Skip to content
2000
image of Research Progress in Mutagenesis Techniques for Aspergillus fumigatus and the Biological Activities of Fumagillin

Abstract

As the main fermentation product of (), fumagillin is directly related to the gene of and exhibits a variety of biological activities. However, its clinical application is limited by low yield and toxicity. It is of great significance to improve the yield and safety of fumagillin using . Currently, research on fumagillin at home and abroad primarily focuses on a single direction and lacks a systematic review of its biosynthesis, structure-activity relationship, and strain modification technology, as well as a comprehensive theoretical framework. This study systematically reviews the biosynthesis mechanism, activity characteristics, and targeted strain modification technology of fumagillin, providing theoretical support for breakthroughs in production, toxicity regulation, and clinical transformation of fumagillin.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575377839251007060804
2025-10-21
2025-11-03
Loading full text...

Full text loading...

References

  1. Mandong H.U. Fangyan C.H.E.N. Jingya Z.H.A.O. Dingchen L.I. Xiao C.U.I. Advances in drug resistance mechanisms of Aspergillus fumigatus. J. Chinese Myco. 2024 19 02 194 199
    [Google Scholar]
  2. Guruceaga X. Perez-Cuesta U. Abad-Diaz de Cerio A. Gonzalez O. Alonso R.M. Hernando F.L. Ramirez-Garcia A. Rementeria A. Fumagillin, a Mycotoxin of Aspergillus fumigatus: Biosynthesis, biological activities, detection, and applications. Toxins 2019 12 1 7 10.3390/toxins12010007 31906353
    [Google Scholar]
  3. Jiansong L. Ya L. Jidong W. Zhikui H. Changyan X. Separation, purification and impurity analysis of highly effective anti-tumor drug fumagillin. Chinese Medicinal Biotechnology 2020 15 04 398 403
    [Google Scholar]
  4. Haopeng W. Liming W. Liuwei Z. Hui N. An-feng H. Zhongyin Z. Preliminary optimization of fermentation conditions of aspergillus fumigatus and its expanded culture. Food. and Fermentation Sciences & Technology 2018 54 03 13 20
    [Google Scholar]
  5. Haopeng W. Liming W. Liuwei Z. Hui N. An-feng H. Zhongyin Z. Optimization of Aspergillus fumigatus fermentation medium. Science and Technology of Food. Industry 2018 39 10 110 116 10.13386/j.issn1002‑0306.2018.10.021
    [Google Scholar]
  6. Haopeng W. Liming W. Liuwei Z. Hui N. An-feng H. Zhongyin Z. Optimization of fermentation conditions and pilot test of fumagillin in 5 L fermentor. China Brewing 2019 38 02 98 103
    [Google Scholar]
  7. Feng Z. Du P. Sheng Y. Wang B. Chen W. Peng H. Enhanced fumagillin production by optimizing fermentation and purification techniques. Fermentation 2024 10 11 588 10.3390/fermentation10110588
    [Google Scholar]
  8. Higes M. Nozal M.J. Alvaro A. Barrios L. Meana A. Martín-Hernández R. Bernal J.L. Bernal J. The stability and effectiveness of fumagillin in controlling Nosema ceranae (Microsporidia) infection in honey bees (Apis mellifera) under laboratory and field conditions. Apidologie 2011 42 3 364 377 10.1007/s13592‑011‑0003‑2
    [Google Scholar]
  9. Zhang P. Nicholson D.E. Bujnicki J.M. Su X. Brendle J.J. Ferdig M. Kyle D.E. Milhous W.K. Chiang P.K. Angiogenesis inhibitors specific for methionine aminopeptidase 2 as drugs for Malaria and Leishmaniasis. J. Biomed. Sci. 2002 9 1 34 40 10.1007/BF02256576 11810023
    [Google Scholar]
  10. Arico-Muendel C. Centrella P.A. Contonio B.D. Morgan B.A. O’Donovan G. Paradise C.L. Skinner S.R. Sluboski B. Svendsen J.L. White K.F. Debnath A. Gut J. Wilson N. McKerrow J.H. DeRisi J.L. Rosenthal P.J. Chiang P.K. Antiparasitic activities of novel, orally available fumagillin analogs. Bioorg. Med. Chem. Lett. 2009 19 17 5128 5131 10.1016/j.bmcl.2009.07.029 19648008
    [Google Scholar]
  11. Griffith E.C. Su Z. Niwayama S. Ramsay C.A. Chang Y.H. Liu J.O. Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc. Natl. Acad. Sci. USA 1998 95 26 15183 15188 10.1073/pnas.95.26.15183 9860943
    [Google Scholar]
  12. Lin H.C. Tsunematsu Y. Dhingra S. Xu W. Fukutomi M. Chooi Y.H. Cane D.E. Calvo A.M. Watanabe K. Tang Y. Generation of complexity in fungal terpene biosynthesis: Discovery of a multifunctional cytochrome P450 in the fumagillin pathway. J. Am. Chem. Soc. 2014 136 11 4426 4436 10.1021/ja500881e 24568283
    [Google Scholar]
  13. van den Heever J.P. Thompson T.S. Curtis J.M. Pernal S.F. Stability of dicyclohexylamine and fumagillin in honey. Food Chem. 2015 179 152 158 10.1016/j.foodchem.2015.01.111
    [Google Scholar]
  14. Kochansky J. Nasr M. Laboratory studies on the photostability of fumagillin, the active ingredient of Fumidil B1. Apidologie 2004 35 3 301 310 10.1051/apido:2004017
    [Google Scholar]
  15. Liu S. Widom J. Kemp C.W. Crews C.M. Clardy J. Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 1998 282 5392 1324 1327 10.1126/science.282.5392.1324 9812898
    [Google Scholar]
  16. Birch A.J. Hussain S.F. Studies in relation to biosynthesis. Part XXXVIII. A preliminary study of fumagillin. J. Chem. Soc. C 1969 11 11 1473 1474 10.1039/j39690001473 5816427
    [Google Scholar]
  17. Lin H.C. Chooi Y.H. Dhingra S. Xu W. Calvo A.M. Tang Y. The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of β-trans-bergamotene. J. Am. Chem. Soc. 2013 135 12 4616 4619 10.1021/ja312503y 23488861
    [Google Scholar]
  18. Liyuan X. Fenglin J. Youcai H. Self-resistance gene-directed genome mining in microorganisms and its application in the discovery of natural products. Progress in Pharmaceutical Sciences 2023 47 04 244 259 10.20053/j.issn1001‑5094.2023.04.002
    [Google Scholar]
  19. Jie T. Liu G. Preliminary study on breeding of chitosanase high-yield strain by UV mutagenesis. China Brewing 2010 11 106 109
    [Google Scholar]
  20. Jie L. Yun-kai Z. Jing Z. Jun-lian S. Gui-guang C. Zhi-qun L. Screening of high-yield β-Glucanase producing mutants by protoplast UV mutagenesis Chinese Full Text. Food Sci. Technol. 2010 35 05 15 18 10.13684/j.cnki.spkj.2010.05.002
    [Google Scholar]
  21. Seo H-W. Wassano N. Amir Rawa M. Nickles G. Damasio A. Keller N. A timeline of biosynthetic gene cluster discovery in Aspergillus fumigatus: From characterization to future perspectives j Fungi 2024 10 4 266 10.3390/jof10040266
    [Google Scholar]
  22. Udage A.C. Introduction to plant mutation breeding: Different approaches and mutagenic agents J. Agri. Sci. – Sri Lanka 2021 16 3 466 483 10.4038/jas.v16i03.9472
    [Google Scholar]
  23. Zhou S. Alper H.S. Strategies for directed and adapted evolution as part of microbial strain engineering. J. Chem. Technol. Biotechnol. 2019 94 2 366 376 10.1002/jctb.5746
    [Google Scholar]
  24. Tensingh J.A.S. Shankar V. Sustainable production of biodiesel using uv mutagenesis as a strategy to enhance the lipid productivity in R. mucilaginosa. Sustainability 2022 14 15 9079 10.3390/su14159079
    [Google Scholar]
  25. Shakibaie M. Ameri A. Ghazanfarian R. Adeli-Sardou M. Amirpour-Rostami S. Torkzadeh-Mahani M. Imani M. Forootanfar H. Statistical optimization of kojic acid production by a UV-induced mutant strain of Aspergillus terreus. Braz. J. Microbiol. 2018 49 4 865 871 10.1016/j.bjm.2018.03.009 29728342
    [Google Scholar]
  26. Mengmeng Z. literature, H.; Wei, Z.; Yingying, D.; Dapeng, C. Breeding of Aspergillus niger strain with high temperature resistance and high yield of gluconate by compound mutagenesis. China Brewing 2016 35 12 133 136
    [Google Scholar]
  27. Jafari N. Jafarizadeh-Malmiri H. Hamzeh-Mivehroud M. Adibpour M. Optimization of UV irradiation mutation conditions for cellulase production by mutant fungal strains of Aspergillus niger through solid state fermentation. Green Processing and Synthesis 2017 6 3 333 340 10.1515/gps‑2016‑0145
    [Google Scholar]
  28. Yakymenko I. Burlaka A. Tsybulin O. Brieieva O. Buchynska L. Tsehmistrenko S. Chekhun V. Oxidative and mutagenic effects of low intensity gsm 1800 mhz microwave radiation. Exp. Oncol. 2018 40 4 282 287 10.31768/2312‑8852.2018.40(4):282‑287 30593748
    [Google Scholar]
  29. Shamis Y. Taube A. Mitik-Dineva N. Croft R. Crawford R.J. Ivanova E.P. Specific electromagnetic effects of microwave radiation on Escherichia coli. Appl. Environ. Microbiol. 2011 77 9 3017 3022 10.1128/AEM.01899‑10 21378041
    [Google Scholar]
  30. Haina B. Sources of microbial contamination in food and its control analysis. China Food. Safety Magazine 2020 36 8 10.16043/j.cnki.cfs.2020.36.006
    [Google Scholar]
  31. Zhao X. Zhou Y. Zheng G. Liu D. Microwave pretreatment of substrates for cellulase production by solid-state fermentation. Appl. Biochem. Biotechnol. 2010 160 5 1557 1571 10.1007/s12010‑009‑8640‑x 19452284
    [Google Scholar]
  32. Zhang X. Zhang X.F. Li H.P. Wang L.Y. Zhang C. Xing X.H. Bao C.Y. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl. Microbiol. Biotechnol. 2014 98 12 5387 5396 10.1007/s00253‑014‑5755‑y 24769904
    [Google Scholar]
  33. Xianxian D. Xiaojiang W. Yulong Z. Xiaodan W. Yin W. Chengmei L. Guiming F. Screening of tannase-producing Aspergillus niger by atmospheric and room temperature plasma mutagenesis and optimization of fermentation parameters. Shipin Yu Fajiao Gongye 2021 47 15 15 21 10.13995/j.cnki.11‑1802/ts.026252
    [Google Scholar]
  34. Yanfang Z. Guangchao M. Xuannian W. Breeding of Aspergillus oryzae high-yield aminopeptidase strain by ARTP technology. China Condiment 2021 46 12 31 41
    [Google Scholar]
  35. Qiyang Z. Shutai Z. Breeding of Aspergillus species with high yield of glutaminase by ARTP mutagenesis technology. Zhongguo Tiaoweipin 2019 44 11 137 140
    [Google Scholar]
  36. Liu K. Fang H. Cui F. Nyabako B.A. Tao T. Zan X. Chen H. Sun W. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Appl. Microbiol. Biotechnol. 2020 104 14 6363 6373 10.1007/s00253‑020‑10703‑y 32474797
    [Google Scholar]
  37. Dobrynin D. Fridman G. Friedman G. Physical and biological mechanisms of direct plasma interaction with living tissue. J. Phys. 2009 11 115020 10.1088/1367‑2630/11/11/115020
    [Google Scholar]
  38. Li H.P. Wang L.Y. Li G. Jin L.H. Le P.S. Zhao H.X. Xing X.H. Bao C.Y. Manipulation of lipase activity by the helium radio‐frequency, atmospheric‐pressure glow discharge plasma jet. Plasma Process. Polym. 2011 8 3 224 229 10.1002/ppap.201000035
    [Google Scholar]
  39. Zhang A. Ma Y. Deng Y. Zhou Z. Cao Y. Yang B. Bai J. Sun Q. Enhancing protease and amylase activities in bacillus licheniformis XS-4 for traditional soy sauce fermentation using ARTP mutagenesis. Foods 2023 12 12 2381 10.3390/foods12122381 37372591
    [Google Scholar]
  40. Sreedevi P.R. Suresh K. Cold atmospheric plasma mediated cell membrane permeation and gene delivery-empirical interventions and pertinence. Adv. Colloid Interface Sci. 2023 320 102989 102989 10.1016/j.cis.2023.102989 37677997
    [Google Scholar]
  41. Wang L. Zhao H. He D. Wu Y. Jin L. Li G. Su N. Li H. Xing X.H. Insights into the molecular-level effects of atmospheric and room-temperature plasma on mononucleotides and single-stranded homo- and hetero-oligonucleotides. Sci. Rep. 2020 10 1 14298 14298 10.1038/s41598‑020‑71152‑1 32868795
    [Google Scholar]
  42. Huan L. Ling S. Xiaodong S. Jianyu L. Ruijuan W. Hui Y. Research progress of atmospheric and room temperature plasma technology in microbial mutation breeding. J. Biol. 2023 40 04 92 97
    [Google Scholar]
  43. Wenjun W. The development and application of biotechnology in the field of genetic engineering and cell engineering are analyzed. Modern Agriculture Research 2021 27 04 142 143 10.19704/j.cnki.xdnyyj.2021.04.069
    [Google Scholar]
  44. Earle K. Valero C. Conn D.P. Vere G. Cook P.C. Bromley M.J. Bowyer P. Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023 14 1 2172264 10.1080/21505594.2023.2172264 36752587
    [Google Scholar]
  45. Latgé J.P. Chamilos G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019 33 1 e00140 e18 10.1128/CMR.00140‑18 31722890
    [Google Scholar]
  46. Große V. Krappmann S. The asexual pathogen aspergillus fumigatus expresses functional determinants of Aspergillus nidulans sexual development. Eukaryot. Cell 2008 7 10 1724 1732 10.1128/EC.00157‑08 18757566
    [Google Scholar]
  47. Pyrzak W. Miller K.Y. Miller B.L. Mating type protein Mat1-2 from asexual Aspergillus fumigatus drives sexual reproduction in fertile Aspergillus nidulans. Eukaryot. Cell 2008 7 6 1029 1040 10.1128/EC.00380‑07 18245277
    [Google Scholar]
  48. Ene I.V. Bennett R.J. The cryptic sexual strategies of human fungal pathogens. Nat. Rev. Microbiol. 2014 12 4 239 251 10.1038/nrmicro3236 24625892
    [Google Scholar]
  49. Zhang K. Hu J. Zhao Z. Fumagillin regulates stemness and malignancies in cancer stem-like cells derived from liver cancer via targeting to MetAP-2. PLoS One 2023 18 7 e0289024 10.1371/journal.pone.0289024 37506053
    [Google Scholar]
  50. Minghui S. Study on the therapeutic effect of fumagillin on microsporidia in honeybees. Apic. China 2017 68 11 62 63
    [Google Scholar]
  51. Weirui C. Xiaofeng X. Liming W. Research progress on fumigatustin and its prevention and treatment of bee microsporidiosis. J. Agric. Sci. Technol. 2016 18 02 52 58 10.13304/j.nykjdb.2015.345
    [Google Scholar]
  52. Furness M. Robinson T. Ehlers T. Hubbard R. Arbiser J. Goldsmith D. Bowena J. Antiangiogenic agents: Studies on fumagillin and curcumin analogs. Curr. Pharm. Des. 2005 11 3 357 373 10.2174/1381612053382142 15723631
    [Google Scholar]
  53. Lefkove B. Govindarajan B. Arbiser J.L. Fumagillin: An anti-infective as a parent molecule for novel angiogenesis inhibitors. Expert Rev. Anti Infect. Ther. 2007 5 4 573 579 10.1586/14787210.5.4.573 17678422
    [Google Scholar]
  54. Ding G-Z. Liu J. Wang J-M. Fang L. Yu S-S. Secondary metabolites from the endophytic fungi Penicillium polonicum and Aspergillus fumigatus. J. Asian Nat. Prod. Res. 2013 15 5 446 452 10.1080/10286020.2013.780349
    [Google Scholar]
  55. Sastré-Velásquez L.E. Mach N. Mertens B. Kühbacher A. Merschak P. Dallemulle A. Lechner L. Baldin C. Diallinas G. Gsaller F. Simultaneous multigene integration in Aspergillus fumigatus using CRISPR/Cas9 and endogenous counter-selectable markers. J. Biol. Eng. 2025 19 1 69 10.1186/s13036‑025‑00539‑3 40722183
    [Google Scholar]
  56. Zheng X. Zhai Y. Chathurika H.A.W. Ni X. Lv R. Wu C. Sun Z. Shen Y. Zhang C.Y. Zheng P. Sun J. A Highly Efficient 5S rRNA-CRISPR/Cas9 Genome Editing Toolkit in Acremonium chrysogenum. J. Agric. Food. Chem 2025 acs.jafc.5c06429 10.1021/acs.jafc.5c06429 40891143
    [Google Scholar]
  57. Paoletti M. Rydholm C. Schwier E.U. Anderson M.J. Szakacs G. Lutzoni F. Debeaupuis J.P. Latgé J.P. Denning D.W. Dyer P.S. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 2005 15 13 1242 1248 10.1016/j.cub.2005.05.045 16005299
    [Google Scholar]
  58. Szewczyk E. Krappmann S. Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecium formation. Eukaryot. Cell 2010 9 5 774 783 10.1128/EC.00375‑09 20348388
    [Google Scholar]
  59. Wiemann P. Guo C.J. Palmer J.M. Sekonyela R. Wang C.C.C. Keller N.P. Prototype of an intertwined secondary-metabolite supercluster. Proc. Natl. Acad. Sci. USA 2013 110 42 17065 17070 10.1073/pnas.1313258110 24082142
    [Google Scholar]
  60. Yu Y. Blachowicz A. Will C. Szewczyk E. Glenn S. Gensberger-Reigl S. Nowrousian M. Wang C.C.C. Krappmann S. Mating‐type factor‐specific regulation of the fumagillin/pseurotin secondary metabolite supercluster in Aspergillus fumigatus. Mol. Microbiol. 2018 110 6 1045 1065 10.1111/mmi.14136 30240513
    [Google Scholar]
  61. Dhingra S. Lind A.L. Lin H.C. Tang Y. Rokas A. Calvo A.M. The fumagillin gene cluster, an example of hundreds of genes under veA control in Aspergillus fumigatus. PLoS One 2013 8 10 e77147 10.1371/journal.pone.0077147 24116213
    [Google Scholar]
  62. Dhingra S. Andes D. Calvo A.M. VeA regulates conidiation, gliotoxin production, and protease activity in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot. Cell 2012 11 12 1531 1543 10.1128/EC.00222‑12 23087369
    [Google Scholar]
  63. Luyan L. Weizu L. Heng Z. Lujuan G. Linyun L. Yi S. The potential mechanism of Aspergillus fumigatus FADB gene involved in drug resistance. Junwu Xuebao 2022 41 04 561 569 10.13346/j.mycosystema.210326
    [Google Scholar]
  64. Kaijie W. Zhelun Z. Ruyu J. Qingqing W. Yutian L. Sha W. Construction of pim1 knockout strain of Aspergillus fumigatus and identification of its drug resistance function. J. Huzhou. Uni. 2021 43 08 65 69
    [Google Scholar]
  65. Buied A. Moore C.B. Denning D.W. Bowyer P. High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J. Antimicrob. Chemother. 2013 68 3 512 514 10.1093/jac/dks451 23208831
    [Google Scholar]
  66. Sugui J.A. Chang Y.C. Kwon-Chung K.J. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Appl. Environ. Microbiol. 2005 71 4 1798 1802 10.1128/AEM.71.4.1798‑1802.2005 15812003
    [Google Scholar]
  67. Guruceaga X. Ezpeleta G. Mayayo E. Sueiro-Olivares M. Abad-Diaz-De-Cerio A. Aguirre Urízar J.M. Liu H.G. Wiemann P. Bok J.W. Filler S.G. Keller N.P. Hernando F.L. Ramirez-Garcia A. Rementeria A. A possible role for fumagillin in cellular damage during host infection by Aspergillus fumigatus. Virulence 2018 9 1 1548 1561 10.1080/21505594.2018.1526528 30251593
    [Google Scholar]
  68. Burnham A.J. Scientific Advances in Controlling Nosema ceranae (Microsporidia) Infections in Honey Bees (Apis mellifera). Front. Vet. Sci. 2019 6 79 10.3389/fvets.2019.00079 30931319
    [Google Scholar]
  69. Glavinic U. Stevanovic J. Ristanic M. Rajkovic M. Davitkov D. Lakic N. Stanimirovic Z. Potential of fumagillin and Agaricus blazei mushroom extract to reduce Nosema ceranae in Honey Bees. Insects 2021 12 4 282 10.3390/insects12040282 33806001
    [Google Scholar]
  70. Peirson M. Pernal S.F. A systematic review of fumagillin field trials for the treatment of nosema disease in honeybee colonies. Insects 2024 15 1 29 10.3390/insects15010029 38249035
    [Google Scholar]
  71. van den Heever J.P. Thompson T.S. Curtis J.M. Ibrahim A. Pernal S.F. Fumagillin: An overview of recent scientific advances and their significance for apiculture. J. Agric. Food Chem. 2014 62 13 2728 2737 10.1021/jf4055374 24621007
    [Google Scholar]
  72. An J. Wang L. Patnode M.L. Ridaura V.K. Haldeman J.M. Stevens R.D. Ilkayeva O. Bain J.R. Muehlbauer M.J. Glynn E.L. Thomas S. Muoio D. Summers S.A. Vath J.E. Hughes T.E. Gordon J.I. Newgard C.B. Physiological mechanisms of sustained fumagillin-induced weight loss. JCI Insight 2018 3 5 e99453 10.1172/jci.insight.99453 29515039
    [Google Scholar]
  73. McCowen M.C. Callender M.E. Lawlis J.F. Fumagillin (H-3), a new antibiotic with amebicidal properties. Science 1951 113 2930 202 203 10.1126/science.113.2930.202 14809278
    [Google Scholar]
  74. Rice C.A. Colon B.L. Chen E. Hull M.V. Kyle D.E. Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae. PLoS Negl. Trop. Dis. 2020 14 9 e0008353 10.1371/journal.pntd.0008353 32970675
    [Google Scholar]
  75. Bukreyeva I. Angoulvant A. Bendib I. Gagnard J.C. Bourhis J.H. Dargère S. Bonhomme J. Thellier M. Gachot B. Wyplosz B. Enterocytozoon bieneusi Microsporidiosis in Stem Cell Transplant Recipients Treated with Fumagillin1. Emerg. Infect. Dis. 2017 23 6 1039 1041 10.3201/eid2306.161825 28518017
    [Google Scholar]
  76. Huang W.F. Solter L.F. Yau P.M. Imai B.S. Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathog. 2013 9 3 e1003185 10.1371/journal.ppat.1003185 23505365
    [Google Scholar]
  77. Lijnen H.R. Frederix L. van Hoef B. Fumagillin reduces adipose tissue formation in murine models of nutritionally induced obesity. Obesity 2010 18 12 2241 2246 10.1038/oby.2009.503 20094042
    [Google Scholar]
  78. Yanase T. Tamura M. Fujita K. Kodama S. Tanaka K. Inhibitory effect of angiogenesis inhibitor TNP-470 on tumor growth and metastasis of human cell lines in vitro and in vivo. Cancer Res. 1993 53 11 2566 2570 7684319
    [Google Scholar]
  79. Conteas C.N. Berlin O.G. Ash L.R. Pruthi J.S. Therapy for human gastrointestinal microsporidiosis. Am. J. Trop. Med. Hyg. 2000 63 3 121 127 10.4269/ajtmh.2000.63.121 11388502
    [Google Scholar]
  80. Didier P.J. Phillips J.N. Kuebler D.J. Nasr M. Brindley P.J. Stovall M.E. Bowers L.C. Didier E.S. Antimicrosporidial activities of fumagillin, TNP-470, ovalicin, and ovalicin derivatives in vitro and in vivo. Antimicrob. Agents Chemother. 2006 50 6 2146 2155 10.1128/AAC.00020‑06 16723577
    [Google Scholar]
  81. Didier E.S. Effects of albendazole, fumagillin, and TNP-470 on microsporidial replication in vitro. Antimicrob. Agents Chemother. 1997 41 7 1541 1546 10.1128/AAC.41.7.1541 9210681
    [Google Scholar]
  82. Kim E.J. Shin W.H. General pharmacology of CKD-732, a new anticancer agent: effects on central nervous, cardiovascular, and respiratory system. Biol. Pharm. Bull. 2005 28 2 217 223 10.1248/bpb.28.217 15684472
    [Google Scholar]
  83. Maillard A. Scemla A. Laffy B. Mahloul N. Molina J.M. Safety and efficacy of fumagillin for the treatment of intestinal microsporidiosis. A French prospective cohort study. J. Antimicrob. Chemother. 2021 76 2 487 494 10.1093/jac/dkaa438 33128055
    [Google Scholar]
  84. Seubwai W. Kidoikhammouan S. Silsirivanit A. Wongkham S. Sawanyawisuth K. Wongkham C. Blocking of methionine aminopeptidase-2 by TNP-470 induces apoptosis and increases chemosensitivity of cholangiocarcinoma. J. Cancer Res. Ther. 2019 15 1 148 152 10.4103/jcrt.JCRT_250_17 30880771
    [Google Scholar]
  85. Denton M.D. Magee C. Melter M. Dharnidharka V.R. Sayegh M.H. Briscoe D.M. TNP-470, an angiogenesis inhibitor, attenuates the development of allograft vasculopathy. Transplantation 2004 78 8 1218 1221 10.1097/01.TP.0000137266.30134.02 15502723
    [Google Scholar]
  86. Lazarus D.D. Doyle E.G. Bernier S.G. Rogers A.B. Labenski M.T. Wakefield J.D. Karp R.M. Clark E.J. Lorusso J. Hoyt J.G. Thompson C.D. Hannig G. Westlin W.F. An inhibitor of methionine aminopeptidase type-2, PPI-2458, ameliorates the pathophysiological disease processes of rheumatoid arthritis. Inflamm. Res. 2008 57 1 18 27 10.1007/s00011‑007‑7075‑5
    [Google Scholar]
  87. Sin N. Meng L. Wang M.Q.W. Wen J.J. Bornmann W.G. Crews C.M. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. USA 1997 94 12 6099 6103 10.1073/pnas.94.12.6099 9177176
    [Google Scholar]
  88. Garrabrant T. Tuman R. Ludovici D. Tominovich R. Simoneaux R. Galemmo R. Johnson D.L. Small molecule inhibitors of methionine aminopeptidase type 2 (MetAP-2) fail to inhibit endothelial cell proliferation or formation of microvessels from rat aortic rings in vitro. Angiogenesis 2004 7 2 91 96 10.1007/s10456‑004‑6089‑7 15516829
    [Google Scholar]
  89. Zhou H. Yan H. Hu Y. Springer L.E. Yang X. Wickline S.A. Pan D. Lanza G.M. Pham C.T.N. Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS Nano 2014 8 7 7305 7317 10.1021/nn502372n 24941020
    [Google Scholar]
  90. Sawanyawisuth K. Wongkham C. Pairojkul C. Saeseow O.T. Riggins G.J. Araki N. Wongkham S. Methionine aminopeptidase 2 over-expressed in cholangiocarcinoma: Potential for drug target. Acta Oncol. 2007 46 3 378 385 10.1080/02841860600871061 17450475
    [Google Scholar]
  91. Gervaz P. Scholl B. Padrun V. Gillet M. Growth inhibition of liver metastases by the anti‐angiogenic drug TNP‐470. Liver 2000 20 2 108 113 10.1034/j.1600‑0676.2000.020002108.x 10847478
    [Google Scholar]
  92. Hou L. Mori D. Takase Y. Meihua P. Kai K. Tokunaga O. Fumagillin inhibits colorectal cancer growth and metastasis in mice: In vivo and in vitro study of anti‐angiogenesis. Pathol. Int. 2009 59 7 448 461 10.1111/j.1440‑1827.2009.02393.x 19563408
    [Google Scholar]
  93. Xiaonan C. Xinmiao L. Li H. Inhibitory effect of fumagillin on growth and metastasis of colorectal cancer in mice in vitro and in vivo. China Oncology Journal 2010 20 02 86 94
    [Google Scholar]
  94. Sheen I.S. Jeng K.S. Jeng W.J. Jeng C.J. Wang Y.C. Gu S.L. Tseng S.Y. Chu C.M. Lin C.H. Chang K.M. Fumagillin treatment of hepatocellular carcinoma in rats: An in vivo study of antiangiogenesis. World J. Gastroenterol. 2005 11 6 771 777 10.3748/wjg.v11.i6.771 15682466
    [Google Scholar]
  95. Christiaens V. Lijnen H.R. Angiogenesis and development of adipose tissue. Mol. Cell. Endocrinol. 2010 318 1-2 2 9 10.1016/j.mce.2009.08.006 19686803
    [Google Scholar]
  96. Oikonomou E.K. Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 2019 16 2 83 99 10.1038/s41569‑018‑0097‑6 30287946
    [Google Scholar]
  97. Cao Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 2007 117 9 2362 2368 10.1172/JCI32239 17786229
    [Google Scholar]
  98. Paxton R.J. Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? J. Apic. Res. 2010 49 1 80 84 10.3896/IBRA.1.49.1.11
    [Google Scholar]
  99. Mendoza Y. Diaz-Cetti S. Ramallo G. Santos E. Porrini M. Invernizzi C. Nosema ceranae Winter Control: Study of the Effectiveness of Different Fumagillin Treatments and Consequences on the Strength of Honey Bee (Hymenoptera: Apidae) Colonies J. Econ. Entomol 2016 110 1 tow228 10.1093/jee/tow228 28025388
    [Google Scholar]
  100. Higes M. Martín-Hernández R. Botías C. Bailón E.G. González-Porto A.V. Barrios L. del Nozal M.J. Bernal J.L. Jiménez J.J. Palencia P.G. Meana A. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 2008 10 10 2659 2669 10.1111/j.1462‑2920.2008.01687.x 18647336
    [Google Scholar]
  101. Das B.C. Chokkalingam P. Shareef M.A. Shukla S. Das S. Saito M. Weiss L.M. Methionine aminopeptidases: Potential therapeutic target for microsporidia and other microbes. J. Eukaryot. Microbiol. 2024 71 5 e13036 10.1111/jeu.13036 39036929
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575377839251007060804
Loading
/content/journals/mrmc/10.2174/0113895575377839251007060804
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test