue model of colorectal cancer. Theranostics 2020 10 26 12127 12143 10.7150/thno.52450 33204333
    [Google Scholar]
  105. Wang J. Jin X. Strategies for decellularization, re-cellularIzation and crosslinking in liver bioengineering. Int. J. Artif. Organs 2024 47 3 129 139 10.1177/03913988231218566 38253541
    [Google Scholar]
  106. Liu Y. Exosome: Important cancer actors and potential treatment method Proc SPIE 12924, Third International Conference onBiological Engineering and Medical Science (ICBioMed2023);129240G 2023 10.1117/12.3012947
    [Google Scholar]
  107. Xu J. Yang S. Su Y. Hu X. Xi Y. Cheng Y.Y. Kang Y. Nie Y. Pan B. Song K.A. 3D bioprinted tumor model fabricated with gelatin/sodium alginate/decellularized extracellular matrix bioink. Int. J. Bioprint. 2022 9 1 630 10.18063/ijb.v9i1.630 36844237
    [Google Scholar]
  108. Choong Y.Y.C. Tan H.W. Patel D.C. Choong W.T.N. Chen C.H. Low H.Y. Tan M.J. Patel C.D. Chua C.K. The global rise of 3D printing during the COVID-19 pandemic. Nat. Rev. Mater. 2020 5 9 637 639 10.1038/s41578‑020‑00234‑3 35194517
    [Google Scholar]
  109. Profili J. Brunet R. Dubois É.L. Groenhuis V. Hof L.A. Use of 3D printed connectors to redesign full face snorkeling masks in the COVID-19 era: A preliminary technical case-study Ann 3D Print Med. 2021 3 100023 10.1016/j.stlm.2021.100023 38620734
    [Google Scholar]
  110. Willox M. Metherall P. Jeays-Ward K. McCarthy A.D. Barker N. Reed H. Elphick H.E. Custom-made 3D printed masks for children using non-invasive ventilation: A feasibility study of production method and testing of outcomes in adult volunteers. J. Med. Eng. Technol. 2020 44 5 213 223 10.1080/03091902.2020.1769759 32597695
    [Google Scholar]
  111. Longhitano G.A. Nunes G.B. Candido G. da Silva J.V.L. The role of 3D printing during COVID-19 pandemic: A review. Prog. Addit. Manuf. 2021 6 1 19 37 10.1007/s40964‑020‑00159‑x 38624444
    [Google Scholar]
  112. Smaldone R.A. Brown K.A. Gu G.X. Ke C. Using 3D printing as a research tool for materials discovery. Device 2023 1 1 100014 10.1016/j.device.2023.100014
    [Google Scholar]
  113. Pavan Kalyan B.G. Kumar L. 3D Printing: Applications in tissue engineering, medical devices, and drug delivery. AAPS PharmSciTech 2022 23 4 92 10.1208/s12249‑022‑02242‑8 35301602
    [Google Scholar]
  114. Palo M. Holländer J. Suominen J. Yliruusi J. Sandler N. 3D printed drug delivery devices: Perspectives and technical challenges. Expert Rev. Med. Devices 2017 14 9 685 696 10.1080/17434440.2017.1363647 28774216
    [Google Scholar]
  115. Ventola C.L. Medical applications for 3D printing: Current and projected uses. P&T 2014 39 10 704 711 25336867
    [Google Scholar]
  116. Haleem A. Javaid M. Vaishya R. 3D printing applications for the treatment of cancer. Clin. Epidemiol. Glob. Health 2020 8 4 1072 1076 10.1016/j.cegh.2020.03.022
    [Google Scholar]
  117. Rai K. Pradhan U.U. Empowering advances in medical devices with 3D-printing technology3D printing technology and its diverse applications. Apple Academic Press 2021 155 188
    [Google Scholar]
  118. Ramzan M. Sabir M. Singh S. Debnath A. Three-dimensional hydrogel bioprinting technology as a scaffold of novel drug delivery and biomedical devices: A comprehensive review. BIO Web of Conferences 2024 86 (5) 01013 10.1051/bioconf/20248601013
    [Google Scholar]
  119. Parhi R. A review of three-dimensional printing for pharmaceutical applications: Quality control, risk assessment and future perspectives. J. Drug Deliv. Sci. Technol. 2021 64 102571 10.1016/j.jddst.2021.102571
    [Google Scholar]
  120. Tao J. Zhang J. Hu Y. Yang Y. Gou Z. Du T. Mao J. Gou M. A conformal hydrogel nanocomposite for local delivery of paclitaxel. J. Biomater. Sci. Polym. Ed. 2017 28 1 107 118 10.1080/09205063.2016.1250344 27765001
    [Google Scholar]
  121. Goyanes A. Chang H. Sedough D. Hatton G.B. Wang J. Buanz A. Gaisford S. Basit A.W. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int. J. Pharm. 2015 496 2 414 420 10.1016/j.ijpharm.2015.10.039 26481468
    [Google Scholar]
  122. Ehtezazi T. Algellay M. Islam Y. Roberts M. Dempster N.M. Sarker S.D. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J. Pharm. Sci. 2018 107 4 1076 1085 10.1016/j.xphs.2017.11.019 29208374
    [Google Scholar]
  123. Martinez P.R. Goyanes A. Basit A.W. Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int. J. Pharm. 2017 532 1 313 317 10.1016/j.ijpharm.2017.09.003 28888978
    [Google Scholar]
  124. Khaled S.A. Burley J.C. Alexander M.R. Roberts C.J. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int. J. Pharm. 2014 461 1-2 105 111 10.1016/j.ijpharm.2013.11.021 24280018
    [Google Scholar]
  125. Genina N. Boetker J.P. Colombo S. Harmankaya N. Rantanen J. Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J. Control. Release 2017 268 40 48 10.1016/j.jconrel.2017.10.003 28993169
    [Google Scholar]
  126. Maroni A. Melocchi A. Parietti F. Foppoli A. Zema L. Gazzaniga A. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J. Control. Release 2017 268 10 18 10.1016/j.jconrel.2017.10.008 29030223
    [Google Scholar]
  127. Beck R.C.R. Chaves P.S. Goyanes A. Vukosavljevic B. Buanz A. Windbergs M. Basit A.W. Gaisford S. 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int. J. Pharm. 2017 528 1-2 268 279 10.1016/j.ijpharm.2017.05.074 28583328
    [Google Scholar]
  128. Sadia M. Arafat B. Ahmed W. Forbes R.T. Alhnan M.A. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. J. Control. Release 2018 269 355 363 10.1016/j.jconrel.2017.11.022 29146240
    [Google Scholar]
  129. Vakili H. Kolakovic R. Genina N. Marmion M. Salo H. Ihalainen P. Peltonen J. Sandler N. Hyperspectral imaging in quality control of inkjet printed personalised dosage forms. Int. J. Pharm. 2015 483 1-2 244 249 10.1016/j.ijpharm.2014.12.034 25527212
    [Google Scholar]
  130. Pere C.P.P. Economidou S.N. Lall G. Ziraud C. Boateng J.S. Alexander B.D. Lamprou D.A. Douroumis D. 3D printed microneedles for insulin skin delivery. Int. J. Pharm. 2018 544 2 425 432 10.1016/j.ijpharm.2018.03.031 29555437
    [Google Scholar]
  131. Paxton N.C. Nightingale R.C. Woodruff M.A. Capturing patient anatomy for designing and manufacturing personalized prostheses. Curr. Opin. Biotechnol. 2022 73 282 289 10.1016/j.copbio.2021.09.004 34601260
    [Google Scholar]
  132. Kuhl J. Ding A. Ngo N.T. Braschkat A. Fiehler J. Krause D. Design of personalized devices—the tradeoff between individual value and personalization workload. Appl. Sci. 2020 11 1 241 10.3390/app11010241
    [Google Scholar]
  133. Namin A.T. Jalali M.S. Vahdat V. Bedair H.S. O’Connor M.I. Kamarthi S. Isaacs J.A. Adoption of new medical technologies: The case of customized individually made knee implants. Value Health 2019 22 4 423 430 10.1016/j.jval.2019.01.008 30975393
    [Google Scholar]
  134. Jin Z. He C. Fu J. Han Q. He Y. Balancing the customization and standardization: Exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in china. Biodes. Manuf. 2022 5 3 580 606 10.1007/s42242‑022‑00187‑2 35194519
    [Google Scholar]
  135. Pravin S. Sudhir A. Integration of 3D printing with dosage forms: A new perspective for modern healthcare. Biomed. Pharmacother. 2018 107 146 154 10.1016/j.biopha.2018.07.167 30086461
    [Google Scholar]
  136. Melnyk L.A. Oyewumi M.O. Integration of 3D printing technology in pharmaceutical compounding: Progress, prospects,and challenges. Ann 3D Print Med 2021 4 100035
    [Google Scholar]
  137. Chong S. Pan G.T. Chin J. Show P.L. Yang T.C.K. Huang C.M. Integration of 3D printing and industry 4.0 into engineering teaching. Sustainability 2018 10 11 3960 10.3390/su10113960
    [Google Scholar]
  138. Wei Q. Li H. Liu G. He Y. Wang Y. Tan Y.E. Wang D. Peng X. Yang G. Tsubaki N. Metal 3D printing technology for functional integration of catalytic system. Nat. Commun. 2020 11 1 4098 10.1038/s41467‑020‑17941‑8 32796863
    [Google Scholar]
  139. Rodríguez-Espíndola O. Chowdhury S. Beltagui A. Albores P. The potential of emergent disruptive technologies for humanitarian supply chains: The integration of blockchain, artificial intelligence and 3D printing. Int. J. Prod. Res. 2020 58 15 4610 4630 10.1080/00207543.2020.1761565
    [Google Scholar]
  140. Akpa-Inyang F. Rocher A. O’Connor M. Marais L. Ethical and regulatory issues in the application of 3D printing in orthopaedics: A scoping review. J. Orthop. Res. 2025 4 2 Suppl. 100610 10.1016/j.jorep.2025.100610
    [Google Scholar]
  141. Levine H.R. Anticipating regulatory reform: The implications of machine-learning technology on the us food and drug administration’s regulatory approval process for medical devices. Seton Hall Rev. 2019 50 805
    [Google Scholar]
  142. Pugliesi R.A. Ethical considerations in the advent of 3D printing technology in healthcare. Contemp. Issues Behav. Soc. Sci. 2020 4 14 29
    [Google Scholar]
  143. Reis M.E. Bettencourt A. Ribeiro H.M. The regulatory challenges of innovative customized combination products. Front. Med. 2022 9 821094 10.3389/fmed.2022.821094 35935795
    [Google Scholar]
  144. Qi J. Wei S. The impact of medical devices regulations on notified bodies and additive manufacturing. 2020 Available from:https://www.diva-portal.org/smash/get/diva2:1446126/FULLTEXT01.pdf
    [Google Scholar]
  145. Organization W.H. Western Pacific Regional Action Agenda on Regulatory Strengthening. Convergence and cooperation for medicines and the health workforce 2020 Available from: https://www.who.int/publications/i/item/9789290618942
    [Google Scholar]
  146. Valla V. Tzelepi K. Charitou P. Lewis A. Polatidis B. Koukoura A. Karapatsia A. Antonopoulou K. Prodromidou K. Papadaki E. Vassiliadis E. Use of real-world evidence for international regulatory decision making in medical devices. Int. J. Dig. Health 2023 3 1 1 10.29337/ijdh.50
    [Google Scholar]
  147. Dudala S. Goel S. 3D printing: Challenges and future opportunities. In: 3D printed smart sensors and energy harvesting devices: Concepts, fabrication and applications. UK IOP Publishing Bristol 2024 14 1
    [Google Scholar]
  148. Gautam K. Gogoi D. Kongnyui T.D. Devi S. Kumar C. Kumar M. A comprehensive review on surface modifications of polymer‐based 3D‐printed structures: Metal coating prospects and challenges. Polym. Adv. Technol. 2024 35 4 e6369 10.1002/pat.6369
    [Google Scholar]
  149. Ghilan A. Chiriac A.P. Nita L.E. Rusu A.G. Neamtu I. Chiriac V.M. Trends in 3D printing processes for biomedical field: Opportunities and challenges. J. Polym. Environ. 2020 28 5 1345 1367 10.1007/s10924‑020‑01722‑x 32435165
    [Google Scholar]
  150. Waseem M. Tahir A.U. Majeed Y. Printing the future of food: The physics perspective on 3D food printing. Food Physics 2024 1 100003 10.1016/j.foodp.2023.100003
    [Google Scholar]
  151. Dananjaya V. Marimuthu S. Yang R.C. Grace A.N. Abeykoon C. Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocomposites. Prog. Mater. Sci. 2024 144 101282 10.1016/j.pmatsci.2024.101282
    [Google Scholar]
  152. de Souza E.A. Borges P.H.R. Stengel T. Nematollahi B. Bos F.P. 3D printed sustainable low-cost materials for construction of affordable social housing in Brazil: Potential, challenges, and research needs. J. Build. Eng. 2024 87 10.1016/j.jobe.2024.108985
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575381660250930170819
Loading
/content/journals/mrmc/10.2174/0113895575381660250930170819
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: fabricating materials ; titanium ; 3D printing ; medicine ; tissue engineering ; drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test