Skip to content
2000
image of Bruton’s Tyrosine Kinase Inhibitors: A Versatile Therapeutic Approach for Cancer, Autoimmune Disorders, GVHD and COVID-19

Abstract

Recent trends have shown the development of various medicinally important compounds that specifically target B-cell receptor (BCR) pathways at various segments that have a major role in Bruton’s tyrosine kinase (BTK) receptor, which belongs to the family of kinases. These kinases are usually situated close to the cell membrane due to which they participate in upstream processing of BCR signalling. Various molecules have been potentialized to target these signalling pathways of these kinase receptors in order to achieve a pharmacological effect. Given the central role of BTK in immunity, BTK inhibition represents a promising therapeutic approach for the treatment of multiple diseases. BTK inhibitors work by regulating B-cell receptor signalling along with inflammatory pathways and immune cell interactions, offering more advanced treatment options compared to traditional therapies. In addition to BTK inhibitors, an extensive knowledge of the pharmacological mechanisms underlying the blockage of these receptors is necessary in order to more accurately forecast when and where a patient could need combination therapy or just one medication. Efforts have been made to facilitate translational discoveries, drug re-purposing concepts, and further development of precision medicine products. This thorough literature study has focused on studies published until June 2025.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575409452250815095743
2025-08-27
2025-09-22
Loading full text...

Full text loading...

References

  1. McDonald C. Xanthopoulos C. Kostareli E. The role of Bruton’s tyrosine kinase in the immune system and disease. Immunology 2021 164 4 722 736 10.1111/imm.13416 34534359
    [Google Scholar]
  2. Corneth O.B. Klein Wolterink R.G. Hendriks R.W. BTK signaling in B cell differentiation and autoimmunity. Curr. Top. Microbiol. Immunol. 2015 393 67 105 10.1007/82_2015_478 26341110
    [Google Scholar]
  3. Mohamed A.J. Yu L. Bäckesjö C.M. Vargas L. Faryal R. Aints A. Christensson B. Berglöf A. Vihinen M. Nore B.F. Edvard Smith C.I. Bruton’s tyrosine kinase (Btk): Function, regulation, and transformation with special emphasis on the PH domain. Immunol. Rev. 2009 228 1 58 73 10.1111/j.1600‑065X.2008.00741.x 19290921
    [Google Scholar]
  4. Satterthwaite A.B. Li Z. Witte O.N. Btk function in B cell development and response. Semin. Immunol. 1998 10 4 309 316 10.1006/smim.1998.0123 9695187
    [Google Scholar]
  5. Kurosaki T. Regulation of BCR signaling. Mol. Immunol. 2011 48 11 1287 1291 10.1016/j.molimm.2010.12.007 21195477
    [Google Scholar]
  6. Wang H. Zhang W. Yang J. Zhou K. The resistance mechanisms and treatment strategies of BTK inhibitors in B‐cell lymphoma. Hematol. Oncol. 2021 39 5 605 615 10.1002/hon.2933 34651869
    [Google Scholar]
  7. Maas A. Hendriks R.W. Role of Bruton’s tyrosine kinase in B cell development. Dev. Immunol. 2001 8 3-4 171 181 11785667
    [Google Scholar]
  8. Vihinen M. Kwan S.P. Lester T. Ochs H.D. Resnick I. Väliaho J. Conley M.E. Smith C.I. Mutations of the human BTK gene coding for bruton tyrosine kinase in X-linked agammaglobulinemia. Hum. Mutat. 1999 13 4 280 285 10.1002/(SICI)1098‑1004 10220140
    [Google Scholar]
  9. Mattsson P.T. Vihinen M. Smith C.I.E. X‐linked agammaglobulinemia (XLA): A genetic tyrosine kinase (Btk) disease. BioEssays 1996 18 10 825 834 10.1002/bies.950181009 8885720
    [Google Scholar]
  10. Suri D. Rawat A. Singh S. X-linked Agammaglobulinemia. Indian J. Pediatr. 2016 83 4 331 337 10.1007/s12098‑015‑2024‑8 26909497
    [Google Scholar]
  11. Rawlings D.J. Schwartz M.A. Jackson S.W. Meyer-Bahlburg A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol. 2012 12 4 282 294 10.1038/nri3190 22421786
    [Google Scholar]
  12. Harrington B.K. Activity of the second generation BTK inhibitor acalabrutinib in canine and human B-cell non-hodgkin lymphoma. 2018
    [Google Scholar]
  13. Rodon Ahnert J. Gray N. Mok T. Gainor J. What it takes to improve a first-generation inhibitor to a second-or third-generation small molecule. Am. Soc. Clin. Oncol. Educ. Book 2019 39 39 196 205 10.1200/EDBK_242209 31099659
    [Google Scholar]
  14. Quartermaine C. Ghazi S.M. Yasin A. Awan F.T. Fradley M. Wiczer T. Kalathoor S. Ferdousi M. Krishan S. Habib A. Shaaban A. Kola-Kehinde O. Kittai A.S. Rogers K.A. Grever M. Ruz P. Bhat S. Dickerson T. Byrd J.C. Woyach J. Addison D. Cardiovascular toxicities of BTK inhibitors in chronic lymphocytic leukemia. JACC Cardiooncol. 2023 5 5 570 590 10.1016/j.jaccao.2023.09.002 37969643
    [Google Scholar]
  15. Kumagai Y. Fujita T. Maeda M. Yamamoto A. Amano H. Pharmacology and safety of TAS5315, a Bruton tyrosine kinase inhibitor, in healthy volunteers: First-in-human, randomized, ascending-dose studies. Br J. Clin. Pharmacol. 2025 91 8 2340 2351 Advance online citation. 10.1002/bcp.70039 40087848
    [Google Scholar]
  16. Arruebo M. Vilaboa N. Sáez-Gutierrez B. Lambea J. Tres A. Valladares M. González-Fernández Á. Assessment of the evolution of cancer treatment therapies. Cancers 2011 3 3 3279 3330 10.3390/cancers3033279 24212956
    [Google Scholar]
  17. Zhang D. Gong H. Meng F. Recent advances in BTK inhibitors for the treatment of inflammatory and autoimmune diseases. Molecules 2021 26 16 4907 10.3390/molecules26164907 34443496
    [Google Scholar]
  18. McManigle W. Youssef A. Sarantopoulos S. B cells in chronic graft-versus-host disease. Hum. Immunol. 2019 80 6 393 399 10.1016/j.humimm.2019.03.003 30849450
    [Google Scholar]
  19. Rada M. Qusairy Z. Massip-Salcedo M. Macip S. Relevance of the Bruton tyrosine kinase as a target for COVID-19 therapy. Mol. Cancer Res. 2021 19 4 549 554 10.1158/1541‑7786.MCR‑20‑0814 33328281
    [Google Scholar]
  20. Zeng Q. He J. Chen X. Yuan Q. Yin L. Liang Y. Zu X. Shen Y. Recent advances in hematopoietic cell kinase in cancer progression: Mechanisms and inhibitors. Biomed. Pharmacother. 2024 176 116932 10.1016/j.biopha.2024.116932 38870631
    [Google Scholar]
  21. Zhu S. Gokhale S. Jung J. Spirollari E. Tsai J. Arceo J. Wu B.W. Victor E. Xie P. Multifaceted immunomodulatory effects of the BTK inhibitors ibrutinib and acalabrutinib on different immune cell subsets–beyond B lymphocytes. Front. Cell Dev. Biol. 2021 9 727531 10.3389/fcell.2021.727531 34485307
    [Google Scholar]
  22. Rozkiewicz D. Hermanowicz J.M. Kwiatkowska I. Krupa A. Pawlak D. Bruton’s tyrosine kinase inhibitors (Btkis): Review of Preclinical studies and evaluation of clinical trials. Molecules 2023 28 5 2400 10.3390/molecules28052400 36903645
    [Google Scholar]
  23. Fares A. Carracedo Uribe C. Martinez D. Rehman T. Silva Rondon C. Sandoval-Sus J. Bruton’s tyrosine kinase inhibitors: Recent updates. Int. J. Mol. Sci. 2024 25 4 2208 10.3390/ijms25042208 38396884
    [Google Scholar]
  24. Ringheim G.E. Wampole M. Oberoi K. Bruton’s Tyrosine Kinase (BTK) inhibitors and autoimmune diseases: making sense of BTK inhibitor specificity profiles and recent clinical trial successes and failures. Front. Immunol. 2021 12 662223 10.3389/fimmu.2021.662223 34803999
    [Google Scholar]
  25. Shadman M. Brown J.R. Mohseninejad L. Yang K. Burnett H. Neupane B. Williams R. Lamanna N. O’Brien S.M. Tedeschi A. Tam C.S. Comparative efficacy of Bruton tyrosine kinase inhibitors in high-risk relapsed/refractory CLL: a network meta-analysis. Blood Adv. 2025 9 12 2863 2870 10.1182/bloodadvances.2024014523 40203277
    [Google Scholar]
  26. Yan Q. Li X. Chen Y. Li L. Hu X. Efficacy of supportive care interventions for improving posttraumatic stress symptoms and resilience in family caregivers of cancer‐affected children: A meta‐analysis of randomized controlled trials. Worldviews Evid. Based Nurs. 2025 22 1 e12764 10.1111/wvn.12764 39828279
    [Google Scholar]
  27. Wang S. Liu G. Yu L. Zhang C. Marcucci F. Jiang Y. Fluorofenidone enhances cisplatin efficacy in non-small cell lung cancer: a novel approach to inhibiting cancer progression. Transl. Lung Cancer Res. 2024 13 11 3175 3188 10.21037/tlcr‑24‑811 39670015
    [Google Scholar]
  28. Conley M.E. Notarangelo L.D. Etzioni A. X-linked agammaglobulinemia and autosomal recessive agammaglobulinemia. Primary immunodeficiency diseases: A molecular and cellular approach, 3rd. New York, NY Oxford University Press 2013 299 315
    [Google Scholar]
  29. Ribatti D. Immunology in the Twentieth Century: From Basic Science to Clinical Application. Academic Press 2018
    [Google Scholar]
  30. Liang C. Tian D. Ren X. Ding S. Jia M. Xin M. Thareja S. The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: A mini-review. Eur. J. Med. Chem. 2018 151 315 326 10.1016/j.ejmech.2018.03.062 29631132
    [Google Scholar]
  31. Xing L. Huang A. Bruton’s TK inhibitors: Structural insights and evolution of clinical candidates. Future Med. Chem. 2014 6 6 675 695 10.4155/fmc.14.24 24895895
    [Google Scholar]
  32. Tawfiq R.K. Abeykoon J.P. Kapoor P. Bruton tyrosine kinase inhibition: An effective strategy to manage Waldenström Macroglobulinemia. Curr. Hematol. Malig. Rep. 2024 19 3 120 137 10.1007/s11899‑024‑00731‑0 38536576
    [Google Scholar]
  33. George B. Mullick Chowdhury S. Hart A. Sircar A. Singh S.K. Nath U.K. Mamgain M. Singhal N.K. Sehgal L. Jain N. Ibrutinib resistance mechanisms and treatment strategies for B-cell lymphomas. Cancers 2020 12 5 1328 10.3390/cancers12051328 32455989
    [Google Scholar]
  34. Bravo-Gonzalez A. Alasfour M. Soong D. Noy J. Pongas G. Advances in targeted therapy: Addressing resistance to BTK inhibition in B-Cell lymphoid malignancies. Cancers 2024 16 20 3434 10.3390/cancers16203434 39456530
    [Google Scholar]
  35. Tasso B. Spallarossa A. Russo E. Brullo C. The development of BTK inhibitors: A five-year update. Molecules 2021 26 23 7411 10.3390/molecules26237411 34885993
    [Google Scholar]
  36. Giordano F. Investigating the role of p65BTK as an emerging therapeutic target in NSCLC. Thesis University of Milan-Bicocca 2019
    [Google Scholar]
  37. Montoya S. Investigating resistance mechanisms to non-covalent bruton’s tyrosine kinase inhibitors and using degraders to overcome resistance for patients with b cell malignancies. Doctoral dissertation, University of Miami 2024
    [Google Scholar]
  38. Li J. Gong C. Zhou H. Liu J. Xia X. Ha W. Jiang Y. Liu Q. Xiong H. Kinase inhibitors and kinase-targeted cancer therapies: Recent advances and future perspectives. Int. J. Mol. Sci. 2024 25 10 5489 10.3390/ijms25105489 38791529
    [Google Scholar]
  39. Brullo C. Villa C. Tasso B. Russo E. Spallarossa A. Btk inhibitors: A medicinal chemistry and drug delivery perspective. Int. J. Mol. Sci. 2021 22 14 7641 10.3390/ijms22147641 34299259
    [Google Scholar]
  40. Das D. Wang J. Hong J. Next-generation Bruton’s tyrosine kinase (BTK) inhibitors potentially targeting BTK C481S mutation-recent developments and perspectives. Curr. Top. Med. Chem. 2022 22 20 1674 1691 10.2174/1568026622666220801101706 35927919
    [Google Scholar]
  41. Castillo J.J. Buske C. Trotman J. Sarosiek S. Treon S.P. Bruton tyrosine kinase inhibitors in the management of Waldenström macroglobulinemia. Am. J. Hematol. 2023 98 2 338 347 10.1002/ajh.26788 36415104
    [Google Scholar]
  42. Robak T. Witkowska M. Smolewski P. The role of Bruton’s kinase inhibitors in chronic lymphocytic Leukemia: Current status and future directions. Cancers 2022 14 3 771 10.3390/cancers14030771 35159041
    [Google Scholar]
  43. Alu A. Lei H. Han X. Wei Y. Wei X. BTK inhibitors in the treatment of hematological malignancies and inflammatory diseases: Mechanisms and clinical studies. J. Hematol. Oncol. 2022 15 1 138 10.1186/s13045‑022‑01353‑w 36183125
    [Google Scholar]
  44. Tam C.S. Muñoz J.L. Seymour J.F. Opat S. Zanubrutinib: Past, present, and future. Blood Cancer J. 2023 13 1 141 10.1038/s41408‑023‑00902‑x 37696810
    [Google Scholar]
  45. Wu J. Zhang M. Liu D. Acalabrutinib (ACP-196): A selective second-generation BTK inhibitor. J. Hematol. Oncol. 2016 9 1 21 10.1186/s13045‑016‑0250‑9 26957112
    [Google Scholar]
  46. Thompson P.A. Tam C. Pirtobrutinib: A new hope for patients with BTK-inhibitor refractory lymphoproliferative disorders. Blood 2023 141 26 blood.2023020240 10.1182/blood.2023020240 37156004
    [Google Scholar]
  47. Nayyar M. Menezes R.C.B. Ailawadhi S. Parrondo R.D. Chronic lymphocytic leukemia: Novel therapeutic targets under investigation. Cancers 2025 17 14 2298 10.3390/cancers17142298 40723181
    [Google Scholar]
  48. Clinical Trials Using Pirtobrutinib 2025 Available from: https://www.cancer.gov/research/participate/clinical-trials/intervention/pirtobrutinib?pn=1
  49. Jain N. Mamgain M. Chowdhury S.M. Jindal U. Sharma I. Sehgal L. Epperla N. Beyond Bruton’s tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody–drug conjugates, CAR T-cells, and novel agents. J. Hematol. Oncol. 2023 16 1 99 10.1186/s13045‑023‑01496‑4 37626420
    [Google Scholar]
  50. Roskoski R. Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms. Pharmacol. Res. 2016 113 Pt A 395 408 10.1016/j.phrs.2016.09.011 27641927
    [Google Scholar]
  51. Hendriks R.W. Yuvaraj S. Kil L.P. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat. Rev. Cancer 2014 14 4 219 232 10.1038/nrc3702 24658273
    [Google Scholar]
  52. Wang H. Guo H. Yang J. Liu Y. Liu X. Zhang Q. Zhou K. Bruton tyrosine kinase inhibitors in B-cell lymphoma: beyond the antitumour effect. Exp. Hematol. Oncol. 2022 11 1 60 10.1186/s40164‑022‑00315‑9 36138486
    [Google Scholar]
  53. Tavakoli G.M. Yazdanpanah N. Rezaei N. Targeting Bruton’s tyrosine kinase (BTK) as a signaling pathway in immune-mediated diseases: from molecular mechanisms to leading treatments. Adv. Rheumatol. 2024 64 1 61 10.1186/s42358‑024‑00401‑y 39169436
    [Google Scholar]
  54. Joseph R.E. Amatya N. Fulton D.B. Engen J.R. Wales T.E. Andreotti A. Differential impact of BTK active site inhibitors on the conformational state of full-length BTK. eLife 2020 9 e60470 10.7554/eLife.60470 33226337
    [Google Scholar]
  55. Satterthwaite A.B. Witte O.N. The role of Bruton’s tyrosine kinase in B-cell development and function: A genetic perspective. Immunol. Rev. 2000 175 120 127 10.1111/j.1600‑065X.2000.imr017504.x 10933597
    [Google Scholar]
  56. Marcotte D.J. Liu Y.T. Arduini R.M. Hession C.A. Miatkowski K. Wildes C.P. Cullen P.F. Hong V. Hopkins B.T. Mertsching E. Jenkins T.J. Romanowski M.J. Baker D.P. Silvian L.F. Structures of human Bruton’s tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Sci. 2010 19 3 429 10.1002/pro.321
    [Google Scholar]
  57. Wu J. Liu C. Tsui S.T. Liu D. Second-generation inhibitors of Bruton tyrosine kinase. J. Hematol. Oncol. 2016 9 1 80 10.1186/s13045‑016‑0313‑y 27590878
    [Google Scholar]
  58. Smith C.E. Satterthwaite A.B. Witte O.N. X-linked agammaglobulinemia: A disease of Btk tyrosine kinase. Primary Immunodeficiency Diseases. Springer 2007 279 303
    [Google Scholar]
  59. Wang Q. Pechersky Y. Sagawa S. Pan A.C. Shaw D.E. Structural mechanism for Bruton’s tyrosine kinase activation at the cell membrane. Proc. Natl. Acad. Sci. USA 2019 116 19 9390 9399 10.1073/pnas.1819301116 31019091
    [Google Scholar]
  60. Miao B. Skidan I. Yang J. Lugovskoy A. Reibarkh M. Long K. Brazell T. Durugkar K.A. Maki J. Ramana C.V. Schaffhausen B. Wagner G. Torchilin V. Yuan J. Degterev A. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc. Natl. Acad. Sci. USA 2010 107 46 20126 20131 10.1073/pnas.1004522107 21041639
    [Google Scholar]
  61. Rawlings D.J. Scharenberg A.M. Park H. Wahl M.I. Lin S. Kato R.M. Fluckiger A.C. Witte O.N. Kinet J.P. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 1996 271 5250 822 825 10.1126/science.271.5250.822 8629002
    [Google Scholar]
  62. Estupiñán H.Y. Bouderlique T. He C. Berglöf A. Cappelleri A. Frengen N. Zain R. Karlsson M.C.I. Månsson R. Smith C.I.E. In BTK, phosphorylated Y223 in the SH3 domain mirrors catalytic activity, but does not influence biological function. Blood Adv. 2024 8 8 1981 1990 10.1182/bloodadvances.2024012706 38507738
    [Google Scholar]
  63. Park H. Wahl M.I. Afar D.E.H. Turck C.W. Rawlings D.J. Tam C. Scharenberg A.M. Kinet J.P. Witte O.N. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 1996 4 5 515 525 10.1016/S1074‑7613(00)80417‑3 8630736
    [Google Scholar]
  64. Pal Singh S. Dammeijer F. Hendriks R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 2018 17 1 57 10.1186/s12943‑018‑0779‑z 29455639
    [Google Scholar]
  65. Rip J. de Bruijn M.J.W. Neys S.F.H. Singh S.P. Willar J. van Hulst J.A.C. Hendriks R.W. Corneth O.B.J. Bruton’s tyrosine kinase inhibition induces rewiring of proximal and distal B‐cell receptor signaling in mice. Eur. J. Immunol. 2021 51 9 2251 2265 10.1002/eji.202048968 34323286
    [Google Scholar]
  66. Yu L. Li L. Medeiros L.J. Young K.H. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev. 2017 31 2 77 92 10.1016/j.blre.2016.10.001 27773462
    [Google Scholar]
  67. Zinatizadeh M.R. Schock B. Chalbatani G.M. Zarandi P.K. Jalali S.A. Miri S.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021 8 3 287 297 10.1016/j.gendis.2020.06.005 33997176
    [Google Scholar]
  68. Qiao H. Mao Z. Wang W. Chen X. Wang S. Fan H. Zhao T. Hou H. Dong M. Changes in the BTK/NF-κB signaling pathway and related cytokines in different stages of neuromyelitis optica spectrum disorders. Eur. J. Med. Res. 2022 27 1 96 10.1186/s40001‑022‑00723‑x 35729649
    [Google Scholar]
  69. Guo Q. Jin Y. Chen X. Ye X. Shen X. Lin M. Zeng C. Zhou T. Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct. Target. Ther. 2024 9 1 53 10.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  70. Chen S-S. Chang B.Y. Chang S. Tong T. Ham S. Sherry B. Burger J.A. Rai K.R. Chiorazzi N. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia 2016 30 4 833 843 10.1038/leu.2015.316 26582643
    [Google Scholar]
  71. de Gorter D.J.J. Beuling E.A. Kersseboom R. Middendorp S. van Gils J.M. Hendriks R.W. Pals S.T. Spaargaren M. Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity 2007 26 1 93 104 10.1016/j.immuni.2006.11.012 17239630
    [Google Scholar]
  72. Messex J.K. Liou G.Y. Targeting BTK signaling in the microenvironment of solid tumors as a feasible cancer therapy option. Cancers 2021 13 9 2198 10.3390/cancers13092198 34063667
    [Google Scholar]
  73. Janssens S. Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev. 2003 16 4 637 646 10.1128/CMR.16.4.637‑646.2003 14557290
    [Google Scholar]
  74. Duan T. Du Y. Xing C. Wang H.Y. Wang R.F. Toll-Like receptor signaling and its role in cell-mediated immunity. Front. Immunol. 2022 13 812774 10.3389/fimmu.2022.812774 35309296
    [Google Scholar]
  75. Toll-like receptor. 2025 Available from: https://en.wikipedia.org/w/index.php?title=Toll-like_receptor&oldid=1270792952
  76. Bagratuni T. Papadimou A. Taouxi K. Dimopoulos M.A. Kastritis E. MYD88 wild type in IgM monoclonal gammopathies: From molecular mechanisms to clinical challenges. Hemato 2023 4 3 259 272 10.3390/hemato4030021
    [Google Scholar]
  77. Bekeredjian-Ding I. Jego G. Toll‐like receptors – sentries in the B‐cell response. Immunology 2009 128 3 311 323 10.1111/j.1365‑2567.2009.03173.x 20067531
    [Google Scholar]
  78. Nemazee D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 2017 17 5 281 294 10.1038/nri.2017.19 28368006
    [Google Scholar]
  79. Zorn C.N. Simonowski A. Huber M. Stimulus strength determines the BTK-dependence of the SHIP1-deficient phenotype in IgE/antigen-triggered mast cells. Sci. Rep. 2018 8 1 15467 10.1038/s41598‑018‑33769‑1 30341350
    [Google Scholar]
  80. Qusairy Z. Rada M. Bruton’s tyrosine Kinase: A double-edged sword in cancer and aging. Kinase Phosphatases 2025 3 2 10 10.3390/kinasesphosphatases3020010
    [Google Scholar]
  81. Profitós-Pelejà N. Santos J.C. Marín-Niebla A. Roué G. Ribeiro M.L. Regulation of B-cell receptor signaling and its therapeutic relevance in aggressive B-cell lymphomas. Cancers 2022 14 4 860 10.3390/cancers14040860 35205606
    [Google Scholar]
  82. Lucas F. Woyach J.A. Inhibiting Bruton’s tyrosine kinase in CLL and other B-cell malignancies. Target. Oncol. 2019 14 2 125 138 10.1007/s11523‑019‑00635‑7 30927175
    [Google Scholar]
  83. Song Y. Wu S.J. Shen Z. Zhao D. Chan T.S.Y. Huang H. Qiu L. Li J. Tan T. Zhu J. Song Y. Huang W.H. Zhao W. Liu H.S.Y. Xu W. Chen N. Ma J. Chang C.S. Tse E.W.C. Chinese expert consensus on Bruton tyrosine kinase inhibitors in the treatment of B-cell malignancies. Exp. Hematol. Oncol. 2023 12 1 92 10.1186/s40164‑023‑00448‑5 37845755
    [Google Scholar]
  84. Fuchs O. Transcription factor NF-κB inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies. Curr. Mol. Pharmacol. 2010 3 3 98 122 10.2174/1874467211003030098 20594187
    [Google Scholar]
  85. Jiang Q. Peng Y. Herling C.D. Herling M. The immunomodulatory mechanisms of BTK inhibition in CLL and beyond. Cancers 2024 16 21 3574 10.3390/cancers16213574 39518015
    [Google Scholar]
  86. Gupta S. Sharma A. Shukla A. Mishra A. Singh A. From development to clinical success: The journey of established and next-generation BTK inhibitors. Invest. New Drugs 2025 43 2 377 393 10.1007/s10637‑025‑01513‑y 40014234
    [Google Scholar]
  87. He Y. Sun M.M. Zhang G.G. Yang J. Chen K.S. Xu W.W. Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 425 10.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  88. Lewis K.L. Cheah C.Y. Non-Covalent BTK inhibitors: The new BTKids on the block for B-Cell malignancies. J. Pers. Med. 2021 11 8 764 10.3390/jpm11080764 34442408
    [Google Scholar]
  89. Kim H.O. BTK inhibitors and next-generation BTK-targeted therapeutics for B-cell malignancies. Arch. Pharm. Res. 2025 48 5 426 449 10.1007/s12272‑025‑01546‑0 40335884
    [Google Scholar]
  90. Gu D. Tang H. Wu J. Li J. Miao Y. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies. J. Hematol. Oncol. 2021 14 1 40 10.1186/s13045‑021‑01049‑7 33676527
    [Google Scholar]
  91. Estupiñán H.Y. Wang Q. Berglöf A. Schaafsma G.C.P. Shi Y. Zhou L. Mohammad D.K. Yu L. Vihinen M. Zain R. Smith C.I.E. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia 2021 35 5 1317 1329 10.1038/s41375‑021‑01123‑6 33526860
    [Google Scholar]
  92. Chirino A. Montoya S. Safronenka A. Taylor J. Resisting the resistance: Navigating BTK mutations in chronic lymphocytic leukemia (CLL). Genes 2023 14 12 2182 10.3390/genes14122182 38137005
    [Google Scholar]
  93. Broccoli A. Del Re M. Danesi R. Zinzani P.L. Covalent Bruton tyrosine kinase inhibitors across generations: A focus on zanubrutinib. J. Cell. Mol. Med. 2025 29 3 e70170 10.1111/jcmm.70170 39887627
    [Google Scholar]
  94. Mouhssine S. Maher N. Matti B.F. Alwan A.F. Gaidano G. Targeting BTK in B cell malignancies: From mode of action to resistance mechanisms. Int. J. Mol. Sci. 2024 25 6 3234 10.3390/ijms25063234 38542207
    [Google Scholar]
  95. Portnojs A. Exploring the role of IRF4 in the sensitivity of mantle cell lymphoma cells to Bruton’s Tyrosine Kinase inhibitors. Thesis Peninsula Medical School 2025
    [Google Scholar]
  96. Mehra S. Nicholls M. Taylor J. The evolving role of Bruton’s tyrosine kinase inhibitors in B cell lymphomas. Int. J. Mol. Sci. 2024 25 14 7516 10.3390/ijms25147516 39062757
    [Google Scholar]
  97. Heo Y.A. Pirtobrutinib in relapsed or refractory mantle cell lymphoma: A profile of its use. Drugs Ther. Perspect. 2024 40 2 45 52 10.1007/s40267‑023‑01041‑w
    [Google Scholar]
  98. Sharman J. Kabadi S.M. Clark J. Andorsky D. Treatment patterns and outcomes among mantle cell lymphoma patients treated with ibrutinib in the United States: A retrospective electronic medical record database and chart review study. Br. J. Haematol. 2021 192 4 737 746 10.1111/bjh.16922 33095453
    [Google Scholar]
  99. Chohan K.L. Kapoor P. BTK inhibitors and other targeted therapies in waldenström macroglobulinemia. Hemato 2023 4 2 135 157 10.3390/hemato4020012
    [Google Scholar]
  100. An G. Zhou D. Zhao W. Zhou K. Li J. Zhou J. Xie L. Jin J. Zhong L. Yan L. Guo H. Du C. Huang J. Novotny W. Zhong J. Qiu L. Safety and efficacy of the Bruton tyrosine kinase inhibitor zanubrutinib (BGB-3111) in patients with WaldenstrC6m macroglobulinemia from a phase 2 trial. Blood 2020 136 42 43.(Suppl. 1) 10.1182/blood‑2020‑136783
    [Google Scholar]
  101. Robak E. Robak T. Bruton’s kinase inhibitors for the treatment of immunological diseases: current status and perspectives. J. Clin. Med. 2022 11 10 2807 10.3390/jcm11102807 35628931
    [Google Scholar]
  102. Schultze M.D. Reeves D.J. Pirtobrutinib: A new and distinctive treatment option for b-cell malignancies. Ann. Pharmacother. 2024 58 10 1064 1073 10.1177/10600280231223737 38235739
    [Google Scholar]
  103. Shen J. Liu J. Bruton’s tyrosine kinase inhibitors in the treatment of primary central nervous system lymphoma: A mini-review. Front. Oncol. 2022 12 1034668 10.3389/fonc.2022.1034668 36465385
    [Google Scholar]
  104. Lentz R. Feinglass J. Ma S. Akhter N. Risk factors for the development of atrial fibrillation on ibrutinib treatment. Leuk. Lymphoma 2019 60 6 1447 1453 10.1080/10428194.2018.1533129 30730240
    [Google Scholar]
  105. Naeem A. Utro F. Wang Q. Cha J. Vihinen M. Martindale S. Zhou Y. Ren Y. Tyekucheva S. Kim A.S. Fernandes S.M. Saksena G. Rhrissorrakrai K. Levovitz C. Danysh B.P. Slowik K. Jacobs R.A. Davids M.S. Lederer J.A. Zain R. Smith C.I.E. Leshchiner I. Parida L. Getz G. Brown J.R. Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance. Blood Adv. 2023 7 9 1929 1943 10.1182/bloodadvances.2022008447 36287227
    [Google Scholar]
  106. Puła B. Gołos A. Górniak P. Jamroziak K. Overcoming Ibrutinib resistance in chronic lymphocytic leukemia. Cancers 2019 11 12 1834 10.3390/cancers11121834 31766355
    [Google Scholar]
  107. Mukkamalla S.K.R. Taneja A. Malipeddi D. Chronic Lymphocytic Leukemia. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  108. Damle R.N. Calissano C. Chiorazzi N. Chronic lymphocytic leukaemia: A disease of activated monoclonal B cells. Best Pract. Res. Clin. Haematol. 2010 23 1 33 45 10.1016/j.beha.2010.02.001 20620969
    [Google Scholar]
  109. Wiśniewski K. Puła B. A review of resistance mechanisms to Bruton’s kinase inhibitors in chronic lymphocytic leukemia. Int. J. Mol. Sci. 2024 25 10 5246 10.3390/ijms25105246 38791284
    [Google Scholar]
  110. Nakhoda S. Vistarop A. Wang Y.L. Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br. J. Haematol. 2023 200 2 137 149 10.1111/bjh.18418 36029036
    [Google Scholar]
  111. Davids M.S. Brown J.R. Ibrutinib: A first in class covalent inhibitor of Bruton’s tyrosine kinase. Future Oncol. 2014 10 6 957 967 10.2217/fon.14.51 24941982
    [Google Scholar]
  112. Akinleye A. Chen Y. Mukhi N. Song Y. Liu D. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol. 2013 6 1 59 10.1186/1756‑8722‑6‑59 23958373
    [Google Scholar]
  113. Byrd J.C. Hillmen P. O’Brien S. Barrientos J.C. Reddy N.M. Coutre S. Tam C.S. Mulligan S.P. Jaeger U. Barr P.M. Furman R.R. Kipps T.J. Thornton P. Moreno C. Montillo M. Pagel J.M. Burger J.A. Woyach J.A. Dai S. Vezan R. James D.F. Brown J.R. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood 2019 133 19 2031 2042 10.1182/blood‑2018‑08‑870238 30842083
    [Google Scholar]
  114. Munir T. Brown J.R. O’Brien S. Barrientos J.C. Barr P.M. Reddy N.M. Coutre S. Tam C.S. Mulligan S.P. Jaeger U. Kipps T.J. Moreno C. Montillo M. Burger J.A. Byrd J.C. Hillmen P. Dai S. Szoke A. Dean J.P. Woyach J.A. Final analysis from RESONATE: Up to six years of follow‐up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am. J. Hematol. 2019 94 12 1353 1363 10.1002/ajh.25638 31512258
    [Google Scholar]
  115. Eyre T.A. Riches J.C. The evolution of therapies targeting bruton tyrosine kinase for the treatment of chronic lymphocytic leukaemia: Future perspectives. Cancers 2023 15 9 2596 10.3390/cancers15092596 37174062
    [Google Scholar]
  116. Molica S. Tam C. Allsup D. Polliack A. Advancements in the treatment of CLL: The rise of zanubrutinib as a preferred therapeutic option. Cancers 2023 15 14 3737 10.3390/cancers15143737 37509398
    [Google Scholar]
  117. Fakhri B. Andreadis C. The role of acalabrutinib in adults with chronic lymphocytic leukemia. Ther. Adv. Hematol. 2021 12 10.1177/2040620721990553 33613932
    [Google Scholar]
  118. Bond D.A. Woyach J.A. Targeting BTK in CLL: Beyond Ibrutinib. Curr. Hematol. Malig. Rep. 2019 14 3 197 205 10.1007/s11899‑019‑00512‑0 31028669
    [Google Scholar]
  119. O’Donnell A. Pepper C. Mitchell S. Pepper A. NF-kB and the CLL microenvironment. Front. Oncol. 2023 13 1169397 10.3389/fonc.2023.1169397 37064123
    [Google Scholar]
  120. Sobczyńska-Konefał A. Jasek M. Karabon L. Jaskuła E. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: from pathogenesis to treatment strategies. Biomark. Res. 2024 12 1 162 10.1186/s40364‑024‑00710‑w 39732734
    [Google Scholar]
  121. Lin X. Kang K. Chen P. Zeng Z. Li G. Xiong W. Yi M. Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 2024 23 1 108 10.1186/s12943‑024‑02023‑w 38762484
    [Google Scholar]
  122. vom Stein A.F. Hallek M. Nguyen P.H. Role of the tumor microenvironment in CLL pathogenesis. Semin. Hematol. 2024 61 3 142 154 10.1053/j.seminhematol.2023.12.004 38220499
    [Google Scholar]
  123. Reiff S.D. Muhowski E.M. Guinn D. Lehman A. Fabian C.A. Cheney C. Mantel R. Smith L. Johnson A.J. Young W.B. Johnson A.R. Liu L. Byrd J.C. Woyach J.A. Noncovalent inhibition of C481S Bruton tyrosine kinase by GDC-0853: a new treatment strategy for ibrutinib-resistant CLL. Blood 2018 132 10 1039 1049 10.1182/blood‑2017‑10‑809020 30018078
    [Google Scholar]
  124. Montoya S. Thompson M.C. Non-covalent bruton’s tyrosine kinase inhibitors in the treatment of chronic lymphocytic leukemia. Cancers 2023 15 14 3648 10.3390/cancers15143648 37509309
    [Google Scholar]
  125. St-Pierre F. Ma S. Use of BTK inhibitors in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL): A practical guidance. Blood Lymphat. Cancer 2022 12 81 98 10.2147/BLCTT.S326627 35911566
    [Google Scholar]
  126. Campo E. Cymbalista F. Ghia P. Jäger U. Pospisilova S. Rosenquist R. Schuh A. Stilgenbauer S. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica 2018 103 12 1956 1968 10.3324/haematol.2018.187583 30442727
    [Google Scholar]
  127. Sánchez Suárez M.D.M. Martín Roldán A. Alarcón-Payer C. Rodríguez-Gil M.Á. Poquet-Jornet J.E. Puerta Puerta J.M. Jiménez Morales A. Treatment of chronic lymphocytic leukemia in the personalized medicine era. Pharmaceutics 2023 16 1 55 10.3390/pharmaceutics16010055 38258066
    [Google Scholar]
  128. Lynch D.T. Koya S. Dogga S. Mantle Cell Lymphoma. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  129. Lynch D.T. Koya S. Dogga S. Kumar A. Mantle Cell Lymphoma. StatPearls. StatPearls Publishing 2023
    [Google Scholar]
  130. Burkart M. Karmali R. Relapsed/Refractory Mantle Cell Lymphoma: Beyond BTK Inhibitors. J. Pers. Med. 2022 12 3 376 10.3390/jpm12030376 35330376
    [Google Scholar]
  131. Schmid V.K. Hobeika E. B cell receptor signaling and associated pathways in the pathogenesis of chronic lymphocytic leukemia. Front. Oncol. 2024 14 1339620 10.3389/fonc.2024.1339620 38469232
    [Google Scholar]
  132. Zhang J. Lu X. Li J. Miao Y. Combining BTK inhibitors with BCL2 inhibitors for treating chronic lymphocytic leukemia and mantle cell lymphoma. Biomark. Res. 2022 10 1 17 10.1186/s40364‑022‑00357‑5 35379357
    [Google Scholar]
  133. Abbas H.A. Wierda W.G. Acalabrutinib: A Selective Bruton Tyrosine Kinase Inhibitor for the Treatment of B-Cell Malignancies. Front. Oncol. 2021 11 668162 10.3389/fonc.2021.668162 34055635
    [Google Scholar]
  134. Rhodes J.M. Mato A.R. Zanubrutinib (BGB-3111), a second-generation selective covalent inhibitor of Bruton’s Tyrosine Kinase and its utility in treating chronic lymphocytic leukemia. Drug Des. Devel. Ther. 2021 15 919 926 10.2147/DDDT.S250823 33688166
    [Google Scholar]
  135. Song Y. Zhou K. Zou D. Zhou J. Hu J. Yang H. Zhang H. Ji J. Xu W. Jin J. Lv F. Feng R. Gao S. Guo H. Zhou L. Huang J. Novotny W. Kim P. Yu Y. Wu B. Zhu J. Zanubrutinib in relapsed/refractory mantle cell lymphoma: Long-term efficacy and safety results from a phase 2 study. Blood 2022 139 21 3148 3158 10.1182/blood.2021014162 35303070
    [Google Scholar]
  136. Zhou K. Zou D. Zhou J. Hu J. Yang H. Zhang H. Ji J. Xu W. Jin J. Lv F. Feng R. Gao S. Zhou D. Tam C.S. Simpson D. Wang M. Phillips T.J. Opat S. Huang Z. Lu H. Song Y. Song Y. Zanubrutinib monotherapy in relapsed/refractory mantle cell lymphoma: A pooled analysis of two clinical trials. J. Hematol. Oncol. 2021 14 1 167 10.1186/s13045‑021‑01174‑3 34649571
    [Google Scholar]
  137. Hillmen P. Eichhorst B. Brown J.R. Lamanna N. O’Brien S.M. Tam C.S. Qiu L. Kazmierczak M. Zhou K. Šimkovič M. Mayer J. Gillespie-Twardy A. Shadman M. Ferrajoli A. Ganly P.S. Weinkove R. Grosicki S. Mital A. Robak T. Österborg A. Yimer H.A. Salmi T. Ji M. Yecies J. Idoine A. Wu K. Huang J. Jurczak W. Zanubrutinib versus Ibrutinib in Relapsed/Refractory Chronic lymphocytic leukemia and small lymphocytic lymphoma: Interim analysis of a randomized phase III Trial. J. Clin. Oncol. 2023 41 5 1035 1045 10.1200/JCO.22.00510 36395435
    [Google Scholar]
  138. Brown J.R. Eichhorst B. Lamanna N. O’Brien S.M. Tam C.S. Qiu L. Jurczak W. Zhou K. Šimkovič M. Mayer J. Gillespie-Twardy A. Ferrajoli A. Ganly P.S. Weinkove R. Grosicki S. Mital A. Robak T. Osterborg A. Yimer H.A. Wang M. Salmi T. Wang L. Li J. Wu K. Cohen A. Shadman M. Sustained benefit of zanubrutinib vs. ibrutinib in patients with R/R CLL/SLL: Final comparative analysis of ALPINE. Blood 2024 144 26 2706 2717 10.1182/blood.2024024667 39316666
    [Google Scholar]
  139. Jensen J.L. Mato A.R. Pena C. Roeker L.E. Coombs C.C. The potential of pirtobrutinib in multiple B-cell malignancies. Ther. Adv. Hematol. 2022 13 20406207221101697 10.1177/20406207221101697 35747462
    [Google Scholar]
  140. Gomez E.B. Ebata K. Randeria H.S. Rosendahl M.S. Cedervall E.P. Morales T.H. Hanson L.M. Brown N.E. Gong X. Stephens J. Wu W. Lippincott I. Ku K.S. Walgren R.A. Abada P.B. Ballard J.A. Allerston C.K. Brandhuber B.J. Preclinical characterization of pirtobrutinib, a highly selective, noncovalent (reversible) BTK inhibitor. Blood 2023 142 1 62 72 10.1182/blood.2022018674 36796019
    [Google Scholar]
  141. Lampson B.L. Brown J.R. Are BTK and PLCG2 mutations necessary and sufficient for ibrutinib resistance in chronic lymphocytic leukemia? Expert Rev. Hematol. 2018 11 3 185 194 10.1080/17474086.2018.1435268 29381098
    [Google Scholar]
  142. Liu T.M. Woyach J.A. Zhong Y. Lozanski A. Lozanski G. Dong S. Strattan E. Lehman A. Zhang X. Jones J.A. Flynn J. Andritsos L.A. Maddocks K. Jaglowski S.M. Blum K.A. Byrd J.C. Dubovsky J.A. Johnson A.J. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation. Blood 2015 126 1 61 68 10.1182/blood‑2015‑02‑626846 25972157
    [Google Scholar]
  143. Fruman D.A. Chiu H. Hopkins B.D. Bagrodia S. Cantley L.C. Abraham R.T. The PI3K Pathway in Human Disease. Cell 2017 170 4 605 635 10.1016/j.cell.2017.07.029 28802037
    [Google Scholar]
  144. Janz S. Waldenström macroglobulinemia: Clinical and immunological aspects, natural history, cell of origin, and emerging mouse models. ISRN Hematol. 2013 2013 1 25 10.1155/2013/815325 24106612
    [Google Scholar]
  145. Hobbs M. Fonder A. Hwa Y.L. Waldenström Macroglobulinemia: Clinical presentation, diagnosis, and management. J. Adv. Pract. Oncol. 2020 11 4 381 389 10.6004/jadpro.2020.11.4.5 33604098
    [Google Scholar]
  146. Perez Rogers A. Estes M. Hyperviscosity Syndrome. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  147. Buske C. Jurczak W. Salem J.E. Dimopoulos M.A. Managing Waldenström’s macroglobulinemia with BTK inhibitors. Leukemia 2023 37 1 35 46 10.1038/s41375‑022‑01732‑9 36402930
    [Google Scholar]
  148. Wen T. Wang J. Shi Y. Qian H. Liu P. Inhibitors targeting Bruton’s tyrosine kinase in cancers: Drug development advances. Leukemia 2021 35 2 312 332 10.1038/s41375‑020‑01072‑6 33122850
    [Google Scholar]
  149. Ababneh O. Abushukair H. Qarqash A. Syaj S. Al Hadidi S. The use of Bruton Tyrosine Kinase inhibitors in Waldenström’s Macroglobulinemia. Clin. Hematol. Int. 2022 4 1-2 21 29 10.1007/s44228‑022‑00007‑5 35950210
    [Google Scholar]
  150. Wilson W.H. Young R.M. Schmitz R. Yang Y. Pittaluga S. Wright G. Lih C.J. Williams P.M. Shaffer A.L. Gerecitano J. de Vos S. Goy A. Kenkre V.P. Barr P.M. Blum K.A. Shustov A. Advani R. Fowler N.H. Vose J.M. Elstrom R.L. Habermann T.M. Barrientos J.C. McGreivy J. Fardis M. Chang B.Y. Clow F. Munneke B. Moussa D. Beaupre D.M. Staudt L.M. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 2015 21 8 922 926 10.1038/nm.3884 26193343
    [Google Scholar]
  151. Davis R.E. Ngo V.N. Lenz G. Tolar P. Young R.M. Romesser P.B. Kohlhammer H. Lamy L. Zhao H. Yang Y. Xu W. Shaffer A.L. Wright G. Xiao W. Powell J. Jiang J. Thomas C.J. Rosenwald A. Ott G. Muller-Hermelink H.K. Gascoyne R.D. Connors J.M. Johnson N.A. Rimsza L.M. Campo E. Jaffe E.S. Wilson W.H. Delabie J. Smeland E.B. Fisher R.I. Braziel R.M. Tubbs R.R. Cook J.R. Weisenburger D.D. Chan W.C. Pierce S.K. Staudt L.M. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010 463 7277 88 92 10.1038/nature08638 20054396
    [Google Scholar]
  152. Cheah C.Y. Zucca E. Rossi D. Habermann T.M. Marginal zone lymphoma: Present status and future perspectives. Haematologica 2022 107 1 35 43 10.3324/haematol.2021.278755 34985232
    [Google Scholar]
  153. Noy A. de Vos S. Coleman M. Martin P. Flowers C.R. Thieblemont C. Morschhauser F. Collins G.P. Ma S. Peles S. Smith S.D. Barrientos J.C. Chong E. Wu S. Cheung L.W.K. Kwei K. Hauns B. Arango-Hisijara I. Chen R. Durable ibrutinib responses in relapsed/refractory marginal zone lymphoma: Long-term follow-up and biomarker analysis. Blood Adv. 2020 4 22 5773 5784 10.1182/bloodadvances.2020003121 33227125
    [Google Scholar]
  154. Xia Y. Li X. Jiang N. Wei X. A novel Bruton’s tyrosine kinase inhibitor JDB175 shows potent efficacy to suppress central nervous system lymphoma. MedComm 2023 4 6 e424 10.1002/mco2.424 37929016
    [Google Scholar]
  155. Yu H. Kong H. Li C. Dong X. Wu Y. Zhuang Y. Han S. Lei T. Yang H. Bruton’s tyrosine kinase inhibitors in primary central nervous system lymphoma—evaluation of anti-tumor efficacy and brain distribution. Transl. Cancer Res. 2021 10 5 1975 1983 10.21037/tcr‑21‑50 35116520
    [Google Scholar]
  156. Zinzani P.L. Muñoz J. Trotman J. Current and future therapies for follicular lymphoma. Exp. Hematol. Oncol. 2024 13 1 87 10.1186/s40164‑024‑00551‑1 39175100
    [Google Scholar]
  157. Qualls D. Salles G. Prospects in the management of patients with follicular lymphoma beyond first-line therapy. Haematologica 2022 107 1 19 34 10.3324/haematol.2021.278717 34985231
    [Google Scholar]
  158. Santos F.P.S. O’Brien S. Small lymphocytic lymphoma and chronic lymphocytic leukemia: are they the same disease? Cancer J. 2012 18 5 396 403 10.1097/PPO.0b013e31826cda2d 23006943
    [Google Scholar]
  159. Sander B. Campo E. Hsi E.D. Chronic lymphocytic leukaemia/small lymphocytic lymphoma and mantle cell lymphoma: From early lesions to transformation. Virchows Arch. 2023 482 1 131 145 10.1007/s00428‑022‑03460‑y
    [Google Scholar]
  160. Janeway C.A. Travers P. Walport M. Autoimmune responses are directed against self antigens. 2001
    [Google Scholar]
  161. Bruton's tyrosine kinase. 2025 Available from: https://en.wikipedia.org/w/index.php?title=Bruton%27s_tyrosine_kinase&oldid=1281322692
  162. Xia B. Qu F. Yuan T. Zhang Y. Targeting Bruton’s tyrosine kinase signaling as an emerging therapeutic agent of B-cell malignancies. Oncol. Lett. 2015 10 6 3339 3344 10.3892/ol.2015.3802 26788133
    [Google Scholar]
  163. Cano R.L.E. Lopera H.D.E. Introduction to T and B lymphocytes. Autoimmunity: From Bench to Bedside. Anaya J.M. Shoenfeld Y. Rojas-Villarraga A. Bogota, Colombia El Rosario University Press 2013
    [Google Scholar]
  164. Hofmann K. Clauder A.K. Manz R.A. Targeting B. Cells and Plasma Cells in Autoimmune Diseases. Front. Immunol. 2018 9 835 10.3389/fimmu.2018.00835 29740441
    [Google Scholar]
  165. Tsai D.Y. Hung K.H. Chang C.W. Lin K.I. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. J. Biomed. Sci. 2019 26 1 64 10.1186/s12929‑019‑0558‑1 31472685
    [Google Scholar]
  166. Vazquez M.I. Catalan-Dibene J. Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015 74 2 318 326 10.1016/j.cyto.2015.02.007 25742773
    [Google Scholar]
  167. Tanaka T. Narazaki M. Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014 6 10 a016295 10.1101/cshperspect.a016295 25190079
    [Google Scholar]
  168. Berry C.T. Frazee C.S. Herman P.J. Chen S. Chen A. Kuo Y. Ellebrecht C.T. Current advancements in cellular immunotherapy for autoimmune disease. Semin. Immunopathol. 2025 47 1 7 10.1007/s00281‑024‑01034‑5 39821376
    [Google Scholar]
  169. Allen M.E. Rus V. Szeto G.L. Leveraging heterogeneity in systemic lupus erythematosus for new therapies. Trends Mol. Med. 2021 27 2 152 171 10.1016/j.molmed.2020.09.009 33046407
    [Google Scholar]
  170. Yap H.Y. Tee S.Z.Y. Wong M.M.T. Chow S.K. Peh S.C. Teow S.Y. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development. Cells 2018 7 10 161 10.3390/cells7100161 30304822
    [Google Scholar]
  171. Jang S. Kwon E.J. Lee J.J. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int. J. Mol. Sci. 2022 23 2 905 10.3390/ijms23020905 35055087
    [Google Scholar]
  172. Chimenti M.S. Triggianese P. Conigliaro P. Candi E. Melino G. Perricone R. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015 6 9 e1887 10.1038/cddis.2015.246 26379192
    [Google Scholar]
  173. Weber A.N.R. Bittner Z. Liu X. Dang T.M. Radsak M.P. Brunner C. Bruton’s Tyrosine Kinase: An emerging key player in innate immunity. Front. Immunol. 2017 8 1454 10.3389/fimmu.2017.01454 29167667
    [Google Scholar]
  174. Garg N. Padron E.J. Rammohan K.W. Goodman C.F. Bruton’s Tyrosine Kinase inhibitors: The next frontier of B-Cell-targeted therapies for cancer, autoimmune disorders, and multiple sclerosis. J. Clin. Med. 2022 11 20 6139 10.3390/jcm11206139 36294458
    [Google Scholar]
  175. Neys S.F.H. Rip J. Hendriks R.W. Corneth O.B.J. Bruton’s tyrosine kinase inhibition as an emerging therapy in systemic autoimmune Disease. Drugs 2021 81 14 1605 1626 10.1007/s40265‑021‑01592‑0 34609725
    [Google Scholar]
  176. Arneson L.C. Carroll K.J. Ruderman E.M. Bruton’s tyrosine kinase inhibition for the treatment of rheumatoid arthritis. ImmunoTargets Ther. 2021 10 333 342 10.2147/ITT.S288550 34485183
    [Google Scholar]
  177. Satterthwaite A.B. Bruton’s Tyrosine Kinase, a component of B cell signaling pathways, has multiple roles in the pathogenesis of lupus. Front. Immunol. 2018 8 1986 10.3389/fimmu.2017.01986 29403475
    [Google Scholar]
  178. Wu F. Gao J. Kang J. Wang X. Niu Q. Liu J. Zhang L. B cells in rheumatoid arthritis: Pathogenic mechanisms and treatment prospects. Front. Immunol. 2021 12 750753 10.3389/fimmu.2021.750753 34650569
    [Google Scholar]
  179. Di Paolo J.A. Huang T. Balazs M. Barbosa J. Barck K.H. Bravo B.J. Carano R.A.D. Darrow J. Davies D.R. DeForge L.E. Diehl L. Ferrando R. Gallion S.L. Giannetti A.M. Gribling P. Hurez V. Hymowitz S.G. Jones R. Kropf J.E. Lee W.P. Maciejewski P.M. Mitchell S.A. Rong H. Staker B.L. Whitney J.A. Yeh S. Young W.B. Yu C. Zhang J. Reif K. Currie K.S. Specific Btk inhibition suppresses B cell– and myeloid cell–mediated arthritis. Nat. Chem. Biol. 2011 7 1 41 50 10.1038/nchembio.481 21113169
    [Google Scholar]
  180. Engelen S.E. Robinson A.J.B. Zurke Y.X. Monaco C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 2022 19 8 522 542 10.1038/s41569‑021‑00668‑4 35102320
    [Google Scholar]
  181. Ning J. Wang Y. Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front. Immunol. 2024 15 1483834 10.3389/fimmu.2024.1483834 39502703
    [Google Scholar]
  182. Deeks S.G. Archin N. Cannon P. Collins S. Jones R.B. de Jong M.A.W.P. Lambotte O. Lamplough R. Ndung’u T. Sugarman J. Tiemessen C.T. Vandekerckhove L. Lewin S.R. Deeks S. Lewin S. de Jong M. Ndhlovu Z. Chomont N. Brumme Z. Deng K. Jasenosky L. Jefferys R. Orta-Resendiz A. Mardarelli F. Nijhuis M. Bar K. Howell B. Schneider A. Turk G. Nabatanzi R. Blankson J. Garcia J.V. Paiardini M. Lunzen J. Antoniadi C. Côrtes F.H. Valente S. Søgaard O.S. Diaz R.S. Ott M. Dunham R. Schwarze S. Patrigeon S.P. Nabukenya J. Caskey M. Mothe B. Wang F.S. Fidler S. SenGupta D. Dressler S. Matoga M. Kiem H-P. Tebas P. Kityo C. Dropulic B. Louella M. Das K.T. Persaud D. Chahroudi A. Luzuriaga K. Puthanakit T. Safrit J. Masheto G. Dubé K. Power J. Salzwedel J. Likhitwonnawut U. Taylor J. Nuh O.L. Dong K. Kankaka E.N. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat. Med. 2021 27 12 2085 2098 10.1038/s41591‑021‑01590‑5 34848888
    [Google Scholar]
  183. Kuo G. Kumbhar R. Blair W. Dawson V.L. Dawson T.M. Mao X. Emerging targets of α-synuclein spreading in α-synucleinopathies: a review of mechanistic pathways and interventions. Mol. Neurodegener. 2025 20 1 10 10.1186/s13024‑025‑00797‑1 39849529
    [Google Scholar]
  184. Mansfield L. Ramponi V. Gupta K. Stevenson T. Mathew A.B. Barinda A.J. Herbstein F. Morsli S. Emerging insights in senescence: Pathways from preclinical models to therapeutic innovations. NPJ Aging 2024 10 1 53 10.1038/s41514‑024‑00181‑1 39578455
    [Google Scholar]
  185. Zhernov Y.V. Petrova V.O. Simanduyev M.Y. Shcherbakov D.V. Polibin R.V. Mitrokhin O.V. Basov A.A. Zabroda N.N. Vysochanskaya S.O. Al-khaleefa E. Pashayeva K.R. Feyziyeva N.Y. Microbicides for topical HIV immunoprophylaxis: Current status and future prospects. Pharmaceuticals 2024 17 6 668 10.3390/ph17060668 38931337
    [Google Scholar]
  186. Crofford L.J. Nyhoff L.E. Sheehan J.H. Kendall P.L. The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy. Expert Rev. Clin. Immunol. 2016 12 7 763 773 10.1586/1744666X.2016.1152888 26864273
    [Google Scholar]
  187. Valentino T.R. Chen N. Makhijani P. Khan S. Winer S. Revelo X.S. Winer D.A. The role of autoantibodies in bridging obesity, aging, and immunosenescence. Immun. Ageing 2024 21 1 85 10.1186/s12979‑024‑00489‑2 39616399
    [Google Scholar]
  188. Crawford J.J. Johnson A.R. Misner D.L. Belmont L.D. Castanedo G. Choy R. Coraggio M. Dong L. Eigenbrot C. Erickson R. Ghilardi N. Hau J. Katewa A. Kohli P.B. Lee W. Lubach J.W. McKenzie B.S. Ortwine D.F. Schutt L. Tay S. Wei B. Reif K. Liu L. Wong H. Young W.B. Discovery of GDC-0853: A potent, selective, and noncovalent bruton’s tyrosine kinase inhibitor in early clinical development. J. Med. Chem. 2018 61 6 2227 2245 10.1021/acs.jmedchem.7b01712 29457982
    [Google Scholar]
  189. Byrd J.C. Smith S. Wagner-Johnston N. Sharman J. Chen A.I. Advani R. Augustson B. Marlton P. Renee Commerford S. Okrah K. Liu L. Murray E. Penuel E. Ward A.F. Flinn I.W. First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget 2018 9 16 13023 13035 10.18632/oncotarget.24310 29560128
    [Google Scholar]
  190. Schneider R. Oh J. Bruton’s tyrosine kinase inhibition in multiple sclerosis. Curr. Neurol. Neurosci. Rep. 2022 22 11 721 734 10.1007/s11910‑022‑01229‑z 36301434
    [Google Scholar]
  191. Montalban X. Vermersch P. Arnold D.L. Bar-Or A. Cree B.A.C. Cross A.H. Kubala Havrdova E. Kappos L. Stuve O. Wiendl H. Wolinsky J.S. Dahlke F. Le Bolay C. Shen Loo L. Gopalakrishnan S. Hyvert Y. Javor A. Guehring H. Tenenbaum N. Tomic D. Safety and efficacy of evobrutinib in relapsing multiple sclerosis (evolutionRMS1 and evolutionRMS2): Two multicentre, randomised, double-blind, active-controlled, phase 3 trials. Lancet Neurol. 2024 23 11 1119 1132 10.1016/S1474‑4422(24)00328‑4 39307151
    [Google Scholar]
  192. Negrei C. Bojinca V. Balanescu A. Bojinca M. Baconi D. Spandidos D.A. Tsatsakis A.M. Stan M. Management of rheumatoid arthritis: Impact and risks of various therapeutic approaches. Exp. Ther. Med. 2016 11 4 1177 1183 10.3892/etm.2016.3045 27073419
    [Google Scholar]
  193. Himmelbauer M.K. Bajrami B. Basile R. Capacci A. Chen T. Choi C.K. Gilfillan R. Gonzalez-Lopez de Turiso F. Gu C. Hoemberger M. Johnson D.S. Jones J.H. Kadakia E. Kirkland M. Lin E.Y. Liu Y. Ma B. Magee T. Mantena S. Marx I.E. Metrick C.M. Mingueneau M. Murugan P. Muste C.A. Nadella P. Nevalainen M. Parker Harp C.R. Pattaropong V. Pietrasiewicz A. Prince R.J. Purgett T.J. Santoro J.C. Schulz J. Sciabola S. Tang H. Vandeveer H.G. Wang T. Yousaf Z. Helal C.J. Hopkins B.T. Discovery and preclinical characterization of BIIB129, a Covalent, selective, and brain-penetrant BTK inhibitor for the treatment of multiple sclerosis. J. Med. Chem. 2024 67 10 8122 8140 10.1021/acs.jmedchem.4c00220 38712838
    [Google Scholar]
  194. Matura L.A. Ventetuolo C.E. Palevsky H.I. Lederer D.J. Horn E.M. Mathai S.C. Pinder D. Archer-Chicko C. Bagiella E. Roberts K.E. Tracy R.P. Hassoun P.M. Girgis R.E. Kawut S.M. Interleukin-6 and tumor necrosis factor-α are associated with quality of life-related symptoms in pulmonary arterial hypertension. Ann. Am. Thorac. Soc. 2015 12 3 370 375 10.1513/AnnalsATS.201410‑463OC 25615959
    [Google Scholar]
  195. Schuerwegh A.J. Dombrecht E.J. Stevens W.J. Van Offel J.F. Bridts C.H. De Clerck L.S. Influence of pro-inflammatory (IL-1α, IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis Cartilage 2003 11 9 681 687 10.1016/S1063‑4584(03)00156‑0 12954239
    [Google Scholar]
  196. Kany S. Vollrath J.T. Relja B. Cytokines in inflammatory disease. Int. J. Mol. Sci. 2019 20 23 6008 10.3390/ijms20236008 31795299
    [Google Scholar]
  197. Shobeiri P. Seyedmirzaei H. Karimi N. Rashidi F. Teixeira A.L. Brand S. Sadeghi-Bahmani D. Rezaei N. IL-6 and TNF-α responses to acute and regular exercise in adult individuals with multiple sclerosis (MS): A systematic review and meta-analysis. Eur. J. Med. Res. 2022 27 1 185 10.1186/s40001‑022‑00814‑9 36156182
    [Google Scholar]
  198. Jung S.M. Kim W.U. Targeted immunotherapy for autoimmune disease. Immune Netw. 2022 22 1 e9 10.4110/in.2022.22.e9 35291650
    [Google Scholar]
  199. Chu C.Q. Complement-targeted therapy for autoimmune diseases. Med. Rev. 2024 3 6 521 10.1515/mr‑2023‑0051
    [Google Scholar]
  200. Shi Y. Shi M. Wang Y. You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct. Target. Ther. 2024 9 1 322 10.1038/s41392‑024‑02002‑z 39543114
    [Google Scholar]
  201. Adytia G.J. Sutanto H. Pratiwi L. Fetarayani D. Advances in synthetic immunology for targeted treatment of systemic autoimmune diseases: Opportunities, challenges, and future directions. Immuno 2025 5 1 6 10.3390/immuno5010006
    [Google Scholar]
  202. Langrish C.L. Bradshaw J.M. Francesco M.R. Owens T.D. Xing Y. Shu J. LaStant J. Bisconte A. Outerbridge C. White S.D. Hill R.J. Brameld K.A. Goldstein D.M. Nunn P.A. Preclinical efficacy and anti-inflammatory mechanisms of action of the bruton tyrosine kinase inhibitor rilzabrutinib for immune-mediated disease. J. Immunol. 2021 206 1454 10.4049/jimmunol.2001130
    [Google Scholar]
  203. Krämer J. Bar-Or A. Turner T.J. Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat. Rev. Neurol. 2023 19 5 289 304 10.1038/s41582‑023‑00800‑7 37055617
    [Google Scholar]
  204. Ding Q. Hu W. Wang R. Yang Q. Zhu M. Li M. Cai J. Rose P. Mao J. Zhu Y.Z. Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct. Target. Ther. 2023 8 1 68 10.1038/s41392‑023‑01331‑9 36797236
    [Google Scholar]
  205. Rosman Z. Shoenfeld Y. Zandman-Goddard G. Biologic therapy for autoimmune diseases: An update. BMC Med. 2013 11 1 88 10.1186/1741‑7015‑11‑88 23557513
    [Google Scholar]
  206. Burger J.A. Bruton tyrosine kinase inhibitors. Cancer J. 2019 25 6 386 393 10.1097/PPO.0000000000000412 31764119
    [Google Scholar]
  207. García-Carrasco M. Mendoza Pinto C. Solís Poblano J.C. Systemic lupus erythematosus. Autoimmunity: From Bench to Bedside. Anaya J.M. Shoenfeld Y. Rojas-Villarraga A. Bogota, Colombia El Rosario University Press 2013
    [Google Scholar]
  208. Justiz Vaillant A.A. Goyal A. Varacallo M.A. Systemic Lupus Erythematosus. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  209. Mendes-Bastos P. Brasileiro A. Kolkhir P. Frischbutter S. Scheffel J. Moñino-Romero S. Maurer M. Bruton’s tyrosine kinase inhibition: An emerging therapeutic strategy in immune‐mediated dermatological conditions. Allergy 2022 77 8 2355 2366 10.1111/all.15261 35175630
    [Google Scholar]
  210. Lorenzo-Vizcaya A. Fasano S. Isenberg D.A. Bruton’s Tyrosine kinase inhibitors: A new therapeutic target for the treatment of SLE? ImmunoTargets Ther. 2020 9 105 110 10.2147/ITT.S240874 32582577
    [Google Scholar]
  211. Giltiay N. V. Chappell C. P. Clark E. A. B-cell selection and the development of autoantibodies. Arthritis Res. Therap 2012 S1 10.1186/ar3918
    [Google Scholar]
  212. Atisha-Fregoso Y. Toz B. Diamond B. Meant to B: B cells as a therapeutic target in systemic lupus erythematosus. J. Clin. Invest. 2021 131 12 e149095 10.1172/JCI149095 34128474
    [Google Scholar]
  213. Wang J. Lau K.Y. Jung J. Ravindran P. Barrat F.J. Bruton’s tyrosine kinase regulates TLR9 but not TLR7 signaling in human plasmacytoid dendritic cells. Eur. J. Immunol. 2014 44 4 1130 1136 10.1002/eji.201344030 24375473
    [Google Scholar]
  214. Bencze D. Fekete T. Pázmándi K. Type I interferon production of plasmacytoid dendritic cells under control. Int. J. Mol. Sci. 2021 22 8 4190 10.3390/ijms22084190 33919546
    [Google Scholar]
  215. Buggy J.J. Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int. Rev. Immunol. 2012 31 2 119 132 10.3109/08830185.2012.664797 22449073
    [Google Scholar]
  216. Patel V. Balakrishnan K. Bibikova E. Ayres M. Keating M.J. Wierda W.G. Gandhi V. Comparison of Acalabrutinib, A selective bruton tyrosine kinase inhibitor, with Ibrutinib in chronic lymphocytic leukemia cells. Clin. Cancer Res. 2017 23 14 3734 3743 10.1158/1078‑0432.CCR‑16‑1446 28034907
    [Google Scholar]
  217. McGee M.C. August A. Huang W. BTK/ITK dual inhibitors: Modulating immunopathology and lymphopenia for COVID-19 therapy. J. Leukoc. Biol. 2021 109 1 49 53 10.1002/JLB.5COVR0620‑306R 32640487
    [Google Scholar]
  218. Haselmayer P. Camps M. Liu-Bujalski L. Nguyen N. Morandi F. Head J. O’Mahony A. Zimmerli S.C. Bruns L. Bender A.T. Schroeder P. Grenningloh R. Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J. Immunol. 2019 202 10 2888 2906 10.4049/jimmunol.1800583
    [Google Scholar]
  219. Wallace D.J. Dörner T. Pisetsky D.S. Sanchez-Guerrero J. Patel A.C. Parsons-Rich D. Le Bolay C. Drouin E.E. Kao A.H. Guehring H. Dall’Era M. Efficacy and safety of the Bruton’s Tyrosine kinase inhibitor evobrutinib in systemic Lupus Erythematosus: Results of a phase II, Randomized, Double‐Blind, Placebo‐Controlled Dose‐Ranging Trial. ACR Open Rheumatol. 2023 5 1 38 48 10.1002/acr2.11511 36530019
    [Google Scholar]
  220. Liu Y. Huang Z. Zhang T.X. Han B. Yang G. Jia D. Yang L. Liu Q. Lau A.Y.L. Paul F. Verkhratsky A. Shi F.D. Zhang C. Bruton’s tyrosine kinase-bearing B cells and microglia in neuromyelitis optica spectrum disorder. J. Neuroinflammation 2023 20 1 309 10.1186/s12974‑023‑02997‑2 38129902
    [Google Scholar]
  221. Ma B. Bohnert T. Otipoby K.L. Tien E. Arefayene M. Bai J. Bajrami B. Bame E. Chan T.R. Humora M. MacPhee J.M. Marcotte D. Mehta D. Metrick C.M. Moniz G. Polack E. Poreci U. Prefontaine A. Sheikh S. Schroeder P. Smirnakis K. Zhang L. Zheng F. Hopkins B.T. Discovery of BIIB068: A selective, potent, reversible bruton’s tyrosine kinase inhibitor as an orally efficacious agent for autoimmune diseases. J. Med. Chem. 2020 63 21 12526 12541 10.1021/acs.jmedchem.0c00702 32696648
    [Google Scholar]
  222. Puri P. Jiang S.H. Yang Y. Mackay F. Yu D. Understand SLE heterogeneity in the era of omics, big data, and artificial intelligence. Rheumatol. Autoimmun. 2021 1 1 40 51 10.1002/rai2.12010
    [Google Scholar]
  223. Zarrin A.A. Bao K. Lupardus P. Vucic D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov. 2021 20 1 39 63 10.1038/s41573‑020‑0082‑8 33077936
    [Google Scholar]
  224. Smith C.I.E. Burger J.A. Resistance mutations to BTK inhibitors originate from the NF-κB but not from the PI3K-RAS-MAPK arm of the B cell receptor signaling pathway. Front. Immunol. 2021 12 689472 10.3389/fimmu.2021.689472 34177947
    [Google Scholar]
  225. Peterson L. Fujinami R. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 2007 184 1-2 37 44 10.1016/j.jneuroim.2006.11.015 17196667
    [Google Scholar]
  226. Simkins T.J. Duncan G.J. Bourdette D. Chronic demyelination and axonal degeneration in multiple sclerosis: Pathogenesis and therapeutic implications. Curr. Neurol. Neurosci. Rep. 2021 21 6 26 10.1007/s11910‑021‑01110‑5 33835275
    [Google Scholar]
  227. Tafti D. Ehsan M. Xixis K.L. Multiple Sclerosis. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  228. Gruber R.C. Wirak G.S. Blazier A.S. Lee L. Dufault M.R. Hagan N. Chretien N. LaMorte M. Hammond T.R. Cheong A. Ryan S.K. Macklin A. Zhang M. Pande N. Havari E. Turner T.J. Chomyk A. Christie E. Trapp B.D. Ofengeim D. BTK regulates microglial function and neuroinflammation in human stem cell models and mouse models of multiple sclerosis. Nat. Commun. 2024 15 1 10116 10.1038/s41467‑024‑54430‑8 39578444
    [Google Scholar]
  229. Vermersch P. Airas L. Berger T. Deisenhammer F. Grigoriadis N. Hartung H.P. Magyari M. Popescu V. Pozzilli C. Pugliatti M. Van Wijmeersch B. Zakaria M. Oreja-Guevara C. The role of microglia in multiple sclerosis: Implications for treatment with Bruton’s tyrosine kinase inhibitors. Front. Immunol. 2025 16 1495529 10.3389/fimmu.2025.1495529 40443664
    [Google Scholar]
  230. Geladaris A. Torke S. Weber M.S. Bruton’s Tyrosine kinase inhibitors in multiple sclerosis: pioneering the path towards treatment of progression? CNS Drugs 2022 36 10 1019 1030 10.1007/s40263‑022‑00951‑z 36178589
    [Google Scholar]
  231. Airas L. Bermel R.A. Chitnis T. Hartung H.P. Nakahara J. Stuve O. Williams M.J. Kieseier B.C. Wiendl H. A review of Bruton’s tyrosine kinase inhibitors in multiple sclerosis. Ther. Adv. Neurol. Disord. 2024 17 10.1177/17562864241233041 38638671
    [Google Scholar]
  232. Carsons S.E. Patel B.C. Sjogren Syndrome. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  233. Fox R.I. Fox C.M. McCoy S.S. Emerging treatment for Sjögren’s disease: A review of recent phase II and III trials. Expert Opin. Emerg. Drugs 2023 28 2 107 120 10.1080/14728214.2023.2209720 37127914
    [Google Scholar]
  234. Rip J. Van Der Ploeg E.K. Hendriks R.W. Corneth O.B. The role of Bruton’s tyrosine kinase in immune cell signaling and systemic autoimmunity. Crit. Rev. Immunol. 2018 38 1 17 10.1615/CritRevImmunol.2018025184
    [Google Scholar]
  235. Corneth O.B.J. Neys S.F.H. Hendriks R.W. Aberrant B cell signaling in autoimmune diseases. Cells 2022 11 21 3391 10.3390/cells11213391 36359789
    [Google Scholar]
  236. Dörner T. Kaul M. Szántó A. Tseng J.C. Papas A.S. Pylvaenaeinen I. Hanser M. Abdallah N. Grioni A. Santos Da Costa A. Ferrero E. Gergely P. Hillenbrand R. Avrameas A. Cenni B. Siegel R.M. Efficacy and safety of remibrutinib, a selective potent oral BTK inhibitor, in Sjögren’s syndrome: Results from a randomised, double-blind, placebo-controlled phase 2 trial. Ann. Rheum. Dis. 2024 83 3 360 371 10.1136/ard‑2023‑224691 37932009
    [Google Scholar]
  237. Parisis D. Chivasso C. Perret J. Soyfoo M.S. Delporte C. Current state of knowledge on primary Sjögren’s Syndrome, an autoimmune exocrinopathy. J. Clin. Med. 2020 9 7 2299 10.3390/jcm9072299 32698400
    [Google Scholar]
  238. Audia S. Mahévas M. Samson M. Godeau B. Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun. Rev. 2017 16 6 620 632 10.1016/j.autrev.2017.04.012 28428120
    [Google Scholar]
  239. Vayne C. Guéry E.A. Rollin J. Baglo T. Petermann R. Gruel Y. Pathophysiology and diagnosis of drug-induced immune thrombocytopenia. J. Clin. Med. 2020 9 7 2212 10.3390/jcm9072212 32668640
    [Google Scholar]
  240. Kuter D.J. Efraim M. Mayer J. Trněný M. McDonald V. Bird R. Regenbogen T. Garg M. Kaplan Z. Tzvetkov N. Choi P.Y. Jansen A.J.G. Kostal M. Baker R. Gumulec J. Lee E.J. Cunningham I. Goncalves I. Warner M. Boccia R. Gernsheimer T. Ghanima W. Bandman O. Burns R. Neale A. Thomas D. Arora P. Zheng B. Cooper N. Rilzabrutinib, an oral BTK inhibitor, in immune thrombocytopenia. N. Engl. J. Med. 2022 386 15 1421 1431 10.1056/NEJMoa2110297 35417637
    [Google Scholar]
  241. Roeser A. Lazarus A.H. Mahévas M. B cells and antibodies in refractory immune thrombocytopenia. Br. J. Haematol. 2023 203 1 43 53 10.1111/bjh.18773 37002711
    [Google Scholar]
  242. Cooper N. Jansen A.J.G. Bird R. Mayer J. Sholzberg M. Tarantino M.D. Garg M. Ypma P.F. McDonald V. Percy C. Košťál M. Goncalves I. Bogdanov L.H. Gernsheimer T.B. Diab R. Yao M. Daak A. Kuter D.J. Efficacy and safety results with Rilzabrutinib, an oral bruton tyrosine kinase inhibitor, in patients with immune thrombocytopenia: Phase 2 part B Study. Am. J. Hematol. 2025 100 3 439 449 10.1002/ajh.27539 39844469
    [Google Scholar]
  243. Murrell D.F. Patsatsi A. Stavropoulos P. Baum S. Zeeli T. Kern J.S. Roussaki-Schulze A.V. Sinclair R. Bassukas I.D. Thomas D. Neale A. Arora P. Caux F. Werth V.P. Gourlay S.G. Joly P. Proof of concept for the clinical effects of oral rilzabrutinib, the first Bruton tyrosine kinase inhibitor for pemphigus vulgaris: The phase II BELIEVE study. Br. J. Dermatol. 2021 185 4 745 755 10.1111/bjd.20431 33942286
    [Google Scholar]
  244. Toplicanin A. Toncev L. Matovic Zaric V. Sokic Milutinovic A. Autoimmune hemolytic anemia in inflammatory bowel disease—report of a case and review of the literature. Life 2022 12 11 1784 10.3390/life12111784 36362944
    [Google Scholar]
  245. Yun Z. Duan L. Liu X. Cai Q. Li C. An update on the biologics for the treatment of antiphospholipid syndrome. Front. Immunol. 2023 14 1145145 10.3389/fimmu.2023.1145145 37275894
    [Google Scholar]
  246. Lim W. Prevention of thrombosis in antiphospholipid syndrome. Hematology (Am. Soc. Hematol. Educ. Program) 2016 2016 1 707 713 10.1182/asheducation‑2016.1.707 27913550
    [Google Scholar]
  247. Li R. Tang H. Burns J.C. Hopkins B.T. Le Coz C. Zhang B. de Barcelos I.P. Romberg N. Goldstein A.C. Banwell B.L. Luning Prak E.T. Mingueneau M. Bar-Or A. BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathol. 2022 143 4 505 521 10.1007/s00401‑022‑02411‑w 35303161
    [Google Scholar]
  248. Wu Y.C. Chen C.S. Chan Y.J. The outbreak of COVID-19: An overview. J. Chin. Med. Assoc. 2020 83 3 217 220 10.1097/JCMA.0000000000000270 32134861
    [Google Scholar]
  249. Cascella M. Rajnik M. Aleem A. Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  250. Kifle Z.D. Bruton tyrosine kinase inhibitors as potential therapeutic agents for COVID-19: A review. Metab. Open 2021 11 100116 10.1016/j.metop.2021.100116 34345815
    [Google Scholar]
  251. Roschewski M. Lionakis M.S. Sharman J.P. Roswarski J. Goy A. Monticelli M.A. Roshon M. Wrzesinski S.H. Desai J.V. Zarakas M.A. Collen J. Rose K.M. Hamdy A. Izumi R. Wright G.W. Chung K.K. Baselga J. Staudt L.M. Wilson W.H. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci. Immunol. 2020 5 48 eabd0110 10.1126/sciimmunol.abd0110 32503877
    [Google Scholar]
  252. Zong Z. Wei Y. Ren J. Zhang L. Zhou F. The intersection of COVID-19 and cancer: Signaling pathways and treatment implications. Mol. Cancer 2021 20 1 76 10.1186/s12943‑021‑01363‑1 34001144
    [Google Scholar]
  253. Galitzia A. Maccaferri M. Mauro F.R. Murru R. Marasca R. Chronic lymphocytic leukemia: Management of adverse events in the era of targeted agents. Cancers 2024 16 11 1996 10.3390/cancers16111996 38893115
    [Google Scholar]
  254. Feng Y. Hu X. Wang X. Targeted protein degradation in hematologic malignancies: Clinical progression towards novel therapeutics. Biomark. Res. 2024 12 1 85 10.1186/s40364‑024‑00638‑1 39169396
    [Google Scholar]
  255. Zhu S. Jung J. Victor E. Arceo J. Gokhale S. Xie P. Clinical trials of the BTK inhibitors Ibrutinib and Acalabrutinib in human diseases beyond B cell malignancies. Front. Oncol. 2021 11 737943 10.3389/fonc.2021.737943 34778053
    [Google Scholar]
  256. Clinical Trials Using Acalabrutinib 2025 Available from: https://www.cancer.gov/research/participate/clinical-trials/intervention/acalabrutinib?pn=1
  257. Aldea M. Michot J.M. Danlos F.X. Ribas A. Soria J.C. Repurposing of anticancer drugs expands possibilities for antiviral and anti-inflammatory discovery in COVID-19. Cancer Discov. 2021 11 6 1336 1344 10.1158/2159‑8290.CD‑21‑0144 33846172
    [Google Scholar]
  258. Zheng W. Zeng Z. Lin S. Hou P. Revisiting potential value of antitumor drugs in the treatment of COVID-19. Cell Biosci. 2022 12 1 165 10.1186/s13578‑022‑00899‑z 36182930
    [Google Scholar]
  259. Rezaei M. Barati S. Babamahmoodi A. Dastan F. Marjani M. The possible role of bruton tyrosine kinase inhibitors in the treatment of COVID-19: A review. Curr. Ther. Res. Clin. Exp. 2022 96 100658 10.1016/j.curtheres.2021.100658 34931090
    [Google Scholar]
  260. Stack M. Sacco K. Castagnoli R. Livinski A.A. Notarangelo L.D. Lionakis M.S. BTK inhibitors for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Systematic Review. Research square 2021 10.21203/rs.3.rs‑319342/v1
    [Google Scholar]
  261. Benner B. Carson W.E. Observations on the use of Bruton’s tyrosine kinase inhibitors in SAR-CoV-2 and cancer. J. Hematol. Oncol. 2021 14 1 15 10.1186/s13045‑020‑00999‑8 33441177
    [Google Scholar]
  262. Tan L.Y. Komarasamy T.V. RMT Balasubramaniam V. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front. Immunol. 2021 12 742941 10.3389/fimmu.2021.742941 34659238
    [Google Scholar]
  263. Wu Y. Sun X. Kang K. Yang Y. Li H. Zhao A. Niu T. Hemophagocytic lymphohistiocytosis: Current treatment advances, emerging targeted therapy and underlying mechanisms. J. Hematol. Oncol. 2024 17 1 106 10.1186/s13045‑024‑01621‑x 39511607
    [Google Scholar]
  264. Shin J.J. Park J. Shin H.S. Arab I. Suk K. Lee W.H. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Int. J. Mol. Sci. 2024 25 5 2670 10.3390/ijms25052670 38473915
    [Google Scholar]
  265. Xiao X. Huang S. Chen S. Wang Y. Sun Q. Xu X. Li Y. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J. Exp. Clin. Cancer Res. 2021 40 1 367 10.1186/s13046‑021‑02148‑6 34794490
    [Google Scholar]
  266. de Porto A.P. Liu Z. de Beer R. Florquin S. de Boer O.J. Hendriks R.W. van der Poll T. de Vos A.F. Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses in the lung during murine pneumococcal pneumonia. Mol. Med. 2019 25 1 3 10.1186/s10020‑018‑0069‑7 30646846
    [Google Scholar]
  267. Toledo B. Chen Z. L.; Paniagua-Sancho, M.; Marchal, J.A.; Perán, M.; Giovannetti, E. Deciphering the performance of macrophages in tumour microenvironment: A call for precision immunotherapy. J. Hematol. Oncol. 2024 17 1 44 10.1186/s13045‑024‑01559‑0 38863020
    [Google Scholar]
  268. Derosa L. Melenotte C. Griscelli F. Gachot B. Marabelle A. Kroemer G. Zitvogel L. The immuno-oncological challenge of COVID-19. Nat. Cancer 2020 1 10 946 964 10.1038/s43018‑020‑00122‑3 35121872
    [Google Scholar]
  269. Florence J.M. Krupa A. Booshehri L.M. Davis S.A. Matthay M.A. Kurdowska A.K. Inhibiting Bruton’s tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018 315 1 L52 L58 10.1152/ajplung.00047.2018 29516781
    [Google Scholar]
  270. Krupa A. Fol M. Rahman M. Stokes K.Y. Florence J.M. Leskov I.L. Khoretonenko M.V. Matthay M.A. Liu K.D. Calfee C.S. Tvinnereim A. Rosenfield G.R. Kurdowska A.K. Silencing Bruton’s tyrosine kinase in alveolar neutrophils protects mice from LPS/immune complex-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014 307 6 L435 L448 10.1152/ajplung.00234.2013 25085625
    [Google Scholar]
  271. Rao H. Song X. Lei J. Lu P. Zhao G. Kang X. Zhang D. Zhang T. Ren Y. Peng C. Li Y. Pei J. Cao Z. Ibrutinib prevents acute lung injury via multi-targeting BTK, FLT3 and EGFR in mice. Int. J. Mol. Sci. 2022 23 21 13478 10.3390/ijms232113478 36362264
    [Google Scholar]
  272. Leal V.N.C. Bork F. Mateo Tortola M. von Guilleaume J.C. Greve C.L. Bugl S. Danker B. Bittner Z.A. Grimbacher B. Pontillo A. Weber A.N.R. Bruton’s tyrosine kinase (BTK) and matrix metalloproteinase-9 (MMP-9) regulate NLRP3 inflammasome-dependent cytokine and neutrophil extracellular trap responses in primary neutrophils. J. Allergy Clin. Immunol. 2025 155 2 569 582 10.1016/j.jaci.2024.10.035 39547282
    [Google Scholar]
  273. Klok F.A. Kruip M.J.H.A. van der Meer N.J.M. Arbous M.S. Gommers D.A.M.P.J. Kant K.M. Kaptein F.H.J. van Paassen J. Stals M.A.M. Huisman M.V. Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020 191 145 147 10.1016/j.thromres.2020.04.013 32291094
    [Google Scholar]
  274. Jenner W.J. Kanji R. Mirsadraee S. Gue Y.X. Price S. Prasad S. Gorog D.A. Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: a systematic review. J. Thromb. Thrombolysis 2021 51 3 595 607 10.1007/s11239‑021‑02394‑7 33586113
    [Google Scholar]
  275. Li J. Zhou Y. Ma J. Zhang Q. Shao J. Liang S. Yu Y. Li W. Wang C. The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID. Signal Transduct. Target. Ther. 2023 8 1 416 10.1038/s41392‑023‑01640‑z 37907497
    [Google Scholar]
  276. Shende P. Khanolkar B. Gaud R.S. Drug repurposing: New strategies for addressing COVID-19 outbreak. Expert Rev. Anti Infect. Ther. 2021 19 6 689 706 10.1080/14787210.2021.1851195 33183102
    [Google Scholar]
  277. Abou-Ismail M.Y. Diamond A. Kapoor S. Arafah Y. Nayak L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb. Res. 2020 194 101 115 10.1016/j.thromres.2020.06.029 32788101
    [Google Scholar]
  278. Duca S.T. Costache A.D. Miftode R.Ș. Mitu O. Petriș A.O. Costache I.I. Hypercoagulability in COVID-19: From an unknown beginning to future therapies. Med. Pharm. Rep. 2022 95 3 236 242 10.15386/mpr‑2195 36060499
    [Google Scholar]
  279. Langerbeins P. Hallek M. COVID-19 in patients with hematologic malignancy. Blood 2022 140 3 236 252 10.1182/blood.2021012251 35544585
    [Google Scholar]
  280. Laracy J.C. Kamboj M. Vardhana S.A. Long and persistent COVID-19 in patients with hematologic malignancies: from bench to bedside. Curr. Opin. Infect. Dis. 2022 35 4 271 279 10.1097/QCO.0000000000000841 35849516
    [Google Scholar]
  281. Hus I. Szymczyk A. Mańko J. Drozd-Sokołowska J. COVID-19 in adult patients with hematological malignancies—lessons learned after three years of pandemic. Biology 2023 12 4 545 10.3390/biology12040545 37106746
    [Google Scholar]
  282. Pathania A.S. Prathipati P. Abdul B.A.A. Chava S. Katta S.S. Gupta S.C. Gangula P.R. Pandey M.K. Durden D.L. Byrareddy S.N. Challagundla K.B. COVID-19 and cancer comorbidity: Therapeutic opportunities and challenges. Theranostics 2021 11 2 731 753 10.7150/thno.51471 33391502
    [Google Scholar]
  283. Dai M. Liu D. Liu M. Zhou F. Li G. Chen Z. Zhang Z. You H. Wu M. Zheng Q. Xiong Y. Xiong H. Wang C. Chen C. Xiong F. Zhang Y. Peng Y. Ge S. Zhen B. Yu T. Wang L. Wang H. Liu Y. Chen Y. Mei J. Gao X. Li Z. Gan L. He C. Li Z. Shi Y. Qi Y. Yang J. Tenen D.G. Chai L. Mucci L.A. Santillana M. Cai H. Patients with cancer appear more vulnerable to SARS-CoV-2: A multicenter study during the COVID-19 outbreak. Cancer Discov. 2020 10 6 783 791 10.1158/2159‑8290.CD‑20‑0422 32345594
    [Google Scholar]
  284. Liao Y.T. Shen H.C. Huang J.R. Sun C.Y. Ko H.J. Chang C.J. Chen Y.M. Feng J.Y. Chen W.C. Yang K.Y. Clinical characteristics and outcomes among critically ill patients with cancer and COVID-19-related acute respiratory failure. BMC Pulm. Med. 2024 24 1 34 10.1186/s12890‑024‑02850‑z 38225613
    [Google Scholar]
  285. Bohmwald K. Diethelm-Varela B. Rodríguez-Guilarte L. Rivera T. Riedel C.A. González P.A. Kalergis A.M. Pathophysiological, immunological, and inflammatory features of long COVID. Front. Immunol. 2024 15 1341600 10.3389/fimmu.2024.1341600 38482000
    [Google Scholar]
  286. van Eijk L.E. Binkhorst M. Bourgonje A.R. Offringa A.K. Mulder D.J. Bos E.M. Kolundzic N. Abdulle A.E. van der Voort P.H.J. Olde Rikkert M.G.M. van der Hoeven J.G. den Dunnen W.F.A. Hillebrands J.L. van Goor H. COVID ‐19: Immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol. 2021 254 4 307 331 10.1002/path.5642 33586189
    [Google Scholar]
  287. Thibaud S. Tremblay D. Bhalla S. Zimmerman B. Sigel K. Gabrilove J. Protective role of Bruton tyrosine kinase inhibitors in patients with chronic lymphocytic leukaemia and COVID‐19. Br. J. Haematol. 2020 190 2 e73 e76 10.1111/bjh.16863 32433778
    [Google Scholar]
  288. Yang S. Wei R. Shi H. Wang Y. Lai Y. Zhao X. Lu J. Schmitz N. The impact of Bruton’s tyrosine kinase inhibitor treatment on COVID-19 outcomes in Chinese patients with chronic lymphocytic leukemia. Front. Oncol. 2024 14 1396913 10.3389/fonc.2024.1396913 38835372
    [Google Scholar]
  289. Hampel P.J. Ding W. Call T.G. Rabe K.G. Kenderian S.S. Witzig T.E. Muchtar E. Leis J.F. Chanan-Khan A.A. Koehler A.B. Fonder A.L. Schwager S.M. Slager S.L. Shanafelt T.D. Kay N.E. Parikh S.A. Rapid disease progression following discontinuation of ibrutinib in patients with chronic lymphocytic leukemia treated in routine clinical practice. Leuk. Lymphoma 2019 60 11 2712 2719 10.1080/10428194.2019.1602268 31014142
    [Google Scholar]
  290. Hernández Borrero L.J. El-Deiry W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer 2021 1876 1 188556 10.1016/j.bbcan.2021.188556 33932560
    [Google Scholar]
  291. Rada M. Althubiti M. Ekpenyong-Akiba A.E. Lee K.G. Lam K.P. Fedorova O. Barlev N.A. Macip S. BTK blocks the inhibitory effects of MDM2 on p53 activity. Oncotarget 2017 8 63 106639 106647 10.18632/oncotarget.22543 29290977
    [Google Scholar]
  292. Justiz Vaillant A.A. Modi P. Mohammadi O. Graft-Versus-host disease. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  293. Jacobsohn D.A. Vogelsang G.B. Acute graft versus host disease. Orphanet J. Rare Dis. 2007 2 1 35 10.1186/1750‑1172‑2‑35 17784964
    [Google Scholar]
  294. Cooke K.R. Luznik L. Sarantopoulos S. Hakim F.T. Jagasia M. Fowler D.H. van den Brink M.R.M. Hansen J.A. Parkman R. Miklos D.B. Martin P.J. Paczesny S. Vogelsang G. Pavletic S. Ritz J. Schultz K.R. Blazar B.R. The biology of chronic graft-versus-host disease: A task force report from the National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease. J. American Societ Blood Marrow Transplant. 2017 23 2 211 10.1016/j.bbmt.2016.09.023
    [Google Scholar]
  295. Schutt S.D. Fu J. Nguyen H. Bastian D. Heinrichs J. Wu Y. Liu C. McDonald D.G. Pidala J. Yu X.Z. Inhibition of BTK and ITK with ibrutinib is effective in the prevention of chronic graft-versus-host disease in mice. PLoS One 2015 10 9 e0137641 10.1371/journal.pone.0137641 26348529
    [Google Scholar]
  296. Olivieri A. Mancini G. Current approaches for the prevention and treatment of acute and chronic GVHD. Cells 2024 13 18 1524 10.3390/cells13181524 39329708
    [Google Scholar]
  297. Raguraman V. Mysinger M. Mohiyuddin S. Jabbour N. Kesler M. Palaniyandi S. Hildebrandt G.C. Targeting bruton tyrosine kinase with Acalabrutinib Attenuates Murine sclerodermatous chronic graft versus host disease. Transplant. Cell. Ther. 2024 30 2 S255 10.1016/j.jtct.2023.12.339
    [Google Scholar]
  298. Uchimura A. Yasuda H. Onagi H. Inano T. Shirane S. Ishii M. Azusawa Y. Hamano Y. Eguchi H. Arai M. Ando J. Ando M. Successful management of acute graft-versus-host disease with ibrutinib during cord blood transplantation for germline DDX41-mutated acute myeloid leukemia. Heliyon 2024 10 2 e24801 10.1016/j.heliyon.2024.e24801 38312561
    [Google Scholar]
  299. Burger J.A. Bruton’s tyrosine kinase (BTK) inhibitors in clinical trials. Curr. Hematol. Malig. Rep. 2014 9 1 44 49 10.1007/s11899‑013‑0188‑8 24357428
    [Google Scholar]
  300. Pone E.J. Zan H. Zhang J. Al-Qahtani A. Xu Z. Casali P. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: Relevance to microbial antibody responses. Crit. Rev. Immunol. 2010 30 1 1 29 10.1615/CritRevImmunol.v30.i1.10 20370617
    [Google Scholar]
  301. Labanca C. Martino E.A. Vigna E. Bruzzese A. Mendicino F. Caridà G. Lucia E. Olivito V. Manicardi V. Amodio N. Neri A. Morabito F. Gentile M. Rilzabrutinib for the treatment of immune thrombocytopenia. Eur. J. Haematol. 2025 115 1 4 15 10.1111/ejh.14425 40222822
    [Google Scholar]
  302. Miklos D. Cutler C.S. Arora M. Waller E.K. Jagasia M. Pusic I. Flowers M.E. Logan A.C. Nakamura R. Blazar B.R. Li Y. Chang S. Lal I. Dubovsky J. James D.F. Styles L. Jaglowski S. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood 2017 130 21 2243 2250 10.1182/blood‑2017‑07‑793786 28924018
    [Google Scholar]
  303. Thompson P.A. Burger J.A. Bruton’s tyrosine kinase inhibitors: First and second generation agents for patients with Chronic Lymphocytic Leukemia (CLL). Expert Opin. Investig. Drugs 2018 27 1 31 42 10.1080/13543784.2018.1404027 29125406
    [Google Scholar]
  304. Guo J. Zhou Y. Lu X. Advances in protein kinase drug discovery through targeting gatekeeper mutations. Expert Opin. Drug Discov. 2023 18 12 1349 1366 10.1080/17460441.2023.2265303 37811637
    [Google Scholar]
  305. Wang H. Hou X. Zhang W. Wang Y. Li L. Li Y. Luweihing B. Xi M. Song J. Zhu X. Zhou L. Chen X. Yu Y. Jin W. Shen Z. 2023
  306. Wierda W.G. Shah N.N. Cheah C.Y. Lewis D. Hoffmann M.S. Coombs C.C. Lamanna N. Ma S. Jagadeesh D. Munir T. Wang Y. Eyre T.A. Rhodes J.M. McKinney M. Lech-Maranda E. Tam C.S. Jurczak W. Izutsu K. Alencar A.J. Patel M.R. Seymour J.F. Woyach J.A. Thompson P.A. Abada P.B. Ho C. McNeely S.C. Marella N. Nguyen B. Wang C. Ruppert A.S. Nair B. Liu H. Tsai D.E. Roeker L.E. Ghia P. Pirtobrutinib, a highly selective, non-covalent (reversible) BTK inhibitor in patients with B-cell malignancies: Analysis of the Richter transformation subgroup from the multicentre, open-label, phase 1/2 BRUIN study. Lancet Haematol. 2024 11 9 e682 e692 10.1016/S2352‑3026(24)00172‑8 39033770
    [Google Scholar]
  307. Nawaratne V. Sondhi A.K. Abdel-Wahab O. Taylor J. New means and challenges in the targeting of BTK. Clin. Cancer Res. 2024 30 11 2333 2341 10.1158/1078‑0432.CCR‑23‑0409 38578606
    [Google Scholar]
  308. Velásquez H.Y.E. 2021
  309. Tam C.S. Balendran S. Blombery P. Novel mechanisms of resistance in CLL: variant BTK mutations in second-generation and noncovalent BTK inhibitors. Blood 2025 145 10 1005 1009 10.1182/blood.2024026672 39808800
    [Google Scholar]
  310. Tam C. Thompson P.A. BTK inhibitors in CLL: Second-generation drugs and beyond. Blood Adv. 2024 8 9 2300 2309 10.1182/bloodadvances.2023012221 38478390
    [Google Scholar]
  311. Wang E. Mi X. Thompson M.C. Montoya S. Notti R.Q. Afaghani J. Durham B.H. Penson A. Witkowski M.T. Lu S.X. Bourcier J. Hogg S.J. Erickson C. Cui D. Cho H. Singer M. Totiger T.M. Chaudhry S. Geyer M. Alencar A. Linley A.J. Palomba M.L. Coombs C.C. Park J.H. Zelenetz A. Roeker L. Rosendahl M. Tsai D.E. Ebata K. Brandhuber B. Hyman D.M. Aifantis I. Mato A. Taylor J. Abdel-Wahab O. Mechanisms of resistance to noncovalent Bruton’s tyrosine kinase inhibitors. N. Engl. J. Med. 2022 386 8 735 743 10.1056/NEJMoa2114110 35196427
    [Google Scholar]
  312. Serrano D.R. Luciano F.C. Anaya B.J. Ongoren B. Kara A. Molina G. Ramirez B.I. Sánchez-Guirales S.A. Simon J.A. Tomietto G. Rapti C. Ruiz H.K. Rawat S. Kumar D. Lalatsa A. Artificial Intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics 2024 16 10 1328 10.3390/pharmaceutics16101328 39458657
    [Google Scholar]
  313. Singh M. Kumar A. Khanna N.N. Laird J.R. Nicolaides A. Faa G. Johri A.M. Mantella L.E. Fernandes J.F.E. Teji J.S. Singh N. Fouda M.M. Singh R. Sharma A. Kitas G. Rathore V. Singh I.M. Tadepalli K. Al-Maini M. Isenovic E.R. Chaturvedi S. Garg D. Paraskevas K.I. Mikhailidis D.P. Viswanathan V. Kalra M.K. Ruzsa Z. Saba L. Laine A.F. Bhatt D.L. Suri J.S. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: A scoping review. EClinicalMedicine 2024 73 102660 10.1016/j.eclinm.2024.102660 38846068
    [Google Scholar]
  314. Adeyanju S.A. Ogunjobi T.T. Machine learning in genomics: Applications in whole genome sequencing, whole exome sequencing, single-cell genomics, and spatial transcriptomics. Medinformatics 2024 10.47852/bonviewMEDIN42024120
    [Google Scholar]
  315. Swanson K. Wu E. Zhang A. Alizadeh A.A. Zou J. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 2023 186 8 1772 1791 10.1016/j.cell.2023.01.035 36905928
    [Google Scholar]
  316. Yang Y. Li F. Wei Y. Zhao Y. Fu J. Xiao X. Bu H. Experts’ cognition-driven ensemble deep learning for external validation of predicting pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer. Medinformatics 2024 10.47852/bonviewMEDIN42024108
    [Google Scholar]
  317. Chattopadhyay S. Decoding medical diagnosis with machine learning classifiers. Med. Inform. 2024 10.47852/bonviewMEDIN42022583
    [Google Scholar]
  318. Mihaila R. Challenges associated with the use of Bruton’s tyrosine kinase inhibitors: A life saving therapy for chronic lymphocytic leukemia (Review). World Acad. Sci. J. 2024 6 3 26 10.3892/wasj.2024.241
    [Google Scholar]
  319. Hamed N.A.M. Challenges with Bruton’s tyrosine kinase inhibitors treatment. Cancer Ther. Oncol. Int. J. 2024 27 1 10.19080/CTOIJ.2024.27.556203
    [Google Scholar]
  320. Lipsky A. Lamanna N. Managing toxicities of Bruton tyrosine kinase inhibitors. Hematology (Am. Soc. Hematol. Educ. Program) 2020 2020 1 336 345 10.1182/hematology.2020000118 33275698
    [Google Scholar]
  321. Hatashima A. Karami M. Shadman M. Approved and emerging Bruton’s tyrosine kinase inhibitors for the treatment of chronic lymphocytic leukemia. Expert Opin. Pharmacother. 2022 23 13 1545 1557 10.1080/14656566.2022.2113384 35973973
    [Google Scholar]
  322. Tseng H. Murrell D.F. The potential of Bruton’s tyrosine kinase (BTK) inhibitors in the pharmacotherapeutic management of immune and dermatological disease. Expert Opin. Pharmacother. 2024 25 12 1657 1665 10.1080/14656566.2024.2393280 39158385
    [Google Scholar]
  323. Estupiñán H.Y. Berglöf A. Zain R. Smith C.I.E. Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front. Cell Dev. Biol. 2021 9 630942 10.3389/fcell.2021.630942 33777941
    [Google Scholar]
  324. Ghane Y. Heidari N. Heidari A. Sadeghi S. Goodarzi A. Efficacy and safety of Bruton’s tyrosine kinase inhibitors in the treatment of pemphigus: A comprehensive literature review and future perspective. Heliyon 2023 9 12 e22912 10.1016/j.heliyon.2023.e22912 38125430
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575409452250815095743
Loading
/content/journals/mrmc/10.2174/0113895575409452250815095743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test