Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Research in ocular delivery of medication has both challenging and promising opportunities for the pharmaceutical sector. Present ocular delivery methods of drugs, including ointments, solutions, and suspensions, have a number of limitations, such as rapid elimination from the precorneal area, high variation in efficacy, and the risk of blurred vision. These disadvantages underscore the need for the introduction of more effective drug delivery systems. Research on ocular drug delivery has increased significantly in the past years, resulting in the use of numerous standard formulation forms, such as ointments and eye drops. One big drawback of the two formulations is the fast expulsion of the deposited dose through the action of blinking eyelids as well as the excretion of tear fluid. To counter this, , gelling systems have been created that minimize drainage and prolong the period of contact with the ocular tissues and cornea. The formulations in these systems go through a sol-to-gel change due to conditions in the environment, for example, temperature, ionic strength, and pH. The transitions are usually triggered by the common polymers sodium alginate and high-performance methylcellulose. These preparations can be tested for any one of a number of properties, such as but not limited to clarity, ocular irritancy, texture, isotonicity, sterility, gel strength, gelling capacity, gelling time, release, drug release, stability, retention, and absorption.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031336060250214043138
2025-03-24
2025-12-16
Loading full text...

Full text loading...

References

  1. LiS. ChenL. FuY. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects.J. Nanobiotechnology202321123210.1186/s12951‑023‑01992‑237480102
    [Google Scholar]
  2. AshiqueS. MishraN. MohantoS. GowdaB.H.J. KumarS. RaikarA.S. MasandP. GargA. GoswamiP. KahwaI. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks.Heliyon2024101e2381010.1016/j.heliyon.2023.e2381038226207
    [Google Scholar]
  3. LöscherM. SeizC. HurstJ. SchnichelsS. Topical drug delivery to the posterior segment of the eye.Pharmaceutics202214113410.3390/pharmaceutics1401013435057030
    [Google Scholar]
  4. MostafaM. Al FateaseA. AlanyR.G. AbdelkaderH. Recent advances of ocular drug delivery systems: Prominence of ocular implants for chronic eye diseases.Pharmaceutics2023156174610.3390/pharmaceutics1506174637376194
    [Google Scholar]
  5. ChiangM.C. ChernE. More than antibiotics: Latest therapeutics in the treatment and prevention of ocular surface infections.J. Clin. Med.20221114419510.3390/jcm1114419535887958
    [Google Scholar]
  6. DosmarE. WalshJ. DoyelM. BussettK. OladipupoA. AmerS. GoebelK. Targeting ocular drug delivery: An examination of local anatomy and current approaches.Bioengineering2022914110.3390/bioengineering901004135049750
    [Google Scholar]
  7. del AmoE.M. Topical ophthalmic administration: Can a drug instilled onto the ocular surface exert an effect at the back of the eye?Front. Drug Deliv.2022295477110.3389/fddev.2022.954771
    [Google Scholar]
  8. StielowM. WitczyńskaA. KubryńN. FijałkowskiŁ. NowaczykJ. NowaczykA. The bioavailability of drugs—the current state of knowledge.Molecules20232824803810.3390/molecules2824803838138529
    [Google Scholar]
  9. AkhterM.H. AhmadI. AlshahraniM.Y. Al-HarbiA.I. KhalilullahH. AfzalO. AltamimiA.S.A. Najib UllahS.N.M. OjhaA. KarimS. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system.Gels2022828210.3390/gels802008235200463
    [Google Scholar]
  10. ToropainenE. Fraser-MillerS.J. NovakovicD. Del AmoE.M. VellonenK.S. RuponenM. ViitalaT. KorhonenO. AuriolaS. HellinenL. ReinisaloM. TengvallU. ChoiS. AbsarM. StrachanC. UrttiA. Biopharmaceutics of topical ophthalmic suspensions: Importance of viscosity and particle size in ocular absorption of indomethacin.Pharmaceutics202113445210.3390/pharmaceutics1304045233810564
    [Google Scholar]
  11. MohamedH.B. Abd El-HamidB.N. FathallaD. FouadE.A. Current trends in pharmaceutical treatment of dry eye disease: A review.Eur. J. Pharm. Sci.202217510620610.1016/j.ejps.2022.10620635568107
    [Google Scholar]
  12. JacquesE.R. AlexandridisP. Tablet scoring: Current practice, fundamentals, and knowledge gaps.Appl. Sci.2019915306610.3390/app9153066
    [Google Scholar]
  13. RainaN. RaniR. ThakurV.K. GuptaM. New insights in topical drug delivery for skin disorders: From a nanotechnological perspective.ACS Omega2023822191451916710.1021/acsomega.2c0801637305231
    [Google Scholar]
  14. JumelleC. GholizadehS. AnnabiN. DanaR. Advances and limitations of drug delivery systems formulated as eye drops.J. Control. Release202032112210.1016/j.jconrel.2020.01.057
    [Google Scholar]
  15. DewanM. AdhikariA. JanaR. ChattopadhyayD. Development, evaluation and recent progress of ocular in situ gelling drug delivery vehicle based on poloxamer 407.J. Drug Deliv. Sci. Technol.20238810488510.1016/j.jddst.2023.104885
    [Google Scholar]
  16. YangH. ZhaoM. XingD. ZhangJ. FangT. ZhangF. NieZ. LiuY. YangL. LiJ. WangD. Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review.Asian J. Pharm. Sci.202318510084710.1016/j.ajps.2023.10084737915758
    [Google Scholar]
  17. ViganiB. RossiS. SandriG. BonferoniM.C. CaramellaC.M. FerrariF. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes.Pharmaceutics202012985910.3390/pharmaceutics1209085932927595
    [Google Scholar]
  18. CassanoR. Di GioiaM.L. TrombinoS. Gel-based materials for ophthalmic drug delivery.Gels20217313010.3390/gels703013034563016
    [Google Scholar]
  19. SridharM. Anatomy of cornea and ocular surface.Indian J. Ophthalmol.201866219019410.4103/ijo.IJO_646_1729380756
    [Google Scholar]
  20. BooteC. SigalI.A. GrytzR. HuaY. NguyenT.D. GirardM.J.A. Scleral structure and biomechanics.Prog. Retin. Eye Res.20207410077310.1016/j.preteyeres.2019.10077331412277
    [Google Scholar]
  21. RupenthalI.D. DaughertyA.L. Ocular drugs and drug delivery systems — Current trends and future perspectives.Drug Discov. Today20192481425142610.1016/j.drudis.2019.07.00531330186
    [Google Scholar]
  22. BachuR. ChowdhuryP. Al-SaediZ. KarlaP. BodduS. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases.Pharmaceutics20181012810.3390/pharmaceutics1001002829495528
    [Google Scholar]
  23. AhmedS. AminM.M. SayedS. Ocular drug delivery: A comprehensive review.AAPS PharmSciTech20232426610.1208/s12249‑023‑02516‑936788150
    [Google Scholar]
  24. AgarwalP. CraigJ.P. RupenthalI.D. Formulation considerations for the management of dry eye disease.Pharmaceutics202113220710.3390/pharmaceutics1302020733546193
    [Google Scholar]
  25. MofidfarM. AbdiB. AhadianS. MostafaviE. DesaiT.A. AbbasiF. SunY. MancheE.E. TaC.N. FlowersC.W. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies.Int. J. Pharm.202160712092410.1016/j.ijpharm.2021.12092434324989
    [Google Scholar]
  26. Varela-FernándezR. Díaz-ToméV. Luaces-RodríguezA. Conde-PenedoA. García-OteroX. Luzardo-ÁlvarezA. Fernández-FerreiroA. Otero-EspinarF. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations.Pharmaceutics202012326910.3390/pharmaceutics1203026932188045
    [Google Scholar]
  27. LeeY.R. SonM. KimY.S. KimJ.S. KimC.H. JungS.H. Evaluation of a rapid and simple method for assessing retinal vessel structures in adult zebrafish.Int. J. Mol. Sci.202223231506910.3390/ijms23231506936499406
    [Google Scholar]
  28. OkurN.Ü. YağcılarA.P. SiafakaP.I. Promising polymeric drug carriers for local delivery: The case of in situ gels.Curr. Drug Deliv.202017867569310.2174/156720181766620060814574832510291
    [Google Scholar]
  29. RykowskaI NowakI NowakR Soft contact lenses as drug delivery systems: A review.Molecules20212618557710.3390/molecules26185577
    [Google Scholar]
  30. AlsheikhR. HaimhofferÁ. NemesD. UjhelyiZ. FehérP. JózsaL. VasváriG. PetőÁ. KósaD. NagyL. HorváthL. BalázsB. BácskayI. Formulation of thermo-sensitive in situ gels loaded with dual spectrum antibiotics of azithromycin and ofloxacin.Polymers20241621295410.3390/polym1621295439518163
    [Google Scholar]
  31. FanR ChengY WangR ZhangT ZhangH LiJ SongS ZhengA Thermosensitive hydrogels and advances in their application in disease therapy.Polymers20221412237910.3390/polym14122379
    [Google Scholar]
  32. NiX. GuoQ. ZouY. XuanY. MohammadI.S. DingQ. HuH. Preparation and characterization of bear bile-loaded pH sensitive in-situ gel eye drops for ocular drug delivery.Iran. J. Basic Med. Sci.202023792292932774815
    [Google Scholar]
  33. MeshramS. ThoratS. Ocular in Situ gels: Development, evaluation and advancements.Sch Acad J Pharm.201547340346
    [Google Scholar]
  34. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
  35. GuglevaV. MihaylovaR. KamenovaK. Zheleva-DimitrovaD. StefanovaD. TzankovaV. ZaharievaM.M. NajdenskiH. ForysA. TrzebickaB. PetrovP.D. MomekovaD. Development and characterization of dual-loaded niosomal ion-sensitive in situ gel for ocular delivery.Gels2024101281610.3390/gels1012081639727573
    [Google Scholar]
  36. NirmalHB. In-situ gel: New trends in controlled and sustained drug delivery system.Int. J. PharmTech Res.20102213981408
    [Google Scholar]
  37. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  38. GurnyR IbrahimH BuriP The development and use of in situ formed gels, triggered by pH.Biopharmaceutics of ocular drug delivery1st ed19938190
    [Google Scholar]
  39. VodithalaS. KhatryS. ShastriN. SadanandamM. Development and evaluation of thermoreversible ocular gels of ketorolac tromethamine.Int J Biopharm2010113945
    [Google Scholar]
  40. AishwaryaJ.J. SheetalB.G. RavindraB.S. A review on nasal drug delivery system.World J. Pharm. Pharm. Sci.20143231254
    [Google Scholar]
  41. SinghR PrasadJ SatapathyT JainP SinghS Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.Indian J. Biochem. Biophys.2021582156161
    [Google Scholar]
  42. KavithaK. SantoshK.P. RupM. JagadeeshS. Recent development and strategies of ocular Insitu drug delivery system: A review.Int. J. Pharm. Clin. Res.2013526471
    [Google Scholar]
  43. AlmeidaH. AmeralM.H. LobãoP. Application of poloxamers in ophthalmic pharmaceutical formulation: An overview.Expert Opin Drug Deliv.20131091223123710.1517/17425247.2013.79636023688342
    [Google Scholar]
  44. KurniawansyahI.S. RusdianaT. SopyanI. SubarnasA. A review on poloxamer and hydroxy propyl methyl cellulose combination as thermoresponsive polymers in noval ophthalmic in situ gel formulation and their characterization.Int. J. Appl. Pharm.2021131273110.22159/ijap.2021v13i1.39697
    [Google Scholar]
  45. CabanaA. Aït-KadiA. JuhászJ. Study of the gelation process of polyethylene oxide a-polypropylene oxide b-polyethylene oxide a copolymer (Poloxamer 407) aqueous solutions.J. Colloid Interface Sci.1997190230731210.1006/jcis.1997.48809241171
    [Google Scholar]
  46. IrimiaT. Dinu-PîrvuC.E. GhicaM.V. LupuleasaD. MunteanD.L. UdeanuD.I. PopaL. Chitosan-based in in situ gels for ocular delivery of therapeutic: A state-of-the art review.Mar. Drugs2018161037310.3390/md1610037330304825
    [Google Scholar]
  47. SahuB. Comprehensive review on non-alcoholic fatty liver disease (NAFLD).Clinical Advancement and Drug Treatments. Prob. Sci.20241117
    [Google Scholar]
  48. LudwigA. The use of mucoadhesive polymers in ocular drug delivery.Drug Deliv. Rev.200557111595163910.1016/j.addr.2005.07.005
    [Google Scholar]
  49. RajasN.J. KavithaK. GounderT. In situ opthalmic gels: A developing trend.Int. J. Pharm. Sci. Rev. Res.201171814
    [Google Scholar]
  50. BiswalS. ParmanikA. DasD. SahooR.N. NayakA.K. Gellan gum-based in-situ gel formulations for ocular drug delivery: A practical approach.Int. J. Biol. Macromol.202529013897910.1016/j.ijbiomac.2024.13897939708866
    [Google Scholar]
  51. MohantyD. Bakshi DrK. SimharajuN. HaqueM.A. SahooC.K. A review on in situ gel: A Novel drug delivery system.Int. J. Pharm. Sci. Rev. Res.2018501175181
    [Google Scholar]
  52. NanjawadeB.K. ManviF.V. ManjappaA.S. RETRACTED: In situ-forming hydrogels for sustained ophthalmic drug delivery.J. Control. Release2007122211913410.1016/j.jconrel.2007.07.00917719120
    [Google Scholar]
  53. ShahienM.M. AlshammariA. IbrahimS. AhmedE.H. AtiaH.A. ElarinyH.A. AbdallahM.H. Development of glycerosomal pH triggered in situ gelling system to ameliorate the nasal delivery of sulpiride for pediatric psychosis.Gels202410960810.3390/gels1009060839330210
    [Google Scholar]
  54. NanjawadeB.K. ManjappaA.S. MurthyR.S.R. A novel pH- triggered in situ gel for sustained ophthalmic delivery of ketorolac tromethamine.Asian J. Pharm. Sci.200943189199
    [Google Scholar]
  55. FathallaZ. MustafaW.W. AbdelkaderH. MoharramH. SabryA.M. AlanyR.G. Hybrid thermosensitive-mucoadhesive in situ forming gels for enhanced corneal wound healing effect of L-carnosine.Drug Deliv.202229137438510.1080/10717544.2021.202323635068268
    [Google Scholar]
  56. El-KamelA.H. in vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate.Int. J. Pharm.20022411475510.1016/S0378‑5173(02)00234‑X12086720
    [Google Scholar]
  57. LiuZ LiJ NieS Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin.Int. J. Pharm.20063151-2121710.1016/j.ijpharm.2006.01.02916616442
    [Google Scholar]
  58. SéchoyO. TissiéG. SébastianC. MaurinF. DriotJ.Y. TrinquandC. A new long acting ophthalmic formulation of Carteolol containing alginic acid.Int. J. Pharm.20002071-210911610.1016/S0378‑5173(00)00539‑111036236
    [Google Scholar]
  59. CohenS. LobelE. TrevgodaA. PeledY. A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye.J. Control. Release1997442-320120810.1016/S0168‑3659(96)01523‑4
    [Google Scholar]
  60. RahmanM.S. HasanM.S. NitaiA.S. NamS. KarmakarA.K. AhsanM.S. ShiddikyM.J.A. AhmedM.B. Recent developments of carboxymethyl cel- lulose.Polymers2021138134510.3390/polym1308134533924089
    [Google Scholar]
  61. JoshiS.C. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release.Materials20114101861190510.3390/ma410186128824113
    [Google Scholar]
  62. ShivhareR. PathakA. ShrivastavaN. SinghC. TiwariG. GoyalR. An update review on novel advanced ocular drug delivery system.World J. Pharm. Pharm. Sci.201212545568
    [Google Scholar]
  63. GawkowskaD. CybulskaJ. ZdunekA. Structure-related gelling of pectins and linking with other natural compounds: A review.Polymers201810776210.3390/polym1007076230960687
    [Google Scholar]
  64. NokhodchiA. RajaS. PatelP. Asare-AddoK. The role of oral controlled release matrix tablets in drug delivery systems.Bioimpacts20122417518723678458
    [Google Scholar]
  65. SinhaL. JainS.K. ChoudharyR. Current trends in the treatment of hepatocellular carcinoma: Clinical applications and advancement.Prob. Sci.2024112433
    [Google Scholar]
  66. KumarM.K. NarayanS. SinghP.K. A review on advancement of mouth dissolving tablets.Prob. Sci.2024113449
    [Google Scholar]
  67. SinghJ. ChhabraG. PathakK. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro . ex-vivo evaluation and pharmacodynamic study.Drug Dev. Ind. Pharm.20144091223123210.3109/03639045.2013.81406123837522
    [Google Scholar]
  68. ZöllerK. ToD. Bernkop-SchnürchA. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products.Biomaterials202531212271810.1016/j.biomaterials.2024.12271839084097
    [Google Scholar]
  69. BudaiL. HajdúM. BudaiM. GrófP. BéniS. NoszálB. KlebovichI. AntalI. Gels and liposomes in optimized ocular drug delivery: Studies on ciprofloxacin formulations.Int. J. Pharm.20073431-2344010.1016/j.ijpharm.2007.04.01317537601
    [Google Scholar]
  70. FangG. YangX. WangQ. ZhangA. TangB. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases.Mater. Sci. Eng. C202112711221210.1016/j.msec.2021.11221234225864
    [Google Scholar]
  71. Fernández-FerreiroA. Fernández BargielaN. VarelaM.S. MartínezM.G. PardoM. Piñeiro CesA. MéndezJ.B. BarciaM.G. LamasM.J. Otero-EspinarF. Cyclodextrin–polysaccharide-based, in situ-gelled system for ocular antifungal delivery.Beilstein J. Org. Chem.2014102903291110.3762/bjoc.10.30825550757
    [Google Scholar]
  72. XuX. WengY. XuL. ChenH. Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery.Int. J. Biol. Macromol.20136027227610.1016/j.ijbiomac.2013.05.03423748006
    [Google Scholar]
  73. LouJ. HuW. TianR. ZhangH. JiaY. ZhangJ. ZhangL. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles.Int. J. Nanomedicine201492517252524904211
    [Google Scholar]
  74. YuJ. XuX. YaoF. LuoZ. JinL. XieB. ShiS. MaH. LiX. ChenH. In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications.Int. J. Pharm.20144701-215115710.1016/j.ijpharm.2014.04.05324768405
    [Google Scholar]
  75. AmmarH.O. SalamaH.A. GhorabM. MahmoudA.A. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery.Drug Dev. Ind. Pharm.201036111330133910.3109/0363904100380188520545523
    [Google Scholar]
  76. PathakM.K. ChhabraG. PathakK. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: Ex-vivo transcorneal permeation, corneal toxicity and irritation testing.Drug Dev. Ind. Pharm.201339578079010.3109/03639045.2012.70720322873799
    [Google Scholar]
  77. FamiliA. KahookM.Y. ParkD. A combined micelle and poly(serinol hexamethylene urea)-co-poly(N-isopropylacrylamide) reverse thermal gel as an injectable ocular drug delivery system.Macromol. Biosci.201414121719172910.1002/mabi.20140025025187427
    [Google Scholar]
  78. AbdelkaderH. PierscionekB. AlanyR.G. Novel in situ gelling ocular films for the opioid growth factor-receptor antagonist-naltrexone hydrochloride: Fabrication, mechanical properties, mucoadhesion, tolerability and stability studies.Int. J. Pharm.20144771-263164210.1016/j.ijpharm.2014.10.06925445974
    [Google Scholar]
  79. El-LaithyH.M. NesseemD.I. ShoukryM. Evaluation of two in situ gelling systems for ocular delivery of Moxifloxacin: in vitro and in vivo studies.J. Chem. Pharm. Res.2011326679
    [Google Scholar]
  80. MundadaA.S. ShrikhandeB.K. Formulation and evaluation of ciprofloxacin hydrochloride soluble ocular drug insert.Curr. Eye Res.2008335-646947510.1080/0271368080202310418568884
    [Google Scholar]
  81. SrividyaB. CardozaR.M. AminP.D. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system.J. Control. Release2001732-320521110.1016/S0168‑3659(01)00279‑611516498
    [Google Scholar]
  82. BellottiE. FedorchakM.V. VelankarS. LittleS.R. Tuning of thermoresponsive pNIPAAm hydrogels for the topical retention of controlled release ocular therapeutics.J. Mater. Chem. B Mater. Biol. Med.2019781276128310.1039/C8TB02976H30931126
    [Google Scholar]
  83. OsswaldC.R. GuthrieM.J. AvilaA. ValioJ.A.Jr MielerW.F. Kang-MielerJ.J. in vivo efficacy of an injectable microsphere-hydrogel ocular drug delivery system.Curr. Eye Res.20174291293130110.1080/02713683.2017.130259028557571
    [Google Scholar]
  84. KhanN. AqilM. ImamS.S. AliA. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: in vitro and ex-vivo characterization.Pharm. Dev. Technol.201520666266910.3109/10837450.2014.91080724754411
    [Google Scholar]
  85. YuS. ZhangX. TanG. TianL. LiuD. LiuY. YangX. PanW. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery.Carbohydr. Polym.201715520821710.1016/j.carbpol.2016.08.07327702506
    [Google Scholar]
  86. HakiM. ShafaeiN. MoeiniM. In situ gelling silk Fibroin/ECM hydrogel with sustained oxygen release for neural tissue engineering applications.J. Biomed. Mater. Res. A20251131e3783710.1002/jbm.a.3783739739320
    [Google Scholar]
  87. HorvátG. GyarmatiB. BerkóS. Szabó-RévészP. SzilágyiB.Á. SzilágyiA. SoósJ. SandriG. BonferoniM.C. RossiS. FerrariF. CaramellaC. CsányiE. Budai-SzűcsM. Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system.Eur. J. Pharm. Sci.20156711110.1016/j.ejps.2014.10.01325445832
    [Google Scholar]
  88. YuS. WangQ.M. WangX. LiuD. ZhangW. YeT. YangX. PanW. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate.Int. J. Pharm.20154801-212813610.1016/j.ijpharm.2015.01.03225615987
    [Google Scholar]
  89. DholakiaM. ThakkarV. PatelN. GandhiT. Development and characterisation of thermo reversible mucoadhesive moxifloxacin hydrochloride in situ ophthalmic gel.J. Pharm. Bioallied Sci.201245Suppl. 14210.4103/0975‑7406.9413823066202
    [Google Scholar]
  90. GratieriT. GelfusoG.M. de FreitasO. RochaE.M. LopezR.F.V. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel.Eur. J. Pharm. Biopharm.201179232032710.1016/j.ejpb.2011.05.00621641994
    [Google Scholar]
  91. ChenX. LiX. ZhouY. WangX. ZhangY. FanY. HuangY. LiuY. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: Preparation, characterization, and in vivo evaluation.J. Biomater. Appl.201227439140210.1177/088532821140656321750179
    [Google Scholar]
  92. GonjariI.D. KarmarkarA.B. KhadeT.S. HosmaniA.H. NavaleR.B. Use of factorial design in formulation and evaluation of ophthalmic gels of gatifloxacin: Comparison of different mucoadhesive polymers.Drug Discov. Ther.20104642343422491308
    [Google Scholar]
  93. QianY. WangF. LiR. ZhangQ. XuQ. Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide.Drug Dev. Ind. Pharm.201036111340134710.3109/0363904100380189320849349
    [Google Scholar]
  94. ShastriD.H. PrajapatiS.T. PatelL.D. Design and development of thermoreversible ophthalmic in situ hydrogel of moxifloxacin HCl.Curr. Drug Deliv.20107323824310.2174/15672011079156092820497100
    [Google Scholar]
  95. NesseemD.I. Ophthalmic delivery of sparfloxacin from in situ gel formulation for treatment of experimentally induced bacterial keratitis.Drug Test. Anal.20113210611510.1002/dta.17021322120
    [Google Scholar]
  96. a GuptaS VyasSP Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate.Sci. Pharm.2010784959
    [Google Scholar]
  97. b SinghB KhuranaRK Stimuli-responsive systems with diverse drug delivery and biomedical applications: Recent updates and mechanistic pathways.Crit. Rev. Ther. Drug Carrier Syst.201734320925510.1615/CritRevTherDrugCarrierSyst.2017017284
    [Google Scholar]
  98. GuptaH. VelpandianT. JainS. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery.J. Drug Target.201018749950510.3109/1061186090350878820055752
    [Google Scholar]
  99. AgrawalA.K. GuptaP.N. KhannaA. SharmaR.K. ChandrawanshiH.K. GuptaN. PatilU.K. YadavS.K. Development and characterization of in situ gel system for nasal insulin delivery.Pharmazie201065318819320383938
    [Google Scholar]
  100. SangeethaS. HarishG. SamantaM.K. Formation and evaluation of oro-sustained release in situ gelling sol using xanthan gum.Int J Pharm Bio Sci.20101218
    [Google Scholar]
  101. BhaleraoB.V. SinghS. In situ gelling ophthlamic drug-delivery system for glaucoma.Int. J. Pharm. Biol. Sci.201122714
    [Google Scholar]
  102. AbrahamS. FurtadoS. BharathS. BasavarajB.V. DeveswaranR. MadhavanV. Sustained ophthalmic delivery of ofloxacin from an ion-activated in situ gelling system.Pak. J. Pharm. Sci.200922217517919339228
    [Google Scholar]
  103. CaoF. ZhangX. PingQ. New method for ophthalmic delivery of azithromycin by poloxamer/carbopol-based in situ gelling system.Drug Deliv.201017750050710.3109/10717544.2010.48325520500130
    [Google Scholar]
  104. QiH. ChenW. HuangC. LiL. ChenC. LiW. WuC. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin.Int. J. Pharm.20073371-217818710.1016/j.ijpharm.2006.12.03817254725
    [Google Scholar]
  105. Al-KassasR.S. El-KhatibM.M. Ophthalmic controlled release in situ gelling systems for ciprofloxacin based on polymeric carriers.Drug Deliv.200916314515210.1080/1071754080268900819514974
    [Google Scholar]
  106. SinghS.R. CarreiroS.T. ChuJ. PrasannaG. NiesmanM.R. ColletteW.W.III YounisH.S. SartnurakS. GukasyanH.J. l -Carnosine: Multifunctional dipeptide buffer for sustained-duration topical ophthalmic formulations.J. Pharm. Pharmacol.200961673374210.1211/jpp.61.06.000519505363
    [Google Scholar]
  107. GanL. GanY. ZhuC. ZhangX. ZhuJ. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results.Int. J. Pharm.20093651-214314910.1016/j.ijpharm.2008.08.00418773948
    [Google Scholar]
  108. KalamM.A. SultanaY. SamadA. AliA. AqilM. SharmaM. MishraA.K. Gelrite-based in vitro gelation ophthalmic drug-delivery system of gatifloxacin.J. Dispers. Sci. Technol.2008291899610.1080/01932690701688482
    [Google Scholar]
  109. SultanaY. AqilM. AliA. Ion-activated, Gelrite-based in situ ophthalmic gels of pefloxacin mesylate: Comparison with conventional eye drops.Drug Deliv.200613321521910.1080/1071754050030916416556574
    [Google Scholar]
  110. El-KamelA. Al-DosariH. Al-JenoobiF. Environmentally responsive ophthalmic gel formulation of carteolol hydrochloride.Drug Deliv.2006131555910.1080/1071754050030907316401594
    [Google Scholar]
  111. BalasubramaniamJ. KantS. PanditJ.K. in vitro and in vivo evaluation of the Gelrite gellan gum-based ocular delivery system for indomethacin.Acta Pharm.200353425126114769232
    [Google Scholar]
  112. JainS.P. ShahS.P. RajadhyakshaN.S. Singh P SP.P. AminP.D. In situ ophthalmic gel of ciprofloxacin hydrochloride for once a day sustained delivery.Drug Dev. Ind. Pharm.200834444545210.1080/0363904070183171018401787
    [Google Scholar]
  113. MansourM. MansourS. MortadaN.D. Abd ElHadyS.S. Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels.Drug Dev. Ind. Pharm.200834774475210.1080/0363904080192603018612913
    [Google Scholar]
  114. MaW.D. XuH. WangC. NieS.F. PanW.S. Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system.Int. J. Pharm.20083501-224725610.1016/j.ijpharm.2007.09.00517961940
    [Google Scholar]
  115. CaoY. ZhangC. ShenW. ChengZ. YuL.L. PingQ. Poly(N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery.J. Control. Release2007120318619410.1016/j.jconrel.2007.05.00917582643
    [Google Scholar]
  116. DoijadR.C. ManviF.V. Malleswara RaoV. AlaseP. Sustained ophthalmic delivery of gatifloxacin from in situ gelling system.Int. J. Pharm.2006686814
    [Google Scholar]
  117. LinH.R. SungK.C. VongW.J. In situ gelling of alginate/pluronic solutions for ophthalmic delivery of pilocarpine.Biomacromolecules2004562358236510.1021/bm049696515530052
    [Google Scholar]
  118. WuH. LiuZ. PengJ. LiL. LiN. LiJ. PanH. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery.Int. J. Pharm.20114101-2314010.1016/j.ijpharm.2011.03.00721397671
    [Google Scholar]
  119. AlsaidanO.A. ZafarA. YasirM. AlzareaS.I. AlqinyahM. KhalidM. Develop- ment of ciprofloxacin-loaded bilosomes in-situ gel for ocular delivery: Optimization, in-vitro characterization, ex-vivo permeation, and antimi- crobial study.Gels202281168710.3390/gels811068736354595
    [Google Scholar]
  120. SalunkeS.R. PatilS.B. Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration.Int. J. Biol. Macromol.201687414710.1016/j.ijbiomac.2016.02.04426899173
    [Google Scholar]
  121. ElmowafyE. CespiM. BonacucinaG. SolimanM.E. In situ composite ion-triggered gellan gum gel incorporating amino methacrylate copolymer microparticles: A therapeutic modality for buccal applicability.Pharm. Dev. Technol.201924101258127110.1080/10837450.2019.165931431437077
    [Google Scholar]
  122. ZhuL. AoJ. LiP. A novel in situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: in vitro and in vivo evaluation.Drug Des. Devel. Ther.201593943394926251573
    [Google Scholar]
  123. BhaleraoH. KoteshwaraK.B. ChandranS. Brinzolamide dimethyl sulfox- ide in situ gelling ophthalmic solution: formulation optimisation and in vitro and in vivo evaluation.AAPS PharmSciTech20202126910.1208/s12249‑019‑1555‑031950311
    [Google Scholar]
  124. LiuH. LiuJ. QiC. FangY. ZhangL. ZhuoR. JiangX. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture.Acta Biomater.20163522823710.1016/j.actbio.2016.02.02826911882
    [Google Scholar]
  125. Al KhatebK. OzhmukhametovaE.K. MussinM.N. SeilkhanovS.K. RakhypbekovT.K. LauW.M. KhutoryanskiyV.V. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery.Int. J. Pharm.20165021-2707910.1016/j.ijpharm.2016.02.02726899977
    [Google Scholar]
  126. PanduranganD. BodagalaP. PalanirajanV. GovindarajS. Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel.Int. J. Pharm. Investig.201661566210.4103/2230‑973X.17648827014620
    [Google Scholar]
  127. BadranM.M. AlsubaieA. Salem BekhitM.M. AlomraniA.H. AlmomenA. IbrahimM.A. AlshoraD.H. Bioadhesive hybrid system of niosomes and pH sensitive in situ gel for itraconazole ocular delivery: Dual approach for efficient treatment of fungal infections.Saudi Pharm. J.2024321210220810.1016/j.jsps.2024.10220839697473
    [Google Scholar]
  128. DeyS. GhoshB. MukherjeeK. GiriT.K. Development and evaluation of locust bean gum based in situ gel for ocular delivery of ofloxacin for treatment of bacterial keratitis.Int. J. Biol. Macromol.2024281Pt 213637410.1016/j.ijbiomac.2024.13637439383900
    [Google Scholar]
  129. ChenZ. WangA. QinY. ChenX. FengX. HeG. ZhuX. XiaoY. YuX. ZhongT. ZhangK. Preparation of a thermosensitive and antibacterial in situ gel using poloxamer-quaternized chitosan for sustained ocular delivery of Levofloxacin hydrochloride.Int. J. Biol. Macromol.2024283Pt 113747910.1016/j.ijbiomac.2024.13747939537073
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031336060250214043138
Loading
/content/journals/ddl/10.2174/0122103031336060250214043138
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test