Skip to content
2000
Volume 25, Issue 20
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Recent trends have shown the development of various medicinally important compounds that specifically target B-cell receptor (BCR) pathways at various segments that have a major role in Bruton’s tyrosine kinase (BTK) receptor, which belongs to the family of kinases. These kinases are usually situated close to the cell membrane due to which they participate in upstream processing of BCR signalling. Various molecules have been potentialized to target these signalling pathways of these kinase receptors in order to achieve a pharmacological effect. Given the central role of BTK in immunity, BTK inhibition represents a promising therapeutic approach for the treatment of multiple diseases. BTK inhibitors work by regulating B-cell receptor signalling along with inflammatory pathways and immune cell interactions, offering more advanced treatment options compared to traditional therapies. In addition to BTK inhibitors, an extensive knowledge of the pharmacological mechanisms underlying the blockage of these receptors is necessary in order to more accurately forecast when and where a patient could need combination therapy or just one medication. Efforts have been made to facilitate translational discoveries, drug re-purposing concepts, and further development of precision medicine products. This thorough literature study has focused on studies published until June 2025.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575409452250815095743
2025-11-01
2026-01-01
Loading full text...

Full text loading...

References

  1. McDonaldC. XanthopoulosC. KostareliE. The role of Bruton’s tyrosine kinase in the immune system and disease.Immunology2021164472273610.1111/imm.13416 34534359
    [Google Scholar]
  2. CornethO.B. Klein WolterinkR.G. HendriksR.W. BTK signaling in B cell differentiation and autoimmunity.Curr. Top. Microbiol. Immunol.20153936710510.1007/82_2015_478 26341110
    [Google Scholar]
  3. MohamedA.J. YuL. BäckesjöC.M. VargasL. FaryalR. AintsA. ChristenssonB. BerglöfA. VihinenM. NoreB.F. Edvard SmithC.I. Bruton’s tyrosine kinase (Btk): Function, regulation, and transformation with special emphasis on the PH domain.Immunol. Rev.20092281587310.1111/j.1600‑065X.2008.00741.x 19290921
    [Google Scholar]
  4. SatterthwaiteA.B. LiZ. WitteO.N. Btk function in B cell development and response.Semin. Immunol.199810430931610.1006/smim.1998.0123 9695187
    [Google Scholar]
  5. KurosakiT. Regulation of BCR signaling.Mol. Immunol.201148111287129110.1016/j.molimm.2010.12.007 21195477
    [Google Scholar]
  6. WangH. ZhangW. YangJ. ZhouK. The resistance mechanisms and treatment strategies of BTK inhibitors in B‐cell lymphoma.Hematol. Oncol.202139560561510.1002/hon.2933 34651869
    [Google Scholar]
  7. MaasA. HendriksR.W. Role of Bruton’s tyrosine kinase in B cell development.Dev. Immunol.200183-4171181 11785667
    [Google Scholar]
  8. VihinenM. KwanS.P. LesterT. OchsH.D. ResnickI. VäliahoJ. ConleyM.E. SmithC.I. Mutations of the human BTK gene coding for bruton tyrosine kinase in X-linked agammaglobulinemia.Hum. Mutat.199913428028510.1002/(SICI)1098‑1004 10220140
    [Google Scholar]
  9. MattssonP.T. VihinenM. SmithC.I.E. X‐linked agammaglobulinemia (XLA): A genetic tyrosine kinase (Btk) disease.BioEssays1996181082583410.1002/bies.950181009 8885720
    [Google Scholar]
  10. SuriD. RawatA. SinghS. X-linked Agammaglobulinemia.Indian J. Pediatr.201683433133710.1007/s12098‑015‑2024‑8 26909497
    [Google Scholar]
  11. RawlingsD.J. SchwartzM.A. JacksonS.W. Meyer-BahlburgA. Integration of B cell responses through Toll-like receptors and antigen receptors.Nat. Rev. Immunol.201212428229410.1038/nri3190 22421786
    [Google Scholar]
  12. HarringtonB.K. Activity of the second generation BTK inhibitor acalabrutinib in canine and human B-cell non-hodgkin lymphoma.Doctoral dissertation, The Ohio State University2018
    [Google Scholar]
  13. Rodon AhnertJ. GrayN. MokT. GainorJ. What it takes to improve a first-generation inhibitor to a second-or third-generation small molecule.Am. Soc. Clin. Oncol. Educ. Book2019393919620510.1200/EDBK_242209 31099659
    [Google Scholar]
  14. QuartermaineC. GhaziS.M. YasinA. AwanF.T. FradleyM. WiczerT. KalathoorS. FerdousiM. KrishanS. HabibA. ShaabanA. Kola-KehindeO. KittaiA.S. RogersK.A. GreverM. RuzP. BhatS. DickersonT. ByrdJ.C. WoyachJ. AddisonD. Cardiovascular toxicities of BTK inhibitors in chronic lymphocytic leukemia.JACC Cardiooncol.20235557059010.1016/j.jaccao.2023.09.002 37969643
    [Google Scholar]
  15. KumagaiY. FujitaT. MaedaM. YamamotoA. AmanoH. Pharmacology and safety of TAS5315, a Bruton tyrosine kinase inhibitor, in healthy volunteers: First in human, randomized, ascending dose studiesBr. J. Clin. Pharmacol.202591823402351Advance online citation.10.1002/bcp.70039 40087848
    [Google Scholar]
  16. ArrueboM. VilaboaN. Sáez-GutierrezB. LambeaJ. TresA. ValladaresM. González-FernándezÁ. Assessment of the evolution of cancer treatment therapies.Cancers2011333279333010.3390/cancers3033279 24212956
    [Google Scholar]
  17. ZhangD. GongH. MengF. Recent advances in BTK inhibitors for the treatment of inflammatory and autoimmune diseases.Molecules20212616490710.3390/molecules26164907 34443496
    [Google Scholar]
  18. McManigleW. YoussefA. SarantopoulosS. B cells in chronic graft-versus-host disease.Hum. Immunol.201980639339910.1016/j.humimm.2019.03.003 30849450
    [Google Scholar]
  19. RadaM. QusairyZ. Massip-SalcedoM. MacipS. Relevance of the Bruton tyrosine kinase as a target for COVID-19 therapy.Mol. Cancer Res.202119454955410.1158/1541‑7786.MCR‑20‑0814 33328281
    [Google Scholar]
  20. ZengQ. HeJ. ChenX. YuanQ. YinL. LiangY. ZuX. ShenY. Recent advances in hematopoietic cell kinase in cancer progression: Mechanisms and inhibitors.Biomed. Pharmacother.202417611693210.1016/j.biopha.2024.116932 38870631
    [Google Scholar]
  21. ZhuS. GokhaleS. JungJ. SpirollariE. TsaiJ. ArceoJ. WuB.W. VictorE. XieP. Multifaceted immunomodulatory effects of the BTK inhibitors ibrutinib and acalabrutinib on different immune cell subsets–beyond B lymphocytes.Front. Cell Dev. Biol.2021972753110.3389/fcell.2021.727531 34485307
    [Google Scholar]
  22. RozkiewiczD. HermanowiczJ.M. KwiatkowskaI. KrupaA. PawlakD. Bruton’s tyrosine kinase inhibitors (Btkis): Review of Preclinical studies and evaluation of clinical trials.Molecules2023285240010.3390/molecules28052400 36903645
    [Google Scholar]
  23. FaresA. Carracedo UribeC. MartinezD. RehmanT. Silva RondonC. Sandoval-SusJ. Bruton’s tyrosine kinase inhibitors: Recent updates.Int. J. Mol. Sci.2024254220810.3390/ijms25042208 38396884
    [Google Scholar]
  24. RingheimG.E. WampoleM. OberoiK. Bruton’s Tyrosine Kinase (BTK) inhibitors and autoimmune diseases: making sense of BTK inhibitor specificity profiles and recent clinical trial successes and failures.Front. Immunol.20211266222310.3389/fimmu.2021.662223 34803999
    [Google Scholar]
  25. ShadmanM. BrownJ.R. MohseninejadL. YangK. BurnettH. NeupaneB. WilliamsR. LamannaN. O’BrienS.M. TedeschiA. TamC.S. Comparative efficacy of Bruton tyrosine kinase inhibitors in high-risk relapsed/refractory CLL: a network meta-analysis.Blood Adv.20259122863287010.1182/bloodadvances.2024014523 40203277
    [Google Scholar]
  26. YanQ. LiX. ChenY. LiL. HuX. Efficacy of supportive care interventions for improving posttraumatic stress symptoms and resilience in family caregivers of cancer‐affected children: A meta‐analysis of randomized controlled trials.Worldviews Evid. Based Nurs.2025221e1276410.1111/wvn.12764 39828279
    [Google Scholar]
  27. WangS. LiuG. YuL. ZhangC. MarcucciF. JiangY. Fluorofenidone enhances cisplatin efficacy in non-small cell lung cancer: a novel approach to inhibiting cancer progression.Transl. Lung Cancer Res.202413113175318810.21037/tlcr‑24‑811 39670015
    [Google Scholar]
  28. ConleyM.E. NotarangeloL.D. EtzioniA. X-linked agammaglobulinemia and autosomal recessive agammaglobulin-emia.In: Primary immunodeficiency diseases: A molecular and cellular approach, 3rd.New York, NYOxford University Press2013299315
    [Google Scholar]
  29. RibattiD. Immunology in the Twentieth Century: From Basic Science to Clinical Application.Academic Press2018
    [Google Scholar]
  30. LiangC. TianD. RenX. DingS. JiaM. XinM. TharejaS. The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: A mini-review.Eur. J. Med. Chem.201815131532610.1016/j.ejmech.2018.03.062 29631132
    [Google Scholar]
  31. XingL. HuangA. Bruton’s TK inhibitors: Structural insights and evolution of clinical candidates.Future Med. Chem.20146667569510.4155/fmc.14.24 24895895
    [Google Scholar]
  32. TawfiqR.K. AbeykoonJ.P. KapoorP. Bruton tyrosine kinase inhibition: An effective strategy to manage Waldenström Macroglobulinemia.Curr. Hematol. Malig. Rep.202419312013710.1007/s11899‑024‑00731‑0 38536576
    [Google Scholar]
  33. GeorgeB. Mullick ChowdhuryS. HartA. SircarA. SinghS.K. NathU.K. MamgainM. SinghalN.K. SehgalL. JainN. Ibrutinib resistance mechanisms and treatment strategies for B-cell lymphomas.Cancers2020125132810.3390/cancers12051328 32455989
    [Google Scholar]
  34. Bravo-GonzalezA. AlasfourM. SoongD. NoyJ. PongasG. Advances in targeted therapy: Addressing resistance to BTK inhibition in B-Cell lymphoid malignancies.Cancers20241620343410.3390/cancers16203434 39456530
    [Google Scholar]
  35. TassoB. SpallarossaA. RussoE. BrulloC. The development of BTK inhibitors: A five-year update.Molecules20212623741110.3390/molecules26237411 34885993
    [Google Scholar]
  36. GiordanoF. Investigating the role of p65BTK as an emerging therapeutic target in NSCLC.Thesis University of Milan-Bicocca2019
    [Google Scholar]
  37. MontoyaS. Investigating resistance mechanisms to non-covalent bruton’s tyrosine kinase inhibitors and using degraders to overcome resistance for patients with b cell malignancies.Doctoral dissertation, University of Miami2024
    [Google Scholar]
  38. LiJ. GongC. ZhouH. LiuJ. XiaX. HaW. JiangY. LiuQ. XiongH. Kinase inhibitors and kinase-targeted cancer therapies: Recent advances and future perspectives.Int. J. Mol. Sci.20242510548910.3390/ijms25105489 38791529
    [Google Scholar]
  39. BrulloC. VillaC. TassoB. RussoE. SpallarossaA. Btk inhibitors: A medicinal chemistry and drug delivery perspective.Int. J. Mol. Sci.20212214764110.3390/ijms22147641 34299259
    [Google Scholar]
  40. DasD. WangJ. HongJ. Next-generation Bruton’s tyrosine kinase (BTK) inhibitors potentially targeting BTK C481S mutation-recent developments and perspectives.Curr. Top. Med. Chem.202222201674169110.2174/1568026622666220801101706 35927919
    [Google Scholar]
  41. CastilloJ.J. BuskeC. TrotmanJ. SarosiekS. TreonS.P. Bruton tyrosine kinase inhibitors in the management of Waldenström macroglobulinemia.Am. J. Hematol.202398233834710.1002/ajh.26788 36415104
    [Google Scholar]
  42. RobakT. WitkowskaM. SmolewskiP. The role of Bruton’s kinase inhibitors in chronic lymphocytic Leukemia: Current status and future directions.Cancers202214377110.3390/cancers14030771 35159041
    [Google Scholar]
  43. AluA. LeiH. HanX. WeiY. WeiX. BTK inhibitors in the treatment of hematological malignancies and inflammatory diseases: Mechanisms and clinical studies.J. Hematol. Oncol.202215113810.1186/s13045‑022‑01353‑w 36183125
    [Google Scholar]
  44. TamC.S. MuñozJ.L. SeymourJ.F. OpatS. Zanubrutinib: Past, present, and future.Blood Cancer J.202313114110.1038/s41408‑023‑00902‑x 37696810
    [Google Scholar]
  45. WuJ. ZhangM. LiuD. Acalabrutinib (ACP-196): A selective second-generation BTK inhibitor.J. Hematol. Oncol.2016912110.1186/s13045‑016‑0250‑9 26957112
    [Google Scholar]
  46. ThompsonP.A. TamC. Pirtobrutinib: A new hope for patients with BTK-inhibitor refractory lymphoproliferative disordersBlood202314126blood.202302024010.1182/blood.2023020240 37156004
    [Google Scholar]
  47. NayyarM. MenezesR.C.B. AilawadhiS. ParrondoR.D. Chronic lymphocytic leukemia: Novel therapeutic targets under investigation.Cancers20251714229810.3390/cancers17142298 40723181
    [Google Scholar]
  48. Clinical Trials Using Pirtobrutinib Clinical Trials Using Pirtobrutinib2025Available from: https://www.cancer.gov/research/participate/clinical-trials/intervention/pirtobrutinib?pn=1
  49. JainN. MamgainM. ChowdhuryS.M. JindalU. SharmaI. SehgalL. EpperlaN. Beyond Bruton’s tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody–drug conjugates, CAR T-cells, and novel agents.J. Hematol. Oncol.20231619910.1186/s13045‑023‑01496‑4 37626420
    [Google Scholar]
  50. RoskoskiR. Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasmsPharmacol. Res.2016113Pt A39540810.1016/j.phrs.2016.09.011 27641927
    [Google Scholar]
  51. HendriksR.W. YuvarajS. KilL.P. Targeting Bruton’s tyrosine kinase in B cell malignancies.Nat. Rev. Cancer201414421923210.1038/nrc3702 24658273
    [Google Scholar]
  52. WangH. GuoH. YangJ. LiuY. LiuX. ZhangQ. ZhouK. Bruton tyrosine kinase inhibitors in B-cell lymphoma: beyond the antitumour effect.Exp. Hematol. Oncol.20221116010.1186/s40164‑022‑00315‑9 36138486
    [Google Scholar]
  53. TavakoliG.M. YazdanpanahN. RezaeiN. Targeting Bruton’s tyrosine kinase (BTK) as a signaling pathway in immune-mediated diseases: from molecular mechanisms to leading treatments.Adv. Rheumatol.20246416110.1186/s42358‑024‑00401‑y 39169436
    [Google Scholar]
  54. JosephR.E. AmatyaN. FultonD.B. EngenJ.R. WalesT.E. AndreottiA. Differential impact of BTK active site inhibitors on the conformational state of full-length BTK.eLife20209e6047010.7554/eLife.60470 33226337
    [Google Scholar]
  55. SatterthwaiteA.B. WitteO.N. The role of Bruton’s tyrosine kinase in B-cell development and function: A genetic perspective.Immunol. Rev.200017512012710.1111/j.1600‑065X.2000.imr017504.x 10933597
    [Google Scholar]
  56. MarcotteD.J. LiuY.T. ArduiniR.M. HessionC.A. MiatkowskiK. WildesC.P. CullenP.F. HongV. HopkinsB.T. MertschingE. JenkinsT.J. RomanowskiM.J. BakerD.P. SilvianL.F. Structures of human Bruton’s tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases.Protein Sci.201019342910.1002/pro.321
    [Google Scholar]
  57. WuJ. LiuC. TsuiS.T. LiuD. Second-generation inhibitors of Bruton tyrosine kinase.J. Hematol. Oncol.2016918010.1186/s13045‑016‑0313‑y 27590878
    [Google Scholar]
  58. SmithC.E. SatterthwaiteA.B. WitteO.N. X-linked agammaglobulinemia: A disease of Btk tyrosine kinase. In: Primary Immunodeficiency Diseases.Springer2007279303
    [Google Scholar]
  59. WangQ. PecherskyY. SagawaS. PanA.C. ShawD.E. Structural mechanism for Bruton’s tyrosine kinase activation at the cell membrane.Proc. Natl. Acad. Sci. USA2019116199390939910.1073/pnas.1819301116 31019091
    [Google Scholar]
  60. MiaoB. SkidanI. YangJ. LugovskoyA. ReibarkhM. LongK. BrazellT. DurugkarK.A. MakiJ. RamanaC.V. SchaffhausenB. WagnerG. TorchilinV. YuanJ. DegterevA. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains.Proc. Natl. Acad. Sci. USA201010746201262013110.1073/pnas.1004522107 21041639
    [Google Scholar]
  61. RawlingsD.J. ScharenbergA.M. ParkH. WahlM.I. LinS. KatoR.M. FluckigerA.C. WitteO.N. KinetJ.P. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases.Science1996271525082282510.1126/science.271.5250.822 8629002
    [Google Scholar]
  62. EstupiñánH.Y. BouderliqueT. HeC. BerglöfA. CappelleriA. FrengenN. ZainR. KarlssonM.C.I. MånssonR. SmithC.I.E. In BTK, phosphorylated Y223 in the SH3 domain mirrors catalytic activity, but does not influence biological function.Blood Adv.2024881981199010.1182/bloodadvances.2024012706 38507738
    [Google Scholar]
  63. ParkH. WahlM.I. AfarD.E.H. TurckC.W. RawlingsD.J. TamC. ScharenbergA.M. KinetJ.P. WitteO.N. Regulation of Btk function by a major autophosphorylation site within the SH3 domain.Immunity19964551552510.1016/S1074‑7613(00)80417‑3 8630736
    [Google Scholar]
  64. Pal SinghS. DammeijerF. HendriksR.W. Role of Bruton’s tyrosine kinase in B cells and malignancies.Mol. Cancer20181715710.1186/s12943‑018‑0779‑z 29455639
    [Google Scholar]
  65. RipJ. de BruijnM.J.W. NeysS.F.H. SinghS.P. WillarJ. van HulstJ.A.C. HendriksR.W. CornethO.B.J. Bruton’s tyrosine kinase inhibition induces rewiring of proximal and distal B‐cell receptor signaling in mice.Eur. J. Immunol.20215192251226510.1002/eji.202048968 34323286
    [Google Scholar]
  66. YuL. LiL. MedeirosL.J. YoungK.H. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms.Blood Rev.2017312779210.1016/j.blre.2016.10.001 27773462
    [Google Scholar]
  67. ZinatizadehM.R. SchockB. ChalbataniG.M. ZarandiP.K. JalaliS.A. MiriS.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases.Genes Dis.20218328729710.1016/j.gendis.2020.06.005 33997176
    [Google Scholar]
  68. QiaoH. MaoZ. WangW. ChenX. WangS. FanH. ZhaoT. HouH. DongM. Changes in the BTK/NF-κB signaling pathway and related cytokines in different stages of neuromyelitis optica spectrum disorders.Eur. J. Med. Res.20222719610.1186/s40001‑022‑00723‑x 35729649
    [Google Scholar]
  69. GuoQ. JinY. ChenX. YeX. ShenX. LinM. ZengC. ZhouT. ZhangJ. NF-κB in biology and targeted therapy: new insights and translational implications.Signal Transduct. Target. Ther.2024915310.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  70. ChenS-S. ChangB.Y. ChangS. TongT. HamS. SherryB. BurgerJ.A. RaiK.R. ChiorazziN. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia.Leukemia201630483384310.1038/leu.2015.316 26582643
    [Google Scholar]
  71. de GorterD.J.J. BeulingE.A. KersseboomR. MiddendorpS. van GilsJ.M. HendriksR.W. PalsS.T. SpaargarenM. Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing.Immunity20072619310410.1016/j.immuni.2006.11.012 17239630
    [Google Scholar]
  72. MessexJ.K. LiouG.Y. Targeting BTK signaling in the microenvironment of solid tumors as a feasible cancer therapy option.Cancers2021139219810.3390/cancers13092198 34063667
    [Google Scholar]
  73. JanssensS. BeyaertR. Role of Toll-like receptors in pathogen recognition.Clin. Microbiol. Rev.200316463764610.1128/CMR.16.4.637‑646.2003 14557290
    [Google Scholar]
  74. DuanT. DuY. XingC. WangH.Y. WangR.F. Toll-Like receptor signaling and its role in cell-mediated immunity.Front. Immunol.20221381277410.3389/fimmu.2022.812774 35309296
    [Google Scholar]
  75. Toll-like receptor2025Available from: https://en.wikipedia.org/w/index.php?title=Toll-like_receptor&oldid=1270792952
  76. BagratuniT. PapadimouA. TaouxiK. DimopoulosM.A. KastritisE. MYD88 wild type in IgM monoclonal gammopathies: From molecular mechanisms to clinical challenges.Hemato20234325927210.3390/hemato4030021
    [Google Scholar]
  77. Bekeredjian-DingI. JegoG. Toll‐like receptors – sentries in the B‐cell response.Immunology2009128331132310.1111/j.1365‑2567.2009.03173.x 20067531
    [Google Scholar]
  78. NemazeeD. Mechanisms of central tolerance for B cells.Nat. Rev. Immunol.201717528129410.1038/nri.2017.19 28368006
    [Google Scholar]
  79. ZornC.N. SimonowskiA. HuberM. Stimulus strength determines the BTK-dependence of the SHIP1-deficient phenotype in IgE/antigen-triggered mast cells.Sci. Rep.2018811546710.1038/s41598‑018‑33769‑1 30341350
    [Google Scholar]
  80. QusairyZ. RadaM. Bruton’s tyrosine Kinase: A double-edged sword in cancer and aging.Kinase Phosphatases2025321010.3390/kinasesphosphatases3020010
    [Google Scholar]
  81. Profitós-PelejàN. SantosJ.C. Marín-NieblaA. RouéG. RibeiroM.L. Regulation of B-cell receptor signaling and its therapeutic relevance in aggressive B-cell lymphomas.Cancers202214486010.3390/cancers14040860 35205606
    [Google Scholar]
  82. LucasF. WoyachJ.A. Inhibiting Bruton’s tyrosine kinase in CLL and other B-cell malignancies.Target. Oncol.201914212513810.1007/s11523‑019‑00635‑7 30927175
    [Google Scholar]
  83. SongY. WuS.J. ShenZ. ZhaoD. ChanT.S.Y. HuangH. QiuL. LiJ. TanT. ZhuJ. SongY. HuangW.H. ZhaoW. LiuH.S.Y. XuW. ChenN. MaJ. ChangC.S. TseE.W.C. Chinese expert consensus on Bruton tyrosine kinase inhibitors in the treatment of B-cell malignancies.Exp. Hematol. Oncol.20231219210.1186/s40164‑023‑00448‑5 37845755
    [Google Scholar]
  84. FuchsO. Transcription factor NF-κB inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies.Curr. Mol. Pharmacol.2010339812210.2174/1874467211003030098 20594187
    [Google Scholar]
  85. JiangQ. PengY. HerlingC.D. HerlingM. The immunomodulatory mechanisms of BTK inhibition in CLL and beyond.Cancers20241621357410.3390/cancers16213574 39518015
    [Google Scholar]
  86. GuptaS. SharmaA. ShuklaA. MishraA. SinghA. From development to clinical success: The journey of established and next-generation BTK inhibitors.Invest. New Drugs202543237739310.1007/s10637‑025‑01513‑y 40014234
    [Google Scholar]
  87. HeY. SunM.M. ZhangG.G. YangJ. ChenK.S. XuW.W. LiB. Targeting PI3K/Akt signal transduction for cancer therapy.Signal Transduct. Target. Ther.20216142510.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  88. LewisK.L. CheahC.Y. Non-Covalent BTK inhibitors: The new BTKids on the block for B-Cell malignancies.J. Pers. Med.202111876410.3390/jpm11080764 34442408
    [Google Scholar]
  89. KimH.O. BTK inhibitors and next-generation BTK-targeted therapeutics for B-cell malignancies.Arch. Pharm. Res.202548542644910.1007/s12272‑025‑01546‑0 40335884
    [Google Scholar]
  90. GuD. TangH. WuJ. LiJ. MiaoY. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies.J. Hematol. Oncol.20211414010.1186/s13045‑021‑01049‑7 33676527
    [Google Scholar]
  91. EstupiñánH.Y. WangQ. BerglöfA. SchaafsmaG.C.P. ShiY. ZhouL. MohammadD.K. YuL. VihinenM. ZainR. SmithC.I.E. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib.Leukemia20213551317132910.1038/s41375‑021‑01123‑6 33526860
    [Google Scholar]
  92. ChirinoA. MontoyaS. SafronenkaA. TaylorJ. Resisting the resistance: Navigating BTK mutations in chronic lymphocytic leukemia (CLL).Genes20231412218210.3390/genes14122182 38137005
    [Google Scholar]
  93. BroccoliA. Del ReM. DanesiR. ZinzaniP.L. Covalent Bruton tyrosine kinase inhibitors across generations: A focus on zanubrutinib.J. Cell. Mol. Med.2025293e7017010.1111/jcmm.70170 39887627
    [Google Scholar]
  94. MouhssineS. MaherN. MattiB.F. AlwanA.F. GaidanoG. Targeting BTK in B cell malignancies: From mode of action to resistance mechanisms.Int. J. Mol. Sci.2024256323410.3390/ijms25063234 38542207
    [Google Scholar]
  95. PortnojsA. Exploring the role of IRF4 in the sensitivity of mantle cell lymphoma cells to Bruton’s Tyrosine Kinase inhibitors.Thesis Peninsula Medical School2025
    [Google Scholar]
  96. MehraS. NichollsM. TaylorJ. The evolving role of Bruton’s tyrosine kinase inhibitors in B cell lymphomas.Int. J. Mol. Sci.20242514751610.3390/ijms25147516 39062757
    [Google Scholar]
  97. HeoY.A. Pirtobrutinib in relapsed or refractory mantle cell lymphoma: A profile of its use.Drugs Ther. Perspect.2024402455210.1007/s40267‑023‑01041‑w
    [Google Scholar]
  98. SharmanJ. KabadiS.M. ClarkJ. AndorskyD. Treatment patterns and outcomes among mantle cell lymphoma patients treated with ibrutinib in the United States: A retrospective electronic medical record database and chart review study.Br. J. Haematol.2021192473774610.1111/bjh.16922 33095453
    [Google Scholar]
  99. ChohanK.L. KapoorP. BTK inhibitors and other targeted therapies in waldenström macroglobulinemia.Hemato20234213515710.3390/hemato4020012
    [Google Scholar]
  100. AnG. ZhouD. ZhaoW. ZhouK. LiJ. ZhouJ. XieL. JinJ. ZhongL. YanL. GuoH. DuC. HuangJ. NovotnyW. ZhongJ. QiuL. Safety and efficacy of the Bruton tyrosine kinase inhibitor zanubrutinib (BGB-3111) in patients with WaldenstrC6m macroglobulinemia from a phase 2 trialBlood20201364243.(Suppl. 1)10.1182/blood‑2020‑136783
    [Google Scholar]
  101. RobakE. RobakT. Bruton’s kinase inhibitors for the treatment of immunological diseases: current status and perspectives.J. Clin. Med.20221110280710.3390/jcm11102807 35628931
    [Google Scholar]
  102. SchultzeM.D. ReevesD.J. Pirtobrutinib: A new and distinctive treatment option for b-cell malignancies.Ann. Pharmacother.202458101064107310.1177/10600280231223737 38235739
    [Google Scholar]
  103. ShenJ. LiuJ. Bruton’s tyrosine kinase inhibitors in the treatment of primary central nervous system lymphoma: A mini-review.Front. Oncol.202212103466810.3389/fonc.2022.1034668 36465385
    [Google Scholar]
  104. LentzR. FeinglassJ. MaS. AkhterN. Risk factors for the development of atrial fibrillation on ibrutinib treatment.Leuk. Lymphoma20196061447145310.1080/10428194.2018.1533129 30730240
    [Google Scholar]
  105. NaeemA. UtroF. WangQ. ChaJ. VihinenM. MartindaleS. ZhouY. RenY. TyekuchevaS. KimA.S. FernandesS.M. SaksenaG. RhrissorrakraiK. LevovitzC. DanyshB.P. SlowikK. JacobsR.A. DavidsM.S. LedererJ.A. ZainR. SmithC.I.E. LeshchinerI. ParidaL. GetzG. BrownJ.R. Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance.Blood Adv.2023791929194310.1182/bloodadvances.2022008447 36287227
    [Google Scholar]
  106. PułaB. GołosA. GórniakP. JamroziakK. Overcoming Ibrutinib resistance in chronic lymphocytic leukemia.Cancers20191112183410.3390/cancers11121834 31766355
    [Google Scholar]
  107. MukkamallaS.K.R. TanejaA. MalipeddiD. Chronic Lymphocytic Leukemia. In:StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  108. DamleR.N. CalissanoC. ChiorazziN. Chronic lymphocytic leukaemia: A disease of activated monoclonal B cells.Best Pract. Res. Clin. Haematol.2010231334510.1016/j.beha.2010.02.001 20620969
    [Google Scholar]
  109. WiśniewskiK. PułaB. A review of resistance mechanisms to Bruton’s kinase inhibitors in chronic lymphocytic leukemia.Int. J. Mol. Sci.20242510524610.3390/ijms25105246 38791284
    [Google Scholar]
  110. NakhodaS. VistaropA. WangY.L. Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma.Br. J. Haematol.2023200213714910.1111/bjh.18418 36029036
    [Google Scholar]
  111. DavidsM.S. BrownJ.R. Ibrutinib: A first in class covalent inhibitor of Bruton’s tyrosine kinase.Future Oncol.201410695796710.2217/fon.14.51 24941982
    [Google Scholar]
  112. AkinleyeA. ChenY. MukhiN. SongY. LiuD. Ibrutinib and novel BTK inhibitors in clinical development.J. Hematol. Oncol.2013615910.1186/1756‑8722‑6‑59 23958373
    [Google Scholar]
  113. ByrdJ.C. HillmenP. O’BrienS. BarrientosJ.C. ReddyN.M. CoutreS. TamC.S. MulliganS.P. JaegerU. BarrP.M. FurmanR.R. KippsT.J. ThorntonP. MorenoC. MontilloM. PagelJ.M. BurgerJ.A. WoyachJ.A. DaiS. VezanR. JamesD.F. BrownJ.R. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab.Blood2019133192031204210.1182/blood‑2018‑08‑870238 30842083
    [Google Scholar]
  114. MunirT. BrownJ.R. O’BrienS. BarrientosJ.C. BarrP.M. ReddyN.M. CoutreS. TamC.S. MulliganS.P. JaegerU. KippsT.J. MorenoC. MontilloM. BurgerJ.A. ByrdJ.C. HillmenP. DaiS. SzokeA. DeanJ.P. WoyachJ.A. Final analysis from RESONATE: Up to six years of follow‐up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma.Am. J. Hematol.201994121353136310.1002/ajh.25638 31512258
    [Google Scholar]
  115. EyreT.A. RichesJ.C. The evolution of therapies targeting bruton tyrosine kinase for the treatment of chronic lymphocytic leukaemia: Future perspectives.Cancers2023159259610.3390/cancers15092596 37174062
    [Google Scholar]
  116. MolicaS. TamC. AllsupD. PolliackA. Advancements in the treatment of CLL: The rise of zanubrutinib as a preferred therapeutic option.Cancers20231514373710.3390/cancers15143737 37509398
    [Google Scholar]
  117. FakhriB. AndreadisC. The role of acalabrutinib in adults with chronic lymphocytic leukemia.Ther. Adv. Hematol.20211210.1177/2040620721990553 33613932
    [Google Scholar]
  118. BondD.A. WoyachJ.A. Targeting BTK in CLL: Beyond Ibrutinib.Curr. Hematol. Malig. Rep.201914319720510.1007/s11899‑019‑00512‑0 31028669
    [Google Scholar]
  119. O’DonnellA. PepperC. MitchellS. PepperA. NF-kB and the CLL microenvironment.Front. Oncol.202313116939710.3389/fonc.2023.1169397 37064123
    [Google Scholar]
  120. Sobczyńska-KonefałA. JasekM. KarabonL. JaskułaE. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: from pathogenesis to treatment strategies.Biomark. Res.202412116210.1186/s40364‑024‑00710‑w 39732734
    [Google Scholar]
  121. LinX. KangK. ChenP. ZengZ. LiG. XiongW. YiM. XiangB. Regulatory mechanisms of PD-1/PD-L1 in cancers.Mol. Cancer202423110810.1186/s12943‑024‑02023‑w 38762484
    [Google Scholar]
  122. vom SteinA.F. HallekM. NguyenP.H. Role of the tumor microenvironment in CLL pathogenesis.Semin. Hematol.202461314215410.1053/j.seminhematol.2023.12.004 38220499
    [Google Scholar]
  123. ReiffS.D. MuhowskiE.M. GuinnD. LehmanA. FabianC.A. CheneyC. MantelR. SmithL. JohnsonA.J. YoungW.B. JohnsonA.R. LiuL. ByrdJ.C. WoyachJ.A. Noncovalent inhibition of C481S Bruton tyrosine kinase by GDC-0853: a new treatment strategy for ibrutinib-resistant CLL.Blood2018132101039104910.1182/blood‑2017‑10‑809020 30018078
    [Google Scholar]
  124. MontoyaS. ThompsonM.C. Non-covalent bruton’s tyrosine kinase inhibitors in the treatment of chronic lymphocytic leukemia.Cancers20231514364810.3390/cancers15143648 37509309
    [Google Scholar]
  125. St-PierreF. MaS. Use of BTK inhibitors in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL): A practical guidance.Blood Lymphat. Cancer202212819810.2147/BLCTT.S326627 35911566
    [Google Scholar]
  126. CampoE. CymbalistaF. GhiaP. JägerU. PospisilovaS. RosenquistR. SchuhA. StilgenbauerS. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics.Haematologica2018103121956196810.3324/haematol.2018.187583 30442727
    [Google Scholar]
  127. Sánchez SuárezM.D.M. Martín RoldánA. Alarcón-PayerC. Rodríguez-GilM.Á. Poquet-JornetJ.E. Puerta PuertaJ.M. Jiménez MoralesA. Treatment of chronic lymphocytic leukemia in the personalized medicine era.Pharmaceutics20231615510.3390/pharmaceutics16010055 38258066
    [Google Scholar]
  128. LynchD.T. KoyaS. DoggaS. Mantle Cell Lymphoma. In:StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  129. LynchD.T. KoyaS. DoggaS. KumarA. Mantle Cell Lymphoma. In: StatPearls.StatPearls Publishing2023
    [Google Scholar]
  130. BurkartM. KarmaliR. Relapsed/Refractory Mantle Cell Lymphoma: Beyond BTK Inhibitors.J. Pers. Med.202212337610.3390/jpm12030376 35330376
    [Google Scholar]
  131. SchmidV.K. HobeikaE. B cell receptor signaling and associated pathways in the pathogenesis of chronic lymphocytic leukemia.Front. Oncol.202414133962010.3389/fonc.2024.1339620 38469232
    [Google Scholar]
  132. ZhangJ. LuX. LiJ. MiaoY. Combining BTK inhibitors with BCL2 inhibitors for treating chronic lymphocytic leukemia and mantle cell lymphoma.Biomark. Res.20221011710.1186/s40364‑022‑00357‑5 35379357
    [Google Scholar]
  133. AbbasH.A. WierdaW.G. Acalabrutinib: A Selective Bruton Tyrosine Kinase Inhibitor for the Treatment of B-Cell Malignancies.Front. Oncol.20211166816210.3389/fonc.2021.668162 34055635
    [Google Scholar]
  134. RhodesJ.M. MatoA.R. Zanubrutinib (BGB-3111), a second-generation selective covalent inhibitor of Bruton’s Tyrosine Kinase and its utility in treating chronic lymphocytic leukemia.Drug Des. Devel. Ther.20211591992610.2147/DDDT.S250823 33688166
    [Google Scholar]
  135. SongY. ZhouK. ZouD. ZhouJ. HuJ. YangH. ZhangH. JiJ. XuW. JinJ. LvF. FengR. GaoS. GuoH. ZhouL. HuangJ. NovotnyW. KimP. YuY. WuB. ZhuJ. Zanubrutinib in relapsed/refractory mantle cell lymphoma: Long-term efficacy and safety results from a phase 2 study.Blood2022139213148315810.1182/blood.2021014162 35303070
    [Google Scholar]
  136. ZhouK. ZouD. ZhouJ. HuJ. YangH. ZhangH. JiJ. XuW. JinJ. LvF. FengR. GaoS. ZhouD. TamC.S. SimpsonD. WangM. PhillipsT.J. OpatS. HuangZ. LuH. SongY. SongY. Zanubrutinib monotherapy in relapsed/refractory mantle cell lymphoma: A pooled analysis of two clinical trials.J. Hematol. Oncol.202114116710.1186/s13045‑021‑01174‑3 34649571
    [Google Scholar]
  137. HillmenP. EichhorstB. BrownJ.R. LamannaN. O’BrienS.M. TamC.S. QiuL. KazmierczakM. ZhouK. ŠimkovičM. MayerJ. Gillespie-TwardyA. ShadmanM. FerrajoliA. GanlyP.S. WeinkoveR. GrosickiS. MitalA. RobakT. ÖsterborgA. YimerH.A. SalmiT. JiM. YeciesJ. IdoineA. WuK. HuangJ. JurczakW. Zanubrutinib versus Ibrutinib in Relapsed/Refractory Chronic lymphocytic leukemia and small lymphocytic lymphoma: Interim analysis of a randomized phase III Trial.J. Clin. Oncol.20234151035104510.1200/JCO.22.00510 36395435
    [Google Scholar]
  138. BrownJ.R. EichhorstB. LamannaN. O’BrienS.M. TamC.S. QiuL. JurczakW. ZhouK. ŠimkovičM. MayerJ. Gillespie-TwardyA. FerrajoliA. GanlyP.S. WeinkoveR. GrosickiS. MitalA. RobakT. OsterborgA. YimerH.A. WangM. SalmiT. WangL. LiJ. WuK. CohenA. ShadmanM. Sustained benefit of zanubrutinib vs. ibrutinib in patients with R/R CLL/SLL: Final comparative analysis of ALPINE.Blood2024144262706271710.1182/blood.2024024667 39316666
    [Google Scholar]
  139. JensenJ.L. MatoA.R. PenaC. RoekerL.E. CoombsC.C. The potential of pirtobrutinib in multiple B-cell malignancies.Ther. Adv. Hematol.2022132040620722110169710.1177/20406207221101697 35747462
    [Google Scholar]
  140. GomezE.B. EbataK. RanderiaH.S. RosendahlM.S. CedervallE.P. MoralesT.H. HansonL.M. BrownN.E. GongX. StephensJ. WuW. LippincottI. KuK.S. WalgrenR.A. AbadaP.B. BallardJ.A. AllerstonC.K. BrandhuberB.J. Preclinical characterization of pirtobrutinib, a highly selective, noncovalent (reversible) BTK inhibitor.Blood20231421627210.1182/blood.2022018674 36796019
    [Google Scholar]
  141. LampsonB.L. BrownJ.R. Are BTK and PLCG2 mutations necessary and sufficient for ibrutinib resistance in chronic lymphocytic leukemia?Expert Rev. Hematol.201811318519410.1080/17474086.2018.1435268 29381098
    [Google Scholar]
  142. LiuT.M. WoyachJ.A. ZhongY. LozanskiA. LozanskiG. DongS. StrattanE. LehmanA. ZhangX. JonesJ.A. FlynnJ. AndritsosL.A. MaddocksK. JaglowskiS.M. BlumK.A. ByrdJ.C. DubovskyJ.A. JohnsonA.J. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation.Blood20151261616810.1182/blood‑2015‑02‑626846 25972157
    [Google Scholar]
  143. FrumanD.A. ChiuH. HopkinsB.D. BagrodiaS. CantleyL.C. AbrahamR.T. The PI3K Pathway in Human Disease.Cell2017170460563510.1016/j.cell.2017.07.029 28802037
    [Google Scholar]
  144. JanzS. Waldenström macroglobulinemia: Clinical and immunological aspects, natural history, cell of origin, and emerging mouse models.ISRN Hematol.2013201312510.1155/2013/815325 24106612
    [Google Scholar]
  145. HobbsM. FonderA. HwaY.L. Waldenström Macroglobulinemia: Clinical presentation, diagnosis, and management.J. Adv. Pract. Oncol.202011438138910.6004/jadpro.2020.11.4.5 33604098
    [Google Scholar]
  146. Perez RogersA. EstesM. Hyperviscosity Syndrome. In: StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  147. BuskeC. JurczakW. SalemJ.E. DimopoulosM.A. Managing Waldenström’s macroglobulinemia with BTK inhibitors.Leukemia2023371354610.1038/s41375‑022‑01732‑9 36402930
    [Google Scholar]
  148. WenT. WangJ. ShiY. QianH. LiuP. Inhibitors targeting Bruton’s tyrosine kinase in cancers: Drug development advances.Leukemia202135231233210.1038/s41375‑020‑01072‑6 33122850
    [Google Scholar]
  149. AbabnehO. AbushukairH. QarqashA. SyajS. Al HadidiS. The use of Bruton Tyrosine Kinase inhibitors in Waldenström’s Macroglobulinemia.Clin. Hematol. Int.202241-2212910.1007/s44228‑022‑00007‑5 35950210
    [Google Scholar]
  150. WilsonW.H. YoungR.M. SchmitzR. YangY. PittalugaS. WrightG. LihC.J. WilliamsP.M. ShafferA.L. GerecitanoJ. de VosS. GoyA. KenkreV.P. BarrP.M. BlumK.A. ShustovA. AdvaniR. FowlerN.H. VoseJ.M. ElstromR.L. HabermannT.M. BarrientosJ.C. McGreivyJ. FardisM. ChangB.Y. ClowF. MunnekeB. MoussaD. BeaupreD.M. StaudtL.M. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma.Nat. Med.201521892292610.1038/nm.3884 26193343
    [Google Scholar]
  151. DavisR.E. NgoV.N. LenzG. TolarP. YoungR.M. RomesserP.B. KohlhammerH. LamyL. ZhaoH. YangY. XuW. ShafferA.L. WrightG. XiaoW. PowellJ. JiangJ. ThomasC.J. RosenwaldA. OttG. Muller-HermelinkH.K. GascoyneR.D. ConnorsJ.M. JohnsonN.A. RimszaL.M. CampoE. JaffeE.S. WilsonW.H. DelabieJ. SmelandE.B. FisherR.I. BrazielR.M. TubbsR.R. CookJ.R. WeisenburgerD.D. ChanW.C. PierceS.K. StaudtL.M. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma.Nature20104637277889210.1038/nature08638 20054396
    [Google Scholar]
  152. CheahC.Y. ZuccaE. RossiD. HabermannT.M. Marginal zone lymphoma: Present status and future perspectives.Haematologica20221071354310.3324/haematol.2021.278755 34985232
    [Google Scholar]
  153. NoyA. de VosS. ColemanM. MartinP. FlowersC.R. ThieblemontC. MorschhauserF. CollinsG.P. MaS. PelesS. SmithS.D. BarrientosJ.C. ChongE. WuS. CheungL.W.K. KweiK. HaunsB. Arango-HisijaraI. ChenR. Durable ibrutinib responses in relapsed/refractory marginal zone lymphoma: Long-term follow-up and biomarker analysis.Blood Adv.20204225773578410.1182/bloodadvances.2020003121 33227125
    [Google Scholar]
  154. XiaY. LiX. JiangN. WeiX. A novel Bruton’s tyrosine kinase inhibitor JDB175 shows potent efficacy to suppress central nervous system lymphoma.MedComm202346e42410.1002/mco2.424 37929016
    [Google Scholar]
  155. YuH. KongH. LiC. DongX. WuY. ZhuangY. HanS. LeiT. YangH. Bruton’s tyrosine kinase inhibitors in primary central nervous system lymphoma—evaluation of anti-tumor efficacy and brain distribution.Transl. Cancer Res.20211051975198310.21037/tcr‑21‑50 35116520
    [Google Scholar]
  156. ZinzaniP.L. MuñozJ. TrotmanJ. Current and future therapies for follicular lymphoma.Exp. Hematol. Oncol.20241318710.1186/s40164‑024‑00551‑1 39175100
    [Google Scholar]
  157. QuallsD. SallesG. Prospects in the management of patients with follicular lymphoma beyond first-line therapy.Haematologica20221071193410.3324/haematol.2021.278717 34985231
    [Google Scholar]
  158. SantosF.P.S. O’BrienS. Small lymphocytic lymphoma and chronic lymphocytic leukemia: are they the same disease?Cancer J.201218539640310.1097/PPO.0b013e31826cda2d 23006943
    [Google Scholar]
  159. SanderB. CampoE. HsiE.D. Chronic lymphocytic leukaemia/small lymphocytic lymphoma and mantle cell lymphoma: From early lesions to transformation.Virchows Arch.2023482113114510.1007/s00428‑022‑03460‑y
    [Google Scholar]
  160. JanewayC.A. TraversP. WalportM. Autoimmune responses are directed against self antigens. In: Immunobiology: The immune system in health and disease, 5th; Garland Science: New York, NY2001627664
    [Google Scholar]
  161. Bruton's tyrosine kinase2025Available from: https://en.wikipedia.org/w/index.php?title=Bruton%27s_tyrosine_kinase&oldid=1281322692
  162. XiaB. QuF. YuanT. ZhangY. Targeting Bruton’s tyrosine kinase signaling as an emerging therapeutic agent of B-cell malignancies.Oncol. Lett.20151063339334410.3892/ol.2015.3802 26788133
    [Google Scholar]
  163. CanoR.L.E. LoperaH.D.E. Introduction to T and B lymphocytes. In: Autoimmunity: From Bench to Bedside. AnayaJ.M. ShoenfeldY. Rojas-VillarragaA. Bogota, ColombiaEl Rosario University Press2013
    [Google Scholar]
  164. HofmannK. ClauderA.K. ManzR.A. TargetingB. Cells and Plasma Cells in Autoimmune Diseases.Front. Immunol.2018983510.3389/fimmu.2018.00835 29740441
    [Google Scholar]
  165. TsaiD.Y. HungK.H. ChangC.W. LinK.I. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases.J. Biomed. Sci.20192616410.1186/s12929‑019‑0558‑1 31472685
    [Google Scholar]
  166. VazquezM.I. Catalan-DibeneJ. ZlotnikA. B cells responses and cytokine production are regulated by their immune microenvironment.Cytokine201574231832610.1016/j.cyto.2015.02.007 25742773
    [Google Scholar]
  167. TanakaT. NarazakiM. KishimotoT. IL-6 in inflammation., immunity, and disease.Cold Spring Harb. Perspect. Biol.2014610a01629510.1101/cshperspect.a016295 25190079
    [Google Scholar]
  168. BerryC.T. FrazeeC.S. HermanP.J. ChenS. ChenA. KuoY. EllebrechtC.T. Current advancements in cellular immunotherapy for autoimmune disease.Semin. Immunopathol.2025471710.1007/s00281‑024‑01034‑5 39821376
    [Google Scholar]
  169. AllenM.E. RusV. SzetoG.L. Leveraging heterogeneity in systemic lupus erythematosus for new therapies.Trends Mol. Med.202127215217110.1016/j.molmed.2020.09.009 33046407
    [Google Scholar]
  170. YapH.Y. TeeS.Z.Y. WongM.M.T. ChowS.K. PehS.C. TeowS.Y. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development.Cells201871016110.3390/cells7100161 30304822
    [Google Scholar]
  171. JangS. KwonE.J. LeeJ.J. Rheumatoid arthritis: Pathogenic roles of diverse immune cells.Int. J. Mol. Sci.202223290510.3390/ijms23020905 35055087
    [Google Scholar]
  172. ChimentiM.S. TriggianeseP. ConigliaroP. CandiE. MelinoG. PerriconeR. The interplay between inflammation and metabolism in rheumatoid arthritis.Cell Death Dis.201569e188710.1038/cddis.2015.246 26379192
    [Google Scholar]
  173. WeberA.N.R. BittnerZ. LiuX. DangT.M. RadsakM.P. BrunnerC. Bruton’s Tyrosine Kinase: An emerging key player in innate immunity.Front. Immunol.20178145410.3389/fimmu.2017.01454 29167667
    [Google Scholar]
  174. GargN. PadronE.J. RammohanK.W. GoodmanC.F. Bruton’s Tyrosine Kinase inhibitors: The next frontier of B-Cell-targeted therapies for cancer, autoimmune disorders, and multiple sclerosis.J. Clin. Med.20221120613910.3390/jcm11206139 36294458
    [Google Scholar]
  175. NeysS.F.H. RipJ. HendriksR.W. CornethO.B.J. Bruton’s tyrosine kinase inhibition as an emerging therapy in systemic autoimmune Disease.Drugs202181141605162610.1007/s40265‑021‑01592‑0 34609725
    [Google Scholar]
  176. ArnesonL.C. CarrollK.J. RudermanE.M. Bruton’s tyrosine kinase inhibition for the treatment of rheumatoid arthritis.ImmunoTargets Ther.20211033334210.2147/ITT.S288550 34485183
    [Google Scholar]
  177. SatterthwaiteA.B. Bruton’s Tyrosine Kinase, a component of B cell signaling pathways, has multiple roles in the pathogenesis of lupus.Front. Immunol.20188198610.3389/fimmu.2017.01986 29403475
    [Google Scholar]
  178. WuF. GaoJ. KangJ. WangX. NiuQ. LiuJ. ZhangL. B cells in rheumatoid arthritis: Pathogenic mechanisms and treatment prospects.Front. Immunol.20211275075310.3389/fimmu.2021.750753 34650569
    [Google Scholar]
  179. Di PaoloJ.A. HuangT. BalazsM. BarbosaJ. BarckK.H. BravoB.J. CaranoR.A.D. DarrowJ. DaviesD.R. DeForgeL.E. DiehlL. FerrandoR. GallionS.L. GiannettiA.M. GriblingP. HurezV. HymowitzS.G. JonesR. KropfJ.E. LeeW.P. MaciejewskiP.M. MitchellS.A. RongH. StakerB.L. WhitneyJ.A. YehS. YoungW.B. YuC. ZhangJ. ReifK. CurrieK.S. Specific Btk inhibition suppresses B cell– and myeloid cell–mediated arthritis.Nat. Chem. Biol.201171415010.1038/nchembio.481 21113169
    [Google Scholar]
  180. EngelenS.E. RobinsonA.J.B. ZurkeY.X. MonacoC. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed?Nat. Rev. Cardiol.202219852254210.1038/s41569‑021‑00668‑4 35102320
    [Google Scholar]
  181. NingJ. WangY. TaoZ. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions.Front. Immunol.202415148383410.3389/fimmu.2024.1483834 39502703
    [Google Scholar]
  182. DeeksS.G. ArchinN. CannonP. CollinsS. JonesR.B. de JongM.A.W.P. LambotteO. LamploughR. Ndung’uT. SugarmanJ. TiemessenC.T. VandekerckhoveL. LewinS.R. DeeksS. LewinS. de JongM. NdhlovuZ. ChomontN. BrummeZ. DengK. JasenoskyL. JefferysR. Orta-ResendizA. MardarelliF. NijhuisM. BarK. HowellB. SchneiderA. TurkG. NabatanziR. BlanksonJ. GarciaJ.V. PaiardiniM. LunzenJ. AntoniadiC. CôrtesF.H. ValenteS. SøgaardO.S. DiazR.S. OttM. DunhamR. SchwarzeS. PatrigeonS.P. NabukenyaJ. CaskeyM. MotheB. WangF.S. FidlerS. SenGuptaD. DresslerS. MatogaM. KiemH-P. TebasP. KityoC. DropulicB. LouellaM. DasK.T. PersaudD. ChahroudiA. LuzuriagaK. PuthanakitT. SafritJ. MashetoG. DubéK. PowerJ. SalzwedelJ. LikhitwonnawutU. TaylorJ. NuhO.L. DongK. KankakaE.N. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021.Nat. Med.202127122085209810.1038/s41591‑021‑01590‑5 34848888
    [Google Scholar]
  183. KuoG. KumbharR. BlairW. DawsonV.L. DawsonT.M. MaoX. Emerging targets of α-synuclein spreading in α-synucleinopathies: a review of mechanistic pathways and interventions.Mol. Neurodegener.20252011010.1186/s13024‑025‑00797‑1 39849529
    [Google Scholar]
  184. MansfieldL. RamponiV. GuptaK. StevensonT. MathewA.B. BarindaA.J. HerbsteinF. MorsliS. Emerging insights in senescence: Pathways from preclinical models to therapeutic innovations.NPJ Aging20241015310.1038/s41514‑024‑00181‑1 39578455
    [Google Scholar]
  185. ZhernovY.V. PetrovaV.O. SimanduyevM.Y. ShcherbakovD.V. PolibinR.V. MitrokhinO.V. BasovA.A. ZabrodaN.N. VysochanskayaS.O. Al-khaleefaE. PashayevaK.R. FeyziyevaN.Y. Microbicides for topical HIV immunoprophylaxis: Current status and future prospects.Pharmaceuticals202417666810.3390/ph17060668 38931337
    [Google Scholar]
  186. CroffordL.J. NyhoffL.E. SheehanJ.H. KendallP.L. The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy.Expert Rev. Clin. Immunol.201612776377310.1586/1744666X.2016.1152888 26864273
    [Google Scholar]
  187. ValentinoT.R. ChenN. MakhijaniP. KhanS. WinerS. ReveloX.S. WinerD.A. The role of autoantibodies in bridging obesity, aging, and immunosenescence.Immun. Ageing20242118510.1186/s12979‑024‑00489‑2 39616399
    [Google Scholar]
  188. CrawfordJ.J. JohnsonA.R. MisnerD.L. BelmontL.D. CastanedoG. ChoyR. CoraggioM. DongL. EigenbrotC. EricksonR. GhilardiN. HauJ. KatewaA. KohliP.B. LeeW. LubachJ.W. McKenzieB.S. OrtwineD.F. SchuttL. TayS. WeiB. ReifK. LiuL. WongH. YoungW.B. Discovery of GDC-0853: A potent, selective, and noncovalent bruton’s tyrosine kinase inhibitor in early clinical development.J. Med. Chem.20186162227224510.1021/acs.jmedchem.7b01712 29457982
    [Google Scholar]
  189. ByrdJ.C. SmithS. Wagner-JohnstonN. SharmanJ. ChenA.I. AdvaniR. AugustsonB. MarltonP. Renee CommerfordS. OkrahK. LiuL. MurrayE. PenuelE. WardA.F. FlinnI.W. First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL.Oncotarget2018916130231303510.18632/oncotarget.24310 29560128
    [Google Scholar]
  190. SchneiderR. OhJ. Bruton’s tyrosine kinase inhibition in multiple sclerosis.Curr. Neurol. Neurosci. Rep.2022221172173410.1007/s11910‑022‑01229‑z 36301434
    [Google Scholar]
  191. MontalbanX. VermerschP. ArnoldD.L. Bar-OrA. CreeB.A.C. CrossA.H. Kubala HavrdovaE. KapposL. StuveO. WiendlH. WolinskyJ.S. DahlkeF. Le BolayC. Shen LooL. GopalakrishnanS. HyvertY. JavorA. GuehringH. TenenbaumN. TomicD. Safety and efficacy of evobrutinib in relapsing multiple sclerosis (evolutionRMS1 and evolutionRMS2): Two multicentre, randomised, double-blind, active-controlled, phase 3 trials.Lancet Neurol.202423111119113210.1016/S1474‑4422(24)00328‑4 39307151
    [Google Scholar]
  192. NegreiC. BojincaV. BalanescuA. BojincaM. BaconiD. SpandidosD.A. TsatsakisA.M. StanM. Management of rheumatoid arthritis: Impact and risks of various therapeutic approaches.Exp. Ther. Med.20161141177118310.3892/etm.2016.3045 27073419
    [Google Scholar]
  193. HimmelbauerM.K. BajramiB. BasileR. CapacciA. ChenT. ChoiC.K. GilfillanR. Gonzalez-Lopez de TurisoF. GuC. HoembergerM. JohnsonD.S. JonesJ.H. KadakiaE. KirklandM. LinE.Y. LiuY. MaB. MageeT. MantenaS. MarxI.E. MetrickC.M. MingueneauM. MuruganP. MusteC.A. NadellaP. NevalainenM. Parker HarpC.R. PattaropongV. PietrasiewiczA. PrinceR.J. PurgettT.J. SantoroJ.C. SchulzJ. SciabolaS. TangH. VandeveerH.G. WangT. YousafZ. HelalC.J. HopkinsB.T. Discovery and preclinical characterization of BIIB129, a Covalent, selective, and brain-penetrant BTK inhibitor for the treatment of multiple sclerosis.J. Med. Chem.202467108122814010.1021/acs.jmedchem.4c00220 38712838
    [Google Scholar]
  194. MaturaL.A. VentetuoloC.E. PalevskyH.I. LedererD.J. HornE.M. MathaiS.C. PinderD. Archer-ChickoC. BagiellaE. RobertsK.E. TracyR.P. HassounP.M. GirgisR.E. KawutS.M. Interleukin-6 and tumor necrosis factor-α are associated with quality of life-related symptoms in pulmonary arterial hypertension.Ann. Am. Thorac. Soc.201512337037510.1513/AnnalsATS.201410‑463OC 25615959
    [Google Scholar]
  195. SchuerweghA.J. DombrechtE.J. StevensW.J. Van OffelJ.F. BridtsC.H. De ClerckL.S. Influence of pro-inflammatory (IL-1α, IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4) cytokines on chondrocyte function.Osteoarthritis Cartilage200311968168710.1016/S1063‑4584(03)00156‑0 12954239
    [Google Scholar]
  196. KanyS. VollrathJ.T. ReljaB. Cytokines in inflammatory disease.Int. J. Mol. Sci.20192023600810.3390/ijms20236008 31795299
    [Google Scholar]
  197. ShobeiriP. SeyedmirzaeiH. KarimiN. RashidiF. TeixeiraA.L. BrandS. Sadeghi-BahmaniD. RezaeiN. IL-6 and TNF-α responses to acute and regular exercise in adult individuals with multiple sclerosis (MS): A systematic review and meta-analysis.Eur. J. Med. Res.202227118510.1186/s40001‑022‑00814‑9 36156182
    [Google Scholar]
  198. JungS.M. KimW.U. Targeted immunotherapy for autoimmune disease.Immune Netw.2022221e910.4110/in.2022.22.e9 35291650
    [Google Scholar]
  199. ChuC.Q. Complement-targeted therapy for autoimmune diseases.Medical Rev.20243652110.1515/mr‑2023‑0051
    [Google Scholar]
  200. ShiY. ShiM. WangY. YouJ. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications.Signal Transduct. Target. Ther.20249132210.1038/s41392‑024‑02002‑z 39543114
    [Google Scholar]
  201. AdytiaG.J. SutantoH. PratiwiL. FetarayaniD. Advances in synthetic immunology for targeted treatment of systemic autoimmune diseases: Opportunities, challenges, and future directions.Immuno202551610.3390/immuno5010006
    [Google Scholar]
  202. LangrishC.L. BradshawJ.M. FrancescoM.R. OwensT.D. XingY. ShuJ. LaStantJ. BisconteA. OuterbridgeC. WhiteS.D. HillR.J. BrameldK.A. GoldsteinD.M. NunnP.A. Preclinical efficacy and anti-inflammatory mechanisms of action of the bruton tyrosine kinase inhibitor rilzabrutinib for immune-mediated disease.J. Immunol.2021206145410.4049/jimmunol.2001130
    [Google Scholar]
  203. KrämerJ. Bar-OrA. TurnerT.J. WiendlH. Bruton tyrosine kinase inhibitors for multiple sclerosis.Nat. Rev. Neurol.202319528930410.1038/s41582‑023‑00800‑7 37055617
    [Google Scholar]
  204. DingQ. HuW. WangR. YangQ. ZhuM. LiM. CaiJ. RoseP. MaoJ. ZhuY.Z. Signaling pathways in rheumatoid arthritis: implications for targeted therapy.Signal Transduct. Target. Ther.2023816810.1038/s41392‑023‑01331‑9 36797236
    [Google Scholar]
  205. RosmanZ. ShoenfeldY. Zandman-GoddardG. Biologic therapy for autoimmune diseases: An update.BMC Med.20131118810.1186/1741‑7015‑11‑88 23557513
    [Google Scholar]
  206. BurgerJ.A. Bruton tyrosine kinase inhibitors.Cancer J.201925638639310.1097/PPO.0000000000000412 31764119
    [Google Scholar]
  207. García-CarrascoM. Mendoza PintoC. Solís PoblanoJ.C. Systemic lupus erythematosus. In: Autoimmunity: From Bench to Bedside. AnayaJ.M. ShoenfeldY. Rojas-VillarragaA. Bogota, ColombiaEl Rosario University Press2013
    [Google Scholar]
  208. Justiz VaillantA.A. GoyalA. VaracalloM.A. Systemic Lupus Erythematosus. In: StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  209. Mendes-BastosP. BrasileiroA. KolkhirP. FrischbutterS. ScheffelJ. Moñino-RomeroS. MaurerM. Bruton’s tyrosine kinase inhibition: An emerging therapeutic strategy in immune‐mediated dermatological conditions.Allergy20227782355236610.1111/all.15261 35175630
    [Google Scholar]
  210. Lorenzo-VizcayaA. FasanoS. IsenbergD.A. Bruton’s Tyrosine kinase inhibitors: A new therapeutic target for the treatment of SLE?ImmunoTargets Ther.2020910511010.2147/ITT.S240874 32582577
    [Google Scholar]
  211. GiltiayN. V. ChappellC. P. ClarkE. A. B-cell selection and the development of autoantibodiesArthritis Res. Therap2012S110.1186/ar3918
    [Google Scholar]
  212. Atisha-FregosoY. TozB. DiamondB. Meant to B: B cells as a therapeutic target in systemic lupus erythematosus.J. Clin. Invest.202113112e14909510.1172/JCI149095 34128474
    [Google Scholar]
  213. WangJ. LauK.Y. JungJ. RavindranP. BarratF.J. Bruton’s tyrosine kinase regulates TLR9 but not TLR7 signaling in human plasmacytoid dendritic cells.Eur. J. Immunol.20144441130113610.1002/eji.201344030 24375473
    [Google Scholar]
  214. BenczeD. FeketeT. PázmándiK. Type I interferon production of plasmacytoid dendritic cells under control.Int. J. Mol. Sci.2021228419010.3390/ijms22084190 33919546
    [Google Scholar]
  215. BuggyJ.J. EliasL. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy.Int. Rev. Immunol.201231211913210.3109/08830185.2012.664797 22449073
    [Google Scholar]
  216. PatelV. BalakrishnanK. BibikovaE. AyresM. KeatingM.J. WierdaW.G. GandhiV. Comparison of Acalabrutinib, A selective bruton tyrosine kinase inhibitor, with Ibrutinib in chronic lymphocytic leukemia cells.Clin. Cancer Res.201723143734374310.1158/1078‑0432.CCR‑16‑1446 28034907
    [Google Scholar]
  217. McGeeM.C. AugustA. HuangW. BTK/ITK dual inhibitors: Modulating immunopathology and lymphopenia for COVID-19 therapy.J. Leukoc. Biol.20211091495310.1002/JLB.5COVR0620‑306R 32640487
    [Google Scholar]
  218. HaselmayerP. CampsM. Liu-BujalskiL. NguyenN. MorandiF. HeadJ. O’MahonyA. ZimmerliS.C. BrunsL. BenderA.T. SchroederP. GrenninglohR. Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models.J. Immunol.2019202102888290610.4049/jimmunol.1800583
    [Google Scholar]
  219. WallaceD.J. DörnerT. PisetskyD.S. Sanchez-GuerreroJ. PatelA.C. Parsons-RichD. Le BolayC. DrouinE.E. KaoA.H. GuehringH. Dall’EraM. Efficacy and safety of the Bruton’s Tyrosine kinase inhibitor evobrutinib in systemic Lupus Erythematosus: Results of a phase II, Randomized, Double‐Blind, Placebo‐Controlled Dose‐Ranging Trial.ACR Open Rheumatol.202351384810.1002/acr2.11511 36530019
    [Google Scholar]
  220. LiuY. HuangZ. ZhangT.X. HanB. YangG. JiaD. YangL. LiuQ. LauA.Y.L. PaulF. VerkhratskyA. ShiF.D. ZhangC. Bruton’s tyrosine kinase-bearing B cells and microglia in neuromyelitis optica spectrum disorder.J. Neuroinflammation202320130910.1186/s12974‑023‑02997‑2 38129902
    [Google Scholar]
  221. MaB. BohnertT. OtipobyK.L. TienE. ArefayeneM. BaiJ. BajramiB. BameE. ChanT.R. HumoraM. MacPheeJ.M. MarcotteD. MehtaD. MetrickC.M. MonizG. PolackE. PoreciU. PrefontaineA. SheikhS. SchroederP. SmirnakisK. ZhangL. ZhengF. HopkinsB.T. Discovery of BIIB068: A selective, potent, reversible bruton’s tyrosine kinase inhibitor as an orally efficacious agent for autoimmune diseases.J. Med. Chem.20206321125261254110.1021/acs.jmedchem.0c00702 32696648
    [Google Scholar]
  222. PuriP. JiangS.H. YangY. MackayF. YuD. Understand SLE heterogeneity in the era of omics, big data, and artificial intelligence.Rheumatol. Autoimmun.202111405110.1002/rai2.12010
    [Google Scholar]
  223. ZarrinA.A. BaoK. LupardusP. VucicD. Kinase inhibition in autoimmunity and inflammation.Nat. Rev. Drug Discov.2021201396310.1038/s41573‑020‑0082‑8 33077936
    [Google Scholar]
  224. SmithC.I.E. BurgerJ.A. Resistance mutations to BTK inhibitors originate from the NF-κB but not from the PI3K-RAS-MAPK arm of the B cell receptor signaling pathway.Front. Immunol.20211268947210.3389/fimmu.2021.689472 34177947
    [Google Scholar]
  225. PetersonL. FujinamiR. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis.J. Neuroimmunol.20071841-2374410.1016/j.jneuroim.2006.11.015 17196667
    [Google Scholar]
  226. SimkinsT.J. DuncanG.J. BourdetteD. Chronic demyelination and axonal degeneration in multiple sclerosis: Pathogenesis and therapeutic implications.Curr. Neurol. Neurosci. Rep.20212162610.1007/s11910‑021‑01110‑5 33835275
    [Google Scholar]
  227. TaftiD. EhsanM. XixisK.L. Multiple Sclerosis. In: StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  228. GruberR.C. WirakG.S. BlazierA.S. LeeL. DufaultM.R. HaganN. ChretienN. LaMorteM. HammondT.R. CheongA. RyanS.K. MacklinA. ZhangM. PandeN. HavariE. TurnerT.J. ChomykA. ChristieE. TrappB.D. OfengeimD. BTK regulates microglial function and neuroinflammation in human stem cell models and mouse models of multiple sclerosis.Nat. Commun.20241511011610.1038/s41467‑024‑54430‑8 39578444
    [Google Scholar]
  229. VermerschP. AirasL. BergerT. DeisenhammerF. GrigoriadisN. HartungH.P. MagyariM. PopescuV. PozzilliC. PugliattiM. Van WijmeerschB. ZakariaM. Oreja-GuevaraC. The role of microglia in multiple sclerosis: Implications for treatment with Bruton’s tyrosine kinase inhibitors.Front. Immunol.202516149552910.3389/fimmu.2025.1495529 40443664
    [Google Scholar]
  230. GeladarisA. TorkeS. WeberM.S. Bruton’s Tyrosine kinase inhibitors in multiple sclerosis: pioneering the path towards treatment of progression?CNS Drugs202236101019103010.1007/s40263‑022‑00951‑z 36178589
    [Google Scholar]
  231. AirasL. BermelR.A. ChitnisT. HartungH.P. NakaharaJ. StuveO. WilliamsM.J. KieseierB.C. WiendlH. A review of Bruton’s tyrosine kinase inhibitors in multiple sclerosis.Ther. Adv. Neurol. Disord.20241710.1177/17562864241233041 38638671
    [Google Scholar]
  232. CarsonsS.E. PatelB.C. Sjogren Syndrome. In: StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  233. FoxR.I. FoxC.M. McCoyS.S. Emerging treatment for Sjögren’s disease: A review of recent phase II and III trials.Expert Opin. Emerg. Drugs202328210712010.1080/14728214.2023.2209720 37127914
    [Google Scholar]
  234. RipJ. Van Der PloegE.K. HendriksR.W. CornethO.B. The role of Bruton’s tyrosine kinase in immune cell signaling and systemic autoimmunity.Crit. Rev. Immunol.20183811710.1615/CritRevImmunol.2018025184
    [Google Scholar]
  235. CornethO.B.J. NeysS.F.H. HendriksR.W. Aberrant B cell signaling in autoimmune diseases.Cells20221121339110.3390/cells11213391 36359789
    [Google Scholar]
  236. DörnerT. KaulM. SzántóA. TsengJ.C. PapasA.S. PylvaenaeinenI. HanserM. AbdallahN. GrioniA. Santos Da CostaA. FerreroE. GergelyP. HillenbrandR. AvrameasA. CenniB. SiegelR.M. Efficacy and safety of remibrutinib, a selective potent oral BTK inhibitor, in Sjögren’s syndrome: Results from a randomised, double-blind, placebo-controlled phase 2 trial.Ann. Rheum. Dis.202483336037110.1136/ard‑2023‑224691 37932009
    [Google Scholar]
  237. ParisisD. ChivassoC. PerretJ. SoyfooM.S. DelporteC. Current state of knowledge on primary Sjögren’s Syndrome, an autoimmune exocrinopathy.J. Clin. Med.202097229910.3390/jcm9072299 32698400
    [Google Scholar]
  238. AudiaS. MahévasM. SamsonM. GodeauB. BonnotteB. Pathogenesis of immune thrombocytopenia.Autoimmun. Rev.201716662063210.1016/j.autrev.2017.04.012 28428120
    [Google Scholar]
  239. VayneC. GuéryE.A. RollinJ. BagloT. PetermannR. GruelY. Pathophysiology and diagnosis of drug-induced immune thrombocytopenia.J. Clin. Med.202097221210.3390/jcm9072212 32668640
    [Google Scholar]
  240. KuterD.J. EfraimM. MayerJ. TrněnýM. McDonaldV. BirdR. RegenbogenT. GargM. KaplanZ. TzvetkovN. ChoiP.Y. JansenA.J.G. KostalM. BakerR. GumulecJ. LeeE.J. CunninghamI. GoncalvesI. WarnerM. BocciaR. GernsheimerT. GhanimaW. BandmanO. BurnsR. NealeA. ThomasD. AroraP. ZhengB. CooperN. Rilzabrutinib, an oral BTK inhibitor, in immune thrombocytopenia.N. Engl. J. Med.2022386151421143110.1056/NEJMoa2110297 35417637
    [Google Scholar]
  241. RoeserA. LazarusA.H. MahévasM. B cells and antibodies in refractory immune thrombocytopenia.Br. J. Haematol.20232031435310.1111/bjh.18773 37002711
    [Google Scholar]
  242. CooperN. JansenA.J.G. BirdR. MayerJ. SholzbergM. TarantinoM.D. GargM. YpmaP.F. McDonaldV. PercyC. KošťálM. GoncalvesI. BogdanovL.H. GernsheimerT.B. DiabR. YaoM. DaakA. KuterD.J. Efficacy and safety results with Rilzabrutinib, an oral bruton tyrosine kinase inhibitor, in patients with immune thrombocytopenia: Phase 2 part B Study.Am. J. Hematol.2025100343944910.1002/ajh.27539 39844469
    [Google Scholar]
  243. MurrellD.F. PatsatsiA. StavropoulosP. BaumS. ZeeliT. KernJ.S. Roussaki-SchulzeA.V. SinclairR. BassukasI.D. ThomasD. NealeA. AroraP. CauxF. WerthV.P. GourlayS.G. JolyP. Proof of concept for the clinical effects of oral rilzabrutinib, the first Bruton tyrosine kinase inhibitor for pemphigus vulgaris: The phase II believe study.Br. J. Dermatol.2021185474575510.1111/bjd.20431 33942286
    [Google Scholar]
  244. ToplicaninA. ToncevL. Matovic ZaricV. Sokic MilutinovicA. Autoimmune hemolytic anemia in inflammatory bowel disease—report of a case and review of the literature.Life20221211178410.3390/life12111784 36362944
    [Google Scholar]
  245. YunZ. DuanL. LiuX. CaiQ. LiC. An update on the biologics for the treatment of antiphospholipid syndrome.Front. Immunol.202314114514510.3389/fimmu.2023.1145145 37275894
    [Google Scholar]
  246. LimW. Prevention of thrombosis in antiphospholipid syndrome.Hematology (Am. Soc. Hematol. Educ. Program)20162016170771310.1182/asheducation‑2016.1.707 27913550
    [Google Scholar]
  247. LiR. TangH. BurnsJ.C. HopkinsB.T. Le CozC. ZhangB. de BarcelosI.P. RombergN. GoldsteinA.C. BanwellB.L. Luning PrakE.T. MingueneauM. Bar-OrA. BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy.Acta Neuropathol.2022143450552110.1007/s00401‑022‑02411‑w 35303161
    [Google Scholar]
  248. WuY.C. ChenC.S. ChanY.J. The outbreak of COVID-19: An overview.J. Chin. Med. Assoc.202083321722010.1097/JCMA.0000000000000270 32134861
    [Google Scholar]
  249. CascellaM. RajnikM. AleemA. Features, evaluation, and treatment of coronavirus (COVID-19). In: StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  250. KifleZ.D. Bruton tyrosine kinase inhibitors as potential therapeutic agents for COVID-19: A review.Metab. Open20211110011610.1016/j.metop.2021.100116 34345815
    [Google Scholar]
  251. RoschewskiM. LionakisM.S. SharmanJ.P. RoswarskiJ. GoyA. MonticelliM.A. RoshonM. WrzesinskiS.H. DesaiJ.V. ZarakasM.A. CollenJ. RoseK.M. HamdyA. IzumiR. WrightG.W. ChungK.K. BaselgaJ. StaudtL.M. WilsonW.H. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19.Sci. Immunol.2020548eabd011010.1126/sciimmunol.abd0110 32503877
    [Google Scholar]
  252. ZongZ. WeiY. RenJ. ZhangL. ZhouF. The intersection of COVID-19 and cancer: Signaling pathways and treatment implications.Mol. Cancer20212017610.1186/s12943‑021‑01363‑1 34001144
    [Google Scholar]
  253. GalitziaA. MaccaferriM. MauroF.R. MurruR. MarascaR. Chronic lymphocytic leukemia: Management of adverse events in the era of targeted agents.Cancers20241611199610.3390/cancers16111996 38893115
    [Google Scholar]
  254. FengY. HuX. WangX. Targeted protein degradation in hematologic malignancies: Clinical progression towards novel therapeutics.Biomark. Res.20241218510.1186/s40364‑024‑00638‑1 39169396
    [Google Scholar]
  255. ZhuS. JungJ. VictorE. ArceoJ. GokhaleS. XieP. Clinical trials of the BTK inhibitors Ibrutinib and Acalabrutinib in human diseases beyond B cell malignancies.Front. Oncol.20211173794310.3389/fonc.2021.737943 34778053
    [Google Scholar]
  256. Clinical Trials Using Acalabrutinib Clinical Trials Using Acalabrutinib2025Available from:https://www.cancer.gov/research/participate/clinical-trials/intervention/acalabrutinib?pn=1
  257. AldeaM. MichotJ.M. DanlosF.X. RibasA. SoriaJ.C. Repurposing of anticancer drugs expands possibilities for antiviral and anti-inflammatory discovery in COVID-19.Cancer Discov.20211161336134410.1158/2159‑8290.CD‑21‑0144 33846172
    [Google Scholar]
  258. ZhengW. ZengZ. LinS. HouP. Revisiting potential value of antitumor drugs in the treatment of COVID-19.Cell Biosci.202212116510.1186/s13578‑022‑00899‑z 36182930
    [Google Scholar]
  259. RezaeiM. BaratiS. BabamahmoodiA. DastanF. MarjaniM. The possible role of bruton tyrosine kinase inhibitors in the treatment of COVID-19: A review.Curr. Ther. Res. Clin. Exp.20229610065810.1016/j.curtheres.2021.100658 34931090
    [Google Scholar]
  260. StackM. SaccoK. CastagnoliR. LivinskiA.A. NotarangeloL.D. LionakisM.S. BTK inhibitors for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Systematic Review.Research square202110.21203/rs.3.rs‑319342/v1
    [Google Scholar]
  261. BennerB. CarsonW.E. Observations on the use of Bruton’s tyrosine kinase inhibitors in SAR-CoV-2 and cancer.J. Hematol. Oncol.20211411510.1186/s13045‑020‑00999‑8 33441177
    [Google Scholar]
  262. TanL.Y. KomarasamyT.V. R.M.T.Balasubramaniam V. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword.Front. Immunol.20211274294110.3389/fimmu.2021.742941 34659238
    [Google Scholar]
  263. WuY. SunX. KangK. YangY. LiH. ZhaoA. NiuT. Hemophagocytic lymphohistiocytosis: Current treatment advances, emerging targeted therapy and underlying mechanisms.J. Hematol. Oncol.202417110610.1186/s13045‑024‑01621‑x 39511607
    [Google Scholar]
  264. ShinJ.J. ParkJ. ShinH.S. ArabI. SukK. LeeW.H. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases.Int. J. Mol. Sci.2024255267010.3390/ijms25052670 38473915
    [Google Scholar]
  265. XiaoX. HuangS. ChenS. WangY. SunQ. XuX. LiY. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies.J. Exp. Clin. Cancer Res.202140136710.1186/s13046‑021‑02148‑6 34794490
    [Google Scholar]
  266. de PortoA.P. LiuZ. de BeerR. FlorquinS. de BoerO.J. HendriksR.W. van der PollT. de VosA.F. Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses in the lung during murine pneumococcal pneumonia.Mol. Med.2019251310.1186/s10020‑018‑0069‑7 30646846
    [Google Scholar]
  267. Toledo, B.; Zhu Chen, L.; Paniagua-Sancho, M.; Marchal, J.A.; Perán, M.; Giovannetti, E. Deciphering the performance of macrophages in tumour microenvironment: A call for precision immunotherapy.J. Hematol. Oncol.20241714410.1186/s13045‑024‑01559‑0 38863020
    [Google Scholar]
  268. DerosaL. MelenotteC. GriscelliF. GachotB. MarabelleA. KroemerG. ZitvogelL. The immuno-oncological challenge of COVID-19.Nat. Cancer202011094696410.1038/s43018‑020‑00122‑3 35121872
    [Google Scholar]
  269. FlorenceJ.M. KrupaA. BooshehriL.M. DavisS.A. MatthayM.A. KurdowskaA.K. Inhibiting Bruton’s tyrosine kinase rescues mice from lethal influenza-induced acute lung injury.Am. J. Physiol. Lung Cell. Mol. Physiol.20183151L52L5810.1152/ajplung.00047.2018 29516781
    [Google Scholar]
  270. KrupaA. FolM. RahmanM. StokesK.Y. FlorenceJ.M. LeskovI.L. KhoretonenkoM.V. MatthayM.A. LiuK.D. CalfeeC.S. TvinnereimA. RosenfieldG.R. KurdowskaA.K. Silencing Bruton’s tyrosine kinase in alveolar neutrophils protects mice from LPS/immune complex-induced acute lung injury.Am. J. Physiol. Lung Cell. Mol. Physiol.20143076L435L44810.1152/ajplung.00234.2013 25085625
    [Google Scholar]
  271. RaoH. SongX. LeiJ. LuP. ZhaoG. KangX. ZhangD. ZhangT. RenY. PengC. LiY. PeiJ. CaoZ. Ibrutinib prevents acute lung injury via multi-targeting BTK, FLT3 and EGFR in mice.Int. J. Mol. Sci.202223211347810.3390/ijms232113478 36362264
    [Google Scholar]
  272. LealV.N.C. BorkF. Mateo TortolaM. von GuilleaumeJ.C. GreveC.L. BuglS. DankerB. BittnerZ.A. GrimbacherB. PontilloA. WeberA.N.R. Bruton’s tyrosine kinase (BTK) and matrix metalloproteinase-9 (MMP-9) regulate NLRP3 inflammasome-dependent cytokine and neutrophil extracellular trap responses in primary neutrophils.J. Allergy Clin. Immunol.2025155256958210.1016/j.jaci.2024.10.035 39547282
    [Google Scholar]
  273. KlokF.A. KruipM.J.H.A. van der MeerN.J.M. ArbousM.S. GommersD.A.M.P.J. KantK.M. KapteinF.H.J. van PaassenJ. StalsM.A.M. HuismanM.V. EndemanH. Incidence of thrombotic complications in critically ill ICU patients with COVID-19.Thromb. Res.202019114514710.1016/j.thromres.2020.04.013 32291094
    [Google Scholar]
  274. JennerW.J. KanjiR. MirsadraeeS. GueY.X. PriceS. PrasadS. GorogD.A. Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: a systematic review.J. Thromb. Thrombolysis202151359560710.1007/s11239‑021‑02394‑7 33586113
    [Google Scholar]
  275. LiJ. ZhouY. MaJ. ZhangQ. ShaoJ. LiangS. YuY. LiW. WangC. The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID.Signal Transduct. Target. Ther.20238141610.1038/s41392‑023‑01640‑z 37907497
    [Google Scholar]
  276. ShendeP. KhanolkarB. GaudR.S. Drug repurposing: New strategies for addressing COVID-19 outbreak.Expert Rev. Anti Infect. Ther.202119668970610.1080/14787210.2021.1851195 33183102
    [Google Scholar]
  277. Abou-IsmailM.Y. DiamondA. KapoorS. ArafahY. NayakL. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management.Thromb. Res.202019410111510.1016/j.thromres.2020.06.029 32788101
    [Google Scholar]
  278. DucaS.T. CostacheA.D. MiftodeR.Ș. MituO. PetrișA.O. CostacheI.I. Hypercoagulability in COVID-19: From an unknown beginning to future therapies.Med. Pharm. Rep.202295323624210.15386/mpr‑2195 36060499
    [Google Scholar]
  279. LangerbeinsP. HallekM. COVID-19 in patients with hematologic malignancy.Blood2022140323625210.1182/blood.2021012251 35544585
    [Google Scholar]
  280. LaracyJ.C. KambojM. VardhanaS.A. Long and persistent COVID-19 in patients with hematologic malignancies: from bench to bedside.Curr. Opin. Infect. Dis.202235427127910.1097/QCO.0000000000000841 35849516
    [Google Scholar]
  281. HusI. SzymczykA. MańkoJ. Drozd-SokołowskaJ. COVID-19 in adult patients with hematological malignancies—lessons learned after three years of pandemic.Biology202312454510.3390/biology12040545 37106746
    [Google Scholar]
  282. PathaniaA.S. PrathipatiP. AbdulB.A.A. ChavaS. KattaS.S. GuptaS.C. GangulaP.R. PandeyM.K. DurdenD.L. ByrareddyS.N. ChallagundlaK.B. COVID-19 and cancer comorbidity: Therapeutic opportunities and challenges.Theranostics202111273175310.7150/thno.51471 33391502
    [Google Scholar]
  283. DaiM. LiuD. LiuM. ZhouF. LiG. ChenZ. ZhangZ. YouH. WuM. ZhengQ. XiongY. XiongH. WangC. ChenC. XiongF. ZhangY. PengY. GeS. ZhenB. YuT. WangL. WangH. LiuY. ChenY. MeiJ. GaoX. LiZ. GanL. HeC. LiZ. ShiY. QiY. YangJ. TenenD.G. ChaiL. MucciL.A. SantillanaM. CaiH. Patients with cancer appear more vulnerable to SARS-CoV-2: A multicenter study during the COVID-19 outbreak.Cancer Discov.202010678379110.1158/2159‑8290.CD‑20‑0422 32345594
    [Google Scholar]
  284. LiaoY.T. ShenH.C. HuangJ.R. SunC.Y. KoH.J. ChangC.J. ChenY.M. FengJ.Y. ChenW.C. YangK.Y. Clinical characteristics and outcomes among critically ill patients with cancer and COVID-19-related acute respiratory failure.BMC Pulm. Med.20242413410.1186/s12890‑024‑02850‑z 38225613
    [Google Scholar]
  285. BohmwaldK. Diethelm-VarelaB. Rodríguez-GuilarteL. RiveraT. RiedelC.A. GonzálezP.A. KalergisA.M. Pathophysiological, immunological, and inflammatory features of long COVID.Front. Immunol.202415134160010.3389/fimmu.2024.1341600 38482000
    [Google Scholar]
  286. van EijkL.E. BinkhorstM. BourgonjeA.R. OffringaA.K. MulderD.J. BosE.M. KolundzicN. AbdulleA.E. van der VoortP.H.J. Olde RikkertM.G.M. van der HoevenJ.G. den DunnenW.F.A. HillebrandsJ.L. van GoorH. COVID ‐19: Immunopathology, pathophysiological mechanisms, and treatment options.J. Pathol.2021254430733110.1002/path.5642 33586189
    [Google Scholar]
  287. ThibaudS. TremblayD. BhallaS. ZimmermanB. SigelK. GabriloveJ. Protective role of Bruton tyrosine kinase inhibitors in patients with chronic lymphocytic leukaemia and COVID‐19.Br. J. Haematol.20201902e73e7610.1111/bjh.16863 32433778
    [Google Scholar]
  288. YangS. WeiR. ShiH. WangY. LaiY. ZhaoX. LuJ. SchmitzN. The impact of Bruton’s tyrosine kinase inhibitor treatment on COVID-19 outcomes in Chinese patients with chronic lymphocytic leukemia.Front. Oncol.202414139691310.3389/fonc.2024.1396913 38835372
    [Google Scholar]
  289. HampelP.J. DingW. CallT.G. RabeK.G. KenderianS.S. WitzigT.E. MuchtarE. LeisJ.F. Chanan-KhanA.A. KoehlerA.B. FonderA.L. SchwagerS.M. SlagerS.L. ShanafeltT.D. KayN.E. ParikhS.A. Rapid disease progression following discontinuation of ibrutinib in patients with chronic lymphocytic leukemia treated in routine clinical practice.Leuk. Lymphoma201960112712271910.1080/10428194.2019.1602268 31014142
    [Google Scholar]
  290. Hernández BorreroL.J. El-DeiryW.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting.Biochim. Biophys. Acta Rev. Cancer20211876118855610.1016/j.bbcan.2021.188556 33932560
    [Google Scholar]
  291. RadaM. AlthubitiM. Ekpenyong-AkibaA.E. LeeK.G. LamK.P. FedorovaO. BarlevN.A. MacipS. BTK blocks the inhibitory effects of MDM2 on p53 activity.Oncotarget201786310663910664710.18632/oncotarget.22543 29290977
    [Google Scholar]
  292. Justiz VaillantA.A. ModiP. MohammadiO. Graft-Versus-host disease. In: StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  293. JacobsohnD.A. VogelsangG.B. Acute graft versus host disease.Orphanet J. Rare Dis.2007213510.1186/1750‑1172‑2‑35 17784964
    [Google Scholar]
  294. CookeK.R. LuznikL. SarantopoulosS. HakimF.T. JagasiaM. FowlerD.H. van den BrinkM.R.M. HansenJ.A. ParkmanR. MiklosD.B. MartinP.J. PaczesnyS. VogelsangG. PavleticS. RitzJ. SchultzK.R. BlazarB.R. The biology of chronic graft-versus-host disease: A task force report from the National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease.J. American Societ Blood Marrow Transplant.201723221110.1016/j.bbmt.2016.09.023
    [Google Scholar]
  295. SchuttS.D. FuJ. NguyenH. BastianD. HeinrichsJ. WuY. LiuC. McDonaldD.G. PidalaJ. YuX.Z. Inhibition of BTK and ITK with ibrutinib is effective in the prevention of chronic graft-versus-host disease in mice.PLoS One2015109e013764110.1371/journal.pone.0137641 26348529
    [Google Scholar]
  296. OlivieriA. ManciniG. Current approaches for the prevention and treatment of acute and chronic GVHD.Cells20241318152410.3390/cells13181524 39329708
    [Google Scholar]
  297. RaguramanV. MysingerM. MohiyuddinS. JabbourN. KeslerM. PalaniyandiS. HildebrandtG.C. Targeting bruton tyrosine kinase with Acalabrutinib Attenuates Murine sclerodermatous chronic graft versus host disease.Transplant. Cell. Ther.2024302S25510.1016/j.jtct.2023.12.339
    [Google Scholar]
  298. UchimuraA. YasudaH. OnagiH. InanoT. ShiraneS. IshiiM. AzusawaY. HamanoY. EguchiH. AraiM. AndoJ. AndoM. Successful management of acute graft-versus-host disease with ibrutinib during cord blood transplantation for germline DDX41-mutated acute myeloid leukemia.Heliyon2024102e2480110.1016/j.heliyon.2024.e24801 38312561
    [Google Scholar]
  299. BurgerJ.A. Bruton’s tyrosine kinase (BTK) inhibitors in clinical trials.Curr. Hematol. Malig. Rep.201491444910.1007/s11899‑013‑0188‑8 24357428
    [Google Scholar]
  300. PoneE.J. ZanH. ZhangJ. Al-QahtaniA. XuZ. CasaliP. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: Relevance to microbial antibody responses.Crit. Rev. Immunol.201030112910.1615/CritRevImmunol.v30.i1.10 20370617
    [Google Scholar]
  301. LabancaC. MartinoE.A. VignaE. BruzzeseA. MendicinoF. CaridàG. LuciaE. OlivitoV. ManicardiV. AmodioN. NeriA. MorabitoF. GentileM. Rilzabrutinib for the treatment of immune thrombocytopenia.Eur. J. Haematol.2025115141510.1111/ejh.14425 40222822
    [Google Scholar]
  302. MiklosD. CutlerC.S. AroraM. WallerE.K. JagasiaM. PusicI. FlowersM.E. LoganA.C. NakamuraR. BlazarB.R. LiY. ChangS. LalI. DubovskyJ. JamesD.F. StylesL. JaglowskiS. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy.Blood2017130212243225010.1182/blood‑2017‑07‑793786 28924018
    [Google Scholar]
  303. ThompsonP.A. BurgerJ.A. Bruton’s tyrosine kinase inhibitors: First and second generation agents for patients with Chronic Lymphocytic Leukemia (CLL).Expert Opin. Investig. Drugs2018271314210.1080/13543784.2018.1404027 29125406
    [Google Scholar]
  304. GuoJ. ZhouY. LuX. Advances in protein kinase drug discovery through targeting gatekeeper mutations.Expert Opin. Drug Discov.202318121349136610.1080/17460441.2023.2265303 37811637
    [Google Scholar]
  305. WangH. HouX. ZhangW. WangY. LiL. LiY. LuweihingB. XiM. SongJ. ZhuX. ZhouL. ChenX. YuY. JinW. ShenZ. BGB-16673, a BTK degrader, overcomes ontarget resistance from BTK inhibitors and presents sustainable long-term tumor regression in lymphoma xenograft modelsHemasphere20237Supple24358c210.1097/01.HS9.0000971772.24358.c2
    [Google Scholar]
  306. WierdaW.G. ShahN.N. CheahC.Y. LewisD. HoffmannM.S. CoombsC.C. LamannaN. MaS. JagadeeshD. MunirT. WangY. EyreT.A. RhodesJ.M. McKinneyM. Lech-MarandaE. TamC.S. JurczakW. IzutsuK. AlencarA.J. PatelM.R. SeymourJ.F. WoyachJ.A. ThompsonP.A. AbadaP.B. HoC. McNeelyS.C. MarellaN. NguyenB. WangC. RuppertA.S. NairB. LiuH. TsaiD.E. RoekerL.E. GhiaP. Pirtobrutinib, a highly selective, non-covalent (reversible) BTK inhibitor in patients with B-cell malignancies: Analysis of the Richter transformation subgroup from the multicentre, open-label, phase 1/2 BRUIN study.Lancet Haematol.2024119e682e69210.1016/S2352‑3026(24)00172‑8 39033770
    [Google Scholar]
  307. NawaratneV. SondhiA.K. Abdel-WahabO. TaylorJ. New means and challenges in the targeting of BTK.Clin. Cancer Res.202430112333234110.1158/1078‑0432.CCR‑23‑0409 38578606
    [Google Scholar]
  308. VelásquezH.Y.E. In vitro and in vivo studies of bruton tyrosine kinase (Btk) mutations and inhibition.Doctoral dissertation, Karolinska Institutet (Sweden2021
    [Google Scholar]
  309. TamC.S. BalendranS. BlomberyP. Novel mechanisms of resistance in CLL: variant BTK mutations in second-generation and noncovalent BTK inhibitors.Blood2025145101005100910.1182/blood.2024026672 39808800
    [Google Scholar]
  310. TamC. ThompsonP.A. BTK inhibitors in CLL: Second-generation drugs and beyond.Blood Adv.2024892300230910.1182/bloodadvances.2023012221 38478390
    [Google Scholar]
  311. WangE. MiX. ThompsonM.C. MontoyaS. NottiR.Q. AfaghaniJ. DurhamB.H. PensonA. WitkowskiM.T. LuS.X. BourcierJ. HoggS.J. EricksonC. CuiD. ChoH. SingerM. TotigerT.M. ChaudhryS. GeyerM. AlencarA. LinleyA.J. PalombaM.L. CoombsC.C. ParkJ.H. ZelenetzA. RoekerL. RosendahlM. TsaiD.E. EbataK. BrandhuberB. HymanD.M. AifantisI. MatoA. TaylorJ. Abdel-WahabO. Mechanisms of resistance to noncovalent Bruton’s tyrosine kinase inhibitors.N. Engl. J. Med.2022386873574310.1056/NEJMoa2114110 35196427
    [Google Scholar]
  312. SerranoD.R. LucianoF.C. AnayaB.J. OngorenB. KaraA. MolinaG. RamirezB.I. Sánchez-GuiralesS.A. SimonJ.A. TomiettoG. RaptiC. RuizH.K. RawatS. KumarD. LalatsaA. Artificial Intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine.Pharmaceutics20241610132810.3390/pharmaceutics16101328 39458657
    [Google Scholar]
  313. SinghM. KumarA. KhannaN.N. LairdJ.R. NicolaidesA. FaaG. JohriA.M. MantellaL.E. FernandesJ.F.E. TejiJ.S. SinghN. FoudaM.M. SinghR. SharmaA. KitasG. RathoreV. SinghI.M. TadepalliK. Al-MainiM. IsenovicE.R. ChaturvediS. GargD. ParaskevasK.I. MikhailidisD.P. ViswanathanV. KalraM.K. RuzsaZ. SabaL. LaineA.F. BhattD.L. SuriJ.S. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: A scoping review.EClinicalMedicine20247310266010.1016/j.eclinm.2024.102660 38846068
    [Google Scholar]
  314. AdeyanjuS.A. OgunjobiT.T. Machine learning in genomics: Applications in whole genome sequencing, whole exome sequencing, single-cell genomics, and spatial transcriptomics.Medinformatics202410.47852/bonviewMEDIN42024120
    [Google Scholar]
  315. SwansonK. WuE. ZhangA. AlizadehA.A. ZouJ. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment.Cell202318681772179110.1016/j.cell.2023.01.035 36905928
    [Google Scholar]
  316. YangY. LiF. WeiY. ZhaoY. FuJ. XiaoX. BuH. Experts’ cognition-driven ensemble deep learning for external validation of predicting pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer.Medinformatics202410.47852/bonviewMEDIN42024108
    [Google Scholar]
  317. ChattopadhyayS. Decoding medical diagnosis with machine learning classifiers.Med. Inform.202410.47852/bonviewMEDIN42022583
    [Google Scholar]
  318. MihailaR. Challenges associated with the use of Bruton’s tyrosine kinase inhibitors: A life saving therapy for chronic lymphocytic leukemia. (Review)World Acad. Sci. J.20246326.[Review]10.3892/wasj.2024.241
    [Google Scholar]
  319. HamedN.A.M. Challenges with Bruton’s tyrosine kinase inhibitors treatment.Cancer Ther. Oncol. Int. J.202427110.19080/CTOIJ.2024.27.556203
    [Google Scholar]
  320. LipskyA. LamannaN. Managing toxicities of Bruton tyrosine kinase inhibitors.Hematology (Am. Soc. Hematol. Educ. Program)20202020133634510.1182/hematology.2020000118 33275698
    [Google Scholar]
  321. HatashimaA. KaramiM. ShadmanM. Approved and emerging Bruton’s tyrosine kinase inhibitors for the treatment of chronic lymphocytic leukemia.Expert Opin. Pharmacother.202223131545155710.1080/14656566.2022.2113384 35973973
    [Google Scholar]
  322. TsengH. MurrellD.F. The potential of Bruton’s tyrosine kinase (BTK) inhibitors in the pharmacotherapeutic management of immune and dermatological disease.Expert Opin. Pharmacother.202425121657166510.1080/14656566.2024.2393280 39158385
    [Google Scholar]
  323. EstupiñánH.Y. BerglöfA. ZainR. SmithC.I.E. Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects.Front. Cell Dev. Biol.2021963094210.3389/fcell.2021.630942 33777941
    [Google Scholar]
  324. GhaneY. HeidariN. HeidariA. SadeghiS. GoodarziA. Efficacy and safety of Bruton’s tyrosine kinase inhibitors in the treatment of pemphigus: A comprehensive literature review and future perspective.Heliyon2023912e2291210.1016/j.heliyon.2023.e22912 38125430
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575409452250815095743
Loading
/content/journals/mrmc/10.2174/0113895575409452250815095743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test