Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

The pH-sensitive drug delivery systems (PSDDS) are attracting significant attention as these systems transport the drug at a specific time as per the pathophysiological need of the disease, leading to improved patient therapeutic effectiveness and compliance. The pH-sensitive nanoparticles are a favorable alternative to treat ulcers, especially gastrointestinal ulcers comprising peptic ulcers and mouth ulcers. These nanoparticles can be intended to release medication in a meticulous way at specific pH levels of the ulcer site, which can improve therapeutic effectiveness and decrease side effects. It is significant to note that the use of pH-sensitive nanoparticles for ulcer management is an evolving field of research, and the specific applications and formulations may vary based on the type and location of the ulcer. Additionally, regulatory approvals and clinical trials may be necessary before such treatments become widely available to patients.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031334895250227111942
2025-03-19
2025-12-19
Loading full text...

Full text loading...

References

  1. SrinivasaraoM. LowP.S. Ligand-targeted drug delivery.Chem. Rev.201711719121331216410.1021/acs.chemrev.7b0001328898067
    [Google Scholar]
  2. MuY. GongL. PengT. YaoJ. LinZ. Advances in pH-responsive drug delivery systems.OpenNano2021510003110.1016/j.onano.2021.100031
    [Google Scholar]
  3. LvY. HaoL. HuW. RanY. BaiY. ZhangL. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting.Sci. Rep.2016612932110.1038/srep2932127378018
    [Google Scholar]
  4. AshiqueS. MishraN. GargA. SibuhB.Z. TanejaP. RaiG. DjearamaneS. WongL.S. Al-DayanN. RoychoudhuryS. KesariK.K. SlamaP. RoychoudhuryS. GuptaP.K. Recent updates on correlation between reactive oxygen species and synbiotics for effective management of ulcerative colitis.Front. Nutr.202310112657910.3389/fnut.2023.112657937545572
    [Google Scholar]
  5. ChavanM. JainH. DiwanN. KhedkarS. SheteA. DurkarS. Recurrent aphthous stomatitis: A review.J. Oral Pathol. Med.201241857758310.1111/j.1600‑0714.2012.01134.x22413800
    [Google Scholar]
  6. Gasmi BenahmedA. NoorS. MenzelA. GasmiA. Oral aphthous: Pathophysiology, clinical aspects and medical treatment.Arch. Razi Inst.20217651155116335355774
    [Google Scholar]
  7. CornickS. TawiahA. ChadeeK. Roles and regulation of the mucus barrier in the gut.Tissue Barriers201531-2e98242610.4161/21688370.2014.98242625838985
    [Google Scholar]
  8. PanZ. ZhangX. XieW. CuiJ. WangY. ZhangB. DuL. ZhaiW. SunH. LiY. LiD. Revisited and innovative perspectives of oral ulcer: From biological specificity to local treatment.Front. Bioeng. Biotechnol.202412133537710.3389/fbioe.2024.133537738456005
    [Google Scholar]
  9. MedaN. AbbasM. VermaH. TripathiR.K. Arterial ulcer. KhannaA. TiwaryS. Ulcers of the Lower ExtremitySpringerNew Delhi201610.1007/978‑81‑322‑2635‑2_11
    [Google Scholar]
  10. StrandenE. SlagsvoldC.E. Arterial ischemic ulcers.Tidsskr Nor Laegeforen2005125789589815815738
    [Google Scholar]
  11. CoelhoG.A. SecretanP.H. TortolanoL. CharvetL. YagoubiN. Evolution of the chronic venous leg ulcer microenvironment and its impact on medical devices and wound care therapies.J. Clin. Med.20231217560510.3390/jcm1217560537685674
    [Google Scholar]
  12. MalfertheinerP. ChanF.K.L. McCollK.E.L. Peptic ulcer disease.Lancet200937496991449146110.1016/S0140‑6736(09)60938‑719683340
    [Google Scholar]
  13. LanasA. ChanF.K.L. Peptic ulcer disease.Lancet20173901009461362410.1016/S0140‑6736(16)32404‑728242110
    [Google Scholar]
  14. MustafaM. MenonJ. MuiandyR.K. FredieR. SeinM.M. FarizA. Risk factors, diagnosis, and management of peptic ulcer disease.IOSR J. Dent. Med. Sci.2015147404610.9790/0853‑14784046
    [Google Scholar]
  15. JaswanthK. KumarK. VenkateshP. A review on peptic ulcer.UPI J. Pharm. Med. Health Sci.202251192610.37022/jpmhs.v5i1.73
    [Google Scholar]
  16. MajumdarD. LooiS. Helicobacter pylori infection and peptic ulcers.Medicine (Abingdon)202452315216010.1016/j.mpmed.2023.12.006
    [Google Scholar]
  17. ChenL. XuW. LeeA. HeJ. HuangB. ZhengW. SuT. LaiS. LongY. ChuH. ChenY. WangL. WangK. SiJ. ChenS. The impact of Helicobacter pylori infection, eradication therapy and probiotic supplementation on gut microenvironment homeostasis: An open-label, randomized clinical trial.EBioMedicine201835879610.1016/j.ebiom.2018.08.02830145102
    [Google Scholar]
  18. El-DeebN Al-MadbolyL. Probiotics and GIT diseases/stomach ulcer.Probiotics, the Natural Microbiota in Living Organisms1st edCRC Press202124
    [Google Scholar]
  19. LiangT.Y. DengR.M. LiX. XuX. ChenG. The role of nitric oxide in peptic ulcer.Med. Gas Res.2021111424510.4103/2045‑9912.31005933642337
    [Google Scholar]
  20. SinghaiM. PandeyV. AshiqueS. GuptaG.D. AroraD. HaiderT. MishraN. Design and evaluation of SLNs encapsulated curcumin-based topical formulation for the management of cervical cancer.Anticancer Agents Med Chem202323161866187910.2174/187152062366623062614575037365788
    [Google Scholar]
  21. Cunha RamosM. NicolaM.R.C. BezerraN.T.C. SardinhaJ.C.G. Sampaio de Souza MoraisJ. SchettiniA.P. Genital ulcers caused by sexually transmitted agents.An. Bras. Dermatol.202297555156510.1016/j.abd.2022.01.00435868971
    [Google Scholar]
  22. AjamiS. KhaleghiL. A review on equipped hospital beds with wireless sensor networks for reducing bedsores.J Res Med Sci.201520101007101510.4103/1735‑1995.17279726929768
    [Google Scholar]
  23. WeiW. MaN. Bedsore.Encyclopedia of Gerontology and Population AgingSpringer International PublishingCham2022606611
    [Google Scholar]
  24. NayakD. SrinivasanK. JagdishS. RattanR. ChatramV.S. Bedsores: “Top to bottom” and “bottom to top”.Indian J. Surg.200870416116810.1007/s12262‑008‑0046‑423133050
    [Google Scholar]
  25. SumpioB.E. Foot Ulcers.N. Engl. J. Med.20003431178779310.1056/NEJM20000914343110710984568
    [Google Scholar]
  26. ReardonR. SimringD. KimB. MortensenJ. WilliamsD. LeslieA. The diabetic foot ulcer.Aust. J. Gen. Pract.202049525025510.31128/AJGP‑11‑19‑516132416652
    [Google Scholar]
  27. LiY. JuS. LiX. LiW. ZhouS. WangG. CaiY. DongZ. Characterization of the microenvironment of diabetic foot ulcers and potential drug identification based on scRNA-seq.Front. Endocrinol. (Lausanne)20231399788010.3389/fendo.2022.99788036686438
    [Google Scholar]
  28. ArmstrongD.G. TanT.W. BoultonA.J.M. BusS.A. Diabetic foot ulcers: A review.JAMA20233301627510.1001/jama.2023.1057837395769
    [Google Scholar]
  29. DingB.Y. Active tumor targeting drug delivery system: The current status.Academic Journal of Second Military Medical University2010321328
    [Google Scholar]
  30. DengL. DongH. DongA. ZhangJ. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity.Eur. J. Pharm. Biopharm.201597Pt A10711710.1016/j.ejpb.2015.10.01026515259
    [Google Scholar]
  31. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  32. WuY. LiQ. ShimG. OhY.K. Melanin-loaded CpG DNA hydrogel for modulation of tumor immune microenvironment.J. Control. Release202133054055310.1016/j.jconrel.2020.12.04033373649
    [Google Scholar]
  33. WuW. LuoL. WangY. WuQ. DaiH.B. LiJ.S. DurkanC. WangN. WangG.X. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications.Theranostics20188113038305810.7150/thno.2345929896301
    [Google Scholar]
  34. HidaK. MaishiN. SakuraiY. HidaY. HarashimaH. Heterogeneity of tumor endothelial cells and drug delivery.Adv. Drug Deliv. Rev.201699Pt B14014710.1016/j.addr.2015.11.00826626622
    [Google Scholar]
  35. SonajeK. LinK.J. WangJ.J. MiF.L. ChenC.T. JuangJ.H. SungH.W. Self-assembled pH-sensitive nanoparticles: A platform for oral delivery of protein drugs.Adv. Funct. Mater.201020213695370010.1002/adfm.201001014
    [Google Scholar]
  36. ZhuY.J. ChenF. pH-responsive drug-delivery systems.Chem. Asian J.201510228430510.1002/asia.20140271525303435
    [Google Scholar]
  37. AlshammariB.H. LashinM.M.A. MahmoodM.A. Al-MubaddelF.S. IlyasN. RahmanN. SohailM. KhanA. AbdullaevS.S. KhanR. Organic and inorganic nanomaterials: Fabrication, properties and applications.RSC Advances20231320137351378510.1039/D3RA01421E37152571
    [Google Scholar]
  38. NarayanaS. GowdaB.H.J. HaniU. ShimuS.S. PaulK. DasA. AshiqueS. AhmedM.G. TarighatM.A. AbdiG. Inorganic nanoparticle-based treatment approaches for colorectal cancer: Recent advancements and challenges.J. Nanobiotechnology202422142710.1186/s12951‑024‑02701‑339030546
    [Google Scholar]
  39. AshiqueS. UpadhyayA. GulatiM. SinghD. ChawlaP.A. ChawlaV. One-dimensional polymeric nanocomposites in drug delivery systems.Curr. Nanosci.202319682583910.2174/1573413719666230110110706
    [Google Scholar]
  40. MehtaM. BuiT.A. YangX. AksoyY. GoldysE.M. DengW. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development.ACS Materials Au20233660061910.1021/acsmaterialsau.3c0003238089666
    [Google Scholar]
  41. WangJ. LiB. QiuL. QiaoX. YangH. Dendrimer-based drug delivery systems: History, challenges, and latest developments.J. Biol. Eng.20221611810.1186/s13036‑022‑00298‑535879774
    [Google Scholar]
  42. SaravanakumarK. AnbazhaganS. Pujani UsliyanageJ. Vishven NaveenK. WijesingheU. XiaowenH. Vishnu PriyaV. ThiripuranatharG. WangM.H. A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures.Int. Immunopharmacol.202210310843310.1016/j.intimp.2021.10843334922248
    [Google Scholar]
  43. MastellaP. TodaroB. LuinS. Nanogels: Recent advances in synthesis and biomedical applications.Nanomaterials (Basel)20241415130010.3390/nano1415130039120405
    [Google Scholar]
  44. AshiqueS. UpadhyayA. HussainA. BagS. ChaterjeeD. RihanM. MishraN. BhattS. PuriV. SharmaA. PrasherP. SinghS.K. ChellappanD.K. GuptaG. DuaK. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives.J. Drug Deliv. Sci. Technol.20227710387610.1016/j.jddst.2022.103876
    [Google Scholar]
  45. UnnikrishnanG. JoyA. MeghaM. KolanthaiE. SenthilkumarM. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: A critical review.Discover Nano202318115710.1186/s11671‑023‑03943‑038112849
    [Google Scholar]
  46. YahC.S. The toxicity of Gold Nanoparticles in relation to their physiochemical properties.Biomed. Res.2013243Available from: https://www.alliedacademies.org/articles/the-toxicity-of-gold-nanoparticles-in-relation-to-their-physiochemicalproperties.html
    [Google Scholar]
  47. AwasthiR. BhushanB. KulkarniG.T. Chapter 9 - Concepts of nanotechnology in nanomedicine: From discovery to applications.Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery SystemsAcademic Press202017120910.1016/B978‑0‑12‑820658‑4.00009‑1
    [Google Scholar]
  48. MausA. StraitL. ZhuD. Nanoparticles as delivery vehicles for antiviral therapeutic drugs.Engineered Regeneration20212314610.1016/j.engreg.2021.03.00138620592
    [Google Scholar]
  49. AkramF. ImtiazM. HaqI. Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century.Microb. Pathog.202317410592310.1016/j.micpath.2022.10592336526035
    [Google Scholar]
  50. CrisanM.C. TeodoraM. LucianM. Copper nanoparticles: Synthesis and characterization, physiology, toxicity and antimicrobial applications.Appl. Sci. (Basel)202112114110.3390/app12010141
    [Google Scholar]
  51. RahmanG. FazalH. UllahA. AhmadS. NadeemT. AhmadM. AhmadI. MishraN. AshiqueS. ZenginG. FaridA. Empowering silver and copper nanoparticles through aqueous fruit extract of Solanum xanthocarpum for sustainable advancements.Biomass Convers. Biorefin.20241510.1007/s13399‑024‑05270‑5
    [Google Scholar]
  52. LakshmipriyaT. GopinathS.C. 1 - Introduction to nanoparticles and analytical devices.Nanoparticles in Analytical and Medical DevicesElsevier202112910.1016/B978‑0‑12‑821163‑2.00001‑7
    [Google Scholar]
  53. AgarwalH. ShanmugamV. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach.Bioorg. Chem.20209410342310.1016/j.bioorg.2019.10342331776035
    [Google Scholar]
  54. AliS. UlhassanZ. ShahbazH. KaleemZ. YousafM.A. AliS. SheteiwyM.S. WaseemM. AliS. ZhouW. Application of magnesium oxide nanoparticles as a novel sustainable approach to enhance crop tolerance to abiotic and biotic stresses.Environ. Sci. Nano20241183250326710.1039/D4EN00417E
    [Google Scholar]
  55. SA. KavithaH.P. Magnesium oxide nanoparticles: Effective antilarvicidal and antibacterial agents.ACS Omega2023865225523310.1021/acsomega.2c0145036816696
    [Google Scholar]
  56. MoulahoumH. GhorbanizamaniF. BedukT. BedukD. OzufuklarO. Guler CelikE. TimurS. Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications.J. Pharm. Biomed. Anal.202323511562310.1016/j.jpba.2023.11562337542827
    [Google Scholar]
  57. LiuJ. LiR. YangB. Carbon dots: A new type of carbon-based nanomaterial with wide applications.ACS Cent Sci.20206122179219510.1021/acscentsci.0c0130633376780
    [Google Scholar]
  58. AbdellaS. AbidF. YoussefS.H. KimS. AfinjuomoF. MalingaC. SongY. GargS. pH and its applications in targeted drug delivery.Drug Discov. Today202328110341410.1016/j.drudis.2022.10341436273779
    [Google Scholar]
  59. ZhangG. HanW. ZhaoP. WangZ. LiM. SuiX. LiuY. TianB. HeZ. FuQ. Programmed pH-responsive core-shell nanoparticles for precisely targeted therapy of ulcerative colitis.Nanoscale20231541937194610.1039/D2NR04968F36625215
    [Google Scholar]
  60. DeirramN. ZhangC. KermaniyanS.S. JohnstonA.P.R. SuchG.K. pH-responsive polymer nanoparticles for drug delivery.Macromol. Rapid Commun.20194010180091710.1002/marc.20180091730835923
    [Google Scholar]
  61. Pramod KumarE.K. UmW. ParkJ.H. Recent developments in pathological pH-responsive polymeric nanobiosensors for cancer theranostics.Front. Bioeng. Biotechnol.2020860158610.3389/fbioe.2020.60158633330431
    [Google Scholar]
  62. NaeemM. CaoJ. ChoiM. KimW.S. MoonH.R. LeeB.L. KimM.S. JungY. YooJ.W. Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles.Int. J. Nanomedicine2015104565458026213469
    [Google Scholar]
  63. AshiqueS. AlmohaywiB. HaiderN. YasminS. HussainA. MishraN. GargA. siRNA-based nanocarriers for targeted drug delivery to control breast cancer.Advances in Cancer Biology - Metastasis2022410004710.1016/j.adcanc.2022.100047
    [Google Scholar]
  64. ArifM. SharafM. Samreen DongQ. WangL. ChiZ. LiuC.G. Bacteria-targeting chitosan/carbon dots nanocomposite with membrane disruptive properties improve eradication rate of Helicobacter pylori.J. Biomater. Sci. Polym. Ed.202132182423244710.1080/09205063.2021.197255934644235
    [Google Scholar]
  65. SethuramanV. JanakiramanK. KrishnaswamiV. KandasamyR. Recent progress in stimuli-responsive intelligent nano scale drug delivery systems: A special focus towards pH-sensitive systems.Curr. Drug Targets202122894796610.2174/138945012299921012818005833511953
    [Google Scholar]
  66. GaoW. ChanJ.M. FarokhzadO.C. pH-Responsive nanoparticles for drug delivery.Mol. Pharm.2010761913192010.1021/mp100253e20836539
    [Google Scholar]
  67. LiX. YueR. GuanG. ZhangC. ZhouY. SongG. Recent development of pH-responsive theranostic nanoplatforms for magnetic resonance imaging-guided cancer therapy.ExplorationWiley - Online Library2023332022000210.1002/EXP.20220002
    [Google Scholar]
  68. ChuS. ShiX. TianY. GaoF. pH-responsive polymer nanomaterials for tumor therapy.Front. Oncol.20221285501910.3389/fonc.2022.85501935392227
    [Google Scholar]
  69. FinbloomJ.A. SousaF. StevensM.M. DesaiT.A. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery.Adv. Drug Deliv. Rev.20201678910810.1016/j.addr.2020.06.00732535139
    [Google Scholar]
  70. LvX. ZhangJ. YangD. ShaoJ. WangW. ZhangQ. DongX. Recent advances in pH-responsive nanomaterials for anti-infective therapy.J. Mater. Chem. B Mater. Biol. Med.2020847107001071110.1039/D0TB02177F33140806
    [Google Scholar]
  71. HuoD. JiangX. HuY. Recent advances in nanostrategies capable of overcoming biological barriers for tumor management.Adv. Mater.20203227190433710.1002/adma.20190433731663198
    [Google Scholar]
  72. JeongG.J. RatherM.A. KhanF. TabassumN. MandalM. KimY.M. pH-responsive polymeric nanomaterials for the treatment of oral biofilm infections.Colloids Surf. B Biointerfaces202423411372710.1016/j.colsurfb.2023.11372738157766
    [Google Scholar]
  73. EdidinM. Lipids on the frontier: A century of cell-membrane bilayers.Nat. Rev. Mol. Cell Biol.20034541441810.1038/nrm110212728275
    [Google Scholar]
  74. SoenenS.J. ParakW.J. RejmanJ. ManshianB. (Intra)cellular stability of inorganic nanoparticles: Effects on cytotoxicity, particle functionality, and biomedical applications.Chem. Rev.201511552109213510.1021/cr400714j25757742
    [Google Scholar]
  75. ChiuC. MooreP.B. ShinodaW. NielsenS.O. Size-dependent hydrophobic to hydrophilic transition for nanoparticles: A molecular dynamics study.J. Chem. Phys.20091312424470610.1063/1.327691520059098
    [Google Scholar]
  76. DingH. MaY. Controlling cellular uptake of nanoparticles with pH-sensitive polymers.Sci. Rep.201331280410.1038/srep0280424076598
    [Google Scholar]
  77. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A28585944
    [Google Scholar]
  78. KumariS. MgS. MayorS. Endocytosis unplugged: Multiple ways to enter the cell.Cell Res.201020325627510.1038/cr.2010.1920125123
    [Google Scholar]
  79. MahmoudiM. TachibanaA. GoldstoneA.B. WooY.J. ChakrabortyP. LeeK.R. FooteC.S. PiecewiczS. BarrozoJ.C. WakeelA. RiceB.W. BellC.B.III YangP.C. Novel MRI contrast agent from magnetotactic bacteria enables in vivo tracking of iPSC-derived cardiomyocytes.Sci. Rep.2016612696010.1038/srep2696027264636
    [Google Scholar]
  80. ForoozandehP. AzizA.A. Insight into cellular uptake and intracellular trafficking of nanoparticles.Nanoscale Res. Lett.201813133910.1186/s11671‑018‑2728‑630361809
    [Google Scholar]
  81. AshiqueS. SandhuN.K. ChawlaV. ChawlaP.A. Targeted drug delivery: Trends and perspectives.Curr. Drug Deliv.202118101435145510.2174/156720181866621060916130134151759
    [Google Scholar]
  82. YameenB. ChoiW.I. VilosC. SwamiA. ShiJ. FarokhzadO.C. Insight into nanoparticle cellular uptake and intracellular targeting.J. Control. Release201419048549910.1016/j.jconrel.2014.06.03824984011
    [Google Scholar]
  83. TorchilinV.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.Nat. Rev. Drug Discov.2014131181382710.1038/nrd433325287120
    [Google Scholar]
  84. GarnachoC. Intracellular drug delivery: Mechanisms for cell entry.Curr. Pharm. Des.20162291210122610.2174/138161282266615121615102126675221
    [Google Scholar]
  85. LeeE.S. GaoZ. KimD. ParkK. KwonI.C. BaeY.H. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance.J. Control. Release2008129322823610.1016/j.jconrel.2008.04.02418539355
    [Google Scholar]
  86. GugulothuD. KulkarniA. PatravaleV. DandekarP. pH-sensitive nanoparticles of curcumin-celecoxib combination: Evaluating drug synergy in ulcerative colitis model.J. Pharm. Sci.2014103268769610.1002/jps.2382824375287
    [Google Scholar]
  87. DaiJ. NagaiT. WangX. ZhangT. MengM. ZhangQ. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A.Int. J. Pharm.20042801-222924010.1016/j.ijpharm.2004.05.00615265562
    [Google Scholar]
  88. KarimiM. EslamiM. Sahandi-ZangabadP. MirabF. FarajisafilooN. ShafaeiZ. GhoshD. BozorgomidM. DashkhanehF. HamblinM.R. pH -Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168569671610.1002/wnan.138926762467
    [Google Scholar]
  89. DengH. ZhaoX. LiuJ. ZhangJ. DengL. LiuJ. DongA. Synergistic dual-pH responsive copolymer micelles for pH-dependent drug release.Nanoscale2016831437145010.1039/C5NR06745F26677141
    [Google Scholar]
  90. LiuL. YaoW. RaoY. LuX. GaoJ. pH-Responsive carriers for oral drug delivery: Challenges and opportunities of current platforms.Drug Deliv.201724156958110.1080/10717544.2017.127923828195032
    [Google Scholar]
  91. GargT. KumarA. RathG. GoyalA. Gastroretentive drug delivery systems for therapeutic management of peptic ulcer.Crit Rev Ther Drug Carrier Syst.201431653155710.1615/critrevtherdrugcarriersyst.201401110425271775
    [Google Scholar]
  92. ZhaoS. LvY. ZhangJ.B. WangB. LvG.J. MaX.J. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori.World J. Gastroenterol.201420289321932925071326
    [Google Scholar]
  93. de SouzaM.P.C. de CamargoB.A.F. SpósitoL. FortunatoG.C. CarvalhoG.C. MarenaG.D. MeneguinA.B. BauabT.M. ChorilliM. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections.Crit. Rev. Microbiol.202147443546010.1080/1040841X.2021.189572133725462
    [Google Scholar]
  94. YunY.H. LeeB.K. ParkK. Controlled drug delivery: Historical perspective for the next generation.J. Control. Release20152192710.1016/j.jconrel.2015.10.00526456749
    [Google Scholar]
  95. MutalabisinM.F. ChatterjeeB. JaffriJ.M. PH responsive polymers in drug delivery.Research Journal of Pharmacy and Technology201811115115512210.5958/0974‑360X.2018.00934.4
    [Google Scholar]
  96. GundaR.K. VijayalakshmiA. Formulation development and evaluation of gastro retentive drug delivery systems-a review.J. Pharm. Res.201711167178
    [Google Scholar]
  97. KhodabakhshF. BourbourM. YarakiM.T. BazzazanS. BakhshandehH. Ahangari CohanR. TanY.N. pH-Responsive PEGylated niosomal nanoparticles as an active-targeting cyclophosphamide delivery system for gastric cancer therapy.Molecules20222717541810.3390/molecules2717541836080186
    [Google Scholar]
  98. BukhariA. FatimaZ. AttaM. NazirA. AlshawwaS.Z. AlotaibiH.F. IqbalM. Poly lactic-co-glycolic acid nano-carriers for encapsulation and controlled release of hydrophobic drug to enhance the bioavailability and antimicrobial properties.Dose Response20232111559325823115211710.1177/1559325823115211736743194
    [Google Scholar]
  99. SunX.F. WangH. JingZ. MohanathasR. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery.Carbohydr. Polym.20139221357136610.1016/j.carbpol.2012.10.03223399165
    [Google Scholar]
  100. VaghaniS.S. PatelM.M. pH-sensitive hydrogels based on semi-interpenetrating network (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin release.Drug Dev. Ind. Pharm.201137101160116910.3109/03639045.2011.56342221417603
    [Google Scholar]
  101. SharpeL.A. DailyA.M. HoravaS.D. PeppasN.A. Therapeutic applications of hydrogels in oral drug delivery.Expert Opin. Drug Deliv.201411690191510.1517/17425247.2014.90204724848309
    [Google Scholar]
  102. ZafarS. HanifM. AzeemM. MahmoodK. GondalS.A. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile.Polym. Bull.202279119199921910.1007/s00289‑021‑03956‑8
    [Google Scholar]
  103. LinY.H. ChangC.H. WuY.S. HsuY.M. ChiouS.F. ChenY.J. Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy.Biomaterials200930193332334210.1016/j.biomaterials.2009.02.03619299008
    [Google Scholar]
  104. MikušováV. MikušP. Advances in chitosan-based nanoparticles for drug delivery.Int. J. Mol. Sci.20212217965210.3390/ijms2217965234502560
    [Google Scholar]
  105. LinY.H. SonajeK. LinK.M. JuangJ.H. MiF.L. YangH.W. SungH.W. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs.J. Control. Release2008132214114910.1016/j.jconrel.2008.08.02018817821
    [Google Scholar]
  106. LichtensteinG.R. AbreuM.T. CohenR. TremaineW. American Gastroenterological Association American Gastroenterological Association Institute technical review on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease.Gastroenterology2006130394098710.1053/j.gastro.2006.01.04816530532
    [Google Scholar]
  107. WangM. GaoB. WangX. LiW. FengY. Enzyme-responsive strategy as a prospective cue to construct intelligent biomaterials for disease diagnosis and therapy.Biomater. Sci.20221081883190310.1039/D2BM00067A35293402
    [Google Scholar]
  108. YehY.C. HuangT.H. YangS.C. ChenC.C. FangJ.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances.Front Chem.2020828610.3389/fchem.2020.0028632391321
    [Google Scholar]
  109. LiQ. LinL. ZhangC. ZhangH. MaY. QianH. ChenX.L. WangX. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease.J. Nanobiotechnology20242211710.1186/s12951‑023‑02246‑x38172992
    [Google Scholar]
  110. AlSawaftahN.M. AwadN.S. PittW.G. HusseiniG.A. pH-responsive nanocarriers in cancer therapy.Polymers (Basel)202214593610.3390/polym1405093635267759
    [Google Scholar]
  111. DingH. TanP. FuS. TianX. ZhangH. MaX. GuZ. LuoK. Preparation and application of pH-responsive drug delivery systems.J. Control. Release202234820623810.1016/j.jconrel.2022.05.05635660634
    [Google Scholar]
  112. SchmaljohannD. Thermo- and pH-responsive polymers in drug delivery.Adv. Drug Deliv. Rev.200658151655167010.1016/j.addr.2006.09.02017125884
    [Google Scholar]
  113. HoqueJ. SangajN. VargheseS. Stimuli-responsive supramolecular hydrogels and their applications in regenerative medicine.Macromol. Biosci.2019191180025910.1002/mabi.20180025930295012
    [Google Scholar]
  114. KimH. FassihiR. Application of a binary polymer system in drug release rate modulation. 1. Characterization of release mechanism.J. Pharm. Sci.199786331632210.1021/js960302s9050799
    [Google Scholar]
  115. LiM.G. LuW.L. WangJ.C. ZhangX. ZhangH. WangX.Q. WuC.S. ZhangQ. Preparation and characterization of insulin nanoparticles employing chitosan and poly(methylmethacrylate/methylmethacrylic acid) copolymer.J. Nanosci. Nanotechnol.2006692874288610.1166/jnn.2006.41117048494
    [Google Scholar]
  116. GuilhermeM.R. AouadaF.A. FajardoA.R. MartinsA.F. PaulinoA.T. DaviM.F.T. RubiraA.F. MunizE.C. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review.Eur. Polym. J.20157236538510.1016/j.eurpolymj.2015.04.017
    [Google Scholar]
  117. BalamuralidharaV. PramodkumarT.M. SrujanaN. VenkateshM.P. GuptaN.V. KrishnaK.L. GangadharappaH.V. pH sensitive drug delivery systems: A review.Am. J. Drug Discov. Dev.20111244810.3923/ajdd.2011.24.48
    [Google Scholar]
  118. AlaiM. LinW.J. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: in vitro and in vivo evaluations.Int. J. Nanomedicine2015104029404126124659
    [Google Scholar]
  119. ArifM. DongQ.J. RajaM.A. ZeenatS. ChiZ. LiuC.G. Development of novel pH-sensitive thiolated chitosan/PMLA nanoparticles for amoxicillin delivery to treat Helicobacter pylori.Mater. Sci. Eng. C201883172410.1016/j.msec.2017.08.03829208276
    [Google Scholar]
  120. Abd El HadyW.E. MohamedE.A. SolimanO.A.E.A. EL SabbaghH.M. in vitro-in vivo evaluation of chitosan-PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin.Int. J. Nanomedicine2019147191721310.2147/IJN.S21383631564873
    [Google Scholar]
  121. ThamphiwatanaS. FuV. ZhuJ. LuD. GaoW. ZhangL. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery.Langmuir20132939122281223310.1021/la402695c23987129
    [Google Scholar]
  122. BhattaraiN. GunnJ. ZhangM. Chitosan-based hydrogels for controlled, localized drug delivery.Adv. Drug Deliv. Rev.2010621839910.1016/j.addr.2009.07.01919799949
    [Google Scholar]
  123. ZhaoY. XuC. LiuQ. LeiX. DengL. WangF. YangJ. pH-responsive interface conversion efficient oral drug delivery platform for alleviating inflammatory bowel disease.Front Chem.202412136588010.3389/fchem.2024.136588038532806
    [Google Scholar]
  124. ZhangL. ZhangL. DengH. LiH. TangW. GuanL. QiuY. DonovanM.J. ChenZ. TanW. in vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori.Nat. Commun.2021121200210.1038/s41467‑021‑22286‑x33790299
    [Google Scholar]
  125. KarewiczA. 11 - Polymeric and liposomal nanocarriers for controlled drug delivery.Biomaterials for Bone RegenerationWoodhead Publishing201435137310.1533/9780857098104.3.351
    [Google Scholar]
  126. PanditaD. PooniaN. ChaudharyG. JainG.K. LatherV. KharR.K. Chapter 3 - pH-sensitive polymeric nanocarriers for enhanced intracellular drug delivery.Smart Polymeric Nano-Constructs in Drug DeliveryAcademic Press20236510710.1016/B978‑0‑323‑91248‑8.00004‑0
    [Google Scholar]
  127. WangX.Q. ZhangQ. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs.Eur. J. Pharm. Biopharm.201282221922910.1016/j.ejpb.2012.07.01422885229
    [Google Scholar]
  128. PalanikumarL. Al-HosaniS. KalmouniM. NguyenV.P. AliL. PasrichaR. BarreraF.N. MagzoubM. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics.Commun. Biol.2020319510.1038/s42003‑020‑0817‑432127636
    [Google Scholar]
  129. SinghJ. NayakP. pH -responsive polymers for drug delivery: Trends and opportunities.J. Polym. Sci.202361222828285010.1002/pol.20230403
    [Google Scholar]
  130. DeR. MahataM.K. KimK.T. Structure-based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles.Adv. Sci. (Weinh.)2022910210537310.1002/advs.20210537335112798
    [Google Scholar]
  131. AbandansariH.S. NabidM.R. RezaeiS.J.T. NiknejadH. pH-sensitive nanogels based on Boltorn® H40 and poly(vinylpyridine) using mini-emulsion polymerization for delivery of hydrophobic anticancer drugs.Polymer (Guildf.)201455163579359010.1016/j.polymer.2014.06.037
    [Google Scholar]
  132. DuC. DengD. ShanL. WanS. CaoJ. TianJ. AchilefuS. GuY. A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery.Biomaterials201334123087309710.1016/j.biomaterials.2013.01.04123374705
    [Google Scholar]
  133. KamimuraM. NagasakiY. pH-Sensitive polymeric micelles for enhanced intracellular anti-cancer drug delivery.J. Photopolym. Sci. Technol.201326216116410.2494/photopolymer.26.161
    [Google Scholar]
  134. LiuG.Y. LiM. ZhuC.S. JinQ. ZhangZ.C. JiJ. Charge-conversional and pH-sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery.Macromol. Biosci.20141491280129010.1002/mabi.20140016224866398
    [Google Scholar]
  135. Shixian . 89 prepared 3,3′-dithiodipropionic acid functionalized poly(ethylene glycol)-b-poly(L-lysine) (mPEG-b-P(LL-DTPA)) with paclitaxel (PTX) directly conjugated via ester bonds.
  136. SheW. LiN. LuoK. GuoC. WangG. GengY. GuZ. Dendronized heparin−doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy.Biomaterials20133492252226410.1016/j.biomaterials.2012.12.01723298778
    [Google Scholar]
  137. RigogliusoS. SabatinoM.A. AdamoG. Polymeric nanogels: Nanocarriers for drug delivery application.Chem. Eng. Trans.201227247252
    [Google Scholar]
  138. RamasamyT. HaidarZ.S. TranT.H. ChoiJ.Y. JeongJ.H. ShinB.S. ChoiH.G. YongC.S. KimJ.O. Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs.Acta Biomater.201410125116512710.1016/j.actbio.2014.08.02125169256
    [Google Scholar]
  139. YangY.Q. ZhaoB. LiZ.D. LinW.J. ZhangC.Y. GuoX.D. WangJ.F. ZhangL.J. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery.Acta Biomater.2013987679769010.1016/j.actbio.2013.05.00623669619
    [Google Scholar]
  140. VilarG. Tulla-PucheJ. AlbericioF. Polymers and drug delivery systems.Curr. Drug Deliv.20129436739410.2174/15672011280132305322640038
    [Google Scholar]
  141. Priya JamesH. JohnR. AlexA. AnoopK.R. Smart polymers for the controlled delivery of drugs - a concise overview.Acta Pharm. Sin. B20144212012710.1016/j.apsb.2014.02.00526579373
    [Google Scholar]
  142. ShinnJ. KwonN. LeeS.A. LeeY. Smart pH-responsive nanomedicines for disease therapy.J. Pharm. Investig.202252442744110.1007/s40005‑022‑00573‑z35573320
    [Google Scholar]
  143. SebastianiF. Yanez ArtetaM. LercheM. PorcarL. LangC. BraggR.A. ElmoreC.S. KrishnamurthyV.R. RussellR.A. DarwishT. PichlerH. WaldieS. MoulinM. HaertleinM. ForsythV.T. LindforsL. CárdenasM. Apolipoprotein E binding drives structural and compositional rearrangement of mRNA-containing lipid nanoparticles.ACS Nano20211546709672210.1021/acsnano.0c1006433754708
    [Google Scholar]
  144. BamiM.S. Raeisi EstabraghM.A. KhazaeliP. OhadiM. DehghannoudehG. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application.J. Drug Deliv. Sci. Technol.20227010298710.1016/j.jddst.2021.102987
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031334895250227111942
Loading
/content/journals/ddl/10.2174/0122103031334895250227111942
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test