Skip to content
2000
image of Novel Approach and Recent Advancement In-Situ Gel as Smart Carriers for Controlled Drug Delivery via Ophthalmic Route

Abstract

Research in ocular delivery of medication has both challenging and promising opportunities for the pharmaceutical sector. Present ocular delivery methods of drugs, including ointments, solutions, and suspensions, have a number of limitations, such as rapid elimination from the precorneal area, high variation in efficacy, and the risk of blurred vision. These disadvantages underscore the need for the introduction of more effective drug delivery systems. Research on ocular drug delivery has increased significantly in the past years, resulting in the use of numerous standard formulation forms, such as ointments and eye drops. One big drawback of the two formulations is the fast expulsion of the deposited dose through the action of blinking eyelids as well as the excretion of tear fluid. To counter this, , gelling systems have been created that minimize drainage and prolong the period of contact with the ocular tissues and cornea. The formulations in these systems go through a sol-to-gel change due to conditions in the environment, for example, temperature, ionic strength, and pH. The transitions are usually triggered by the common polymers sodium alginate and high-performance methylcellulose. These preparations can be tested for any one of a number of properties, such as but not limited to clarity, ocular irritancy, texture, isotonicity, sterility, gel strength, gelling capacity, gelling time, release, drug release, stability, retention, and absorption.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031336060250214043138
2025-03-24
2025-09-13
Loading full text...

Full text loading...

References

  1. Li S. Chen L. Fu Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnology 2023 21 1 232 10.1186/s12951‑023‑01992‑2 37480102
    [Google Scholar]
  2. Ashique S. Mishra N. Mohanto S. Gowda B.H.J. Kumar S. Raikar A.S. Masand P. Garg A. Goswami P. Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024 10 1 e23810 10.1016/j.heliyon.2023.e23810 38226207
    [Google Scholar]
  3. Löscher M. Seiz C. Hurst J. Schnichels S. Topical drug delivery to the posterior segment of the eye. Pharmaceutics 2022 14 1 134 10.3390/pharmaceutics14010134 35057030
    [Google Scholar]
  4. Mostafa M. Al Fatease A. Alany R.G. Abdelkader H. Recent advances of ocular drug delivery systems: Prominence of ocular implants for chronic eye diseases. Pharmaceutics 2023 15 6 1746 10.3390/pharmaceutics15061746 37376194
    [Google Scholar]
  5. Chiang M.C. Chern E. More than antibiotics: Latest therapeutics in the treatment and prevention of ocular surface infections. J. Clin. Med. 2022 11 14 4195 10.3390/jcm11144195 35887958
    [Google Scholar]
  6. Dosmar E. Walsh J. Doyel M. Bussett K. Oladipupo A. Amer S. Goebel K. Targeting ocular drug delivery: An examination of local anatomy and current approaches. Bioengineering 2022 9 1 41 10.3390/bioengineering9010041 35049750
    [Google Scholar]
  7. del Amo E.M. Topical ophthalmic administration: Can a drug instilled onto the ocular surface exert an effect at the back of the eye? Front. Drug Deliv. 2022 2 954771 10.3389/fddev.2022.954771
    [Google Scholar]
  8. Stielow M. Witczyńska A. Kubryń N. Fijałkowski Ł. Nowaczyk J. Nowaczyk A. The bioavailability of drugs—the current state of knowledge. Molecules 2023 28 24 8038 10.3390/molecules28248038 38138529
    [Google Scholar]
  9. Akhter M.H. Ahmad I. Alshahrani M.Y. Al-Harbi A.I. Khalilullah H. Afzal O. Altamimi A.S.A. Najib Ullah S.N.M. Ojha A. Karim S. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 2022 8 2 82 10.3390/gels8020082 35200463
    [Google Scholar]
  10. Toropainen E. Fraser-Miller S.J. Novakovic D. Del Amo E.M. Vellonen K.S. Ruponen M. Viitala T. Korhonen O. Auriola S. Hellinen L. Reinisalo M. Tengvall U. Choi S. Absar M. Strachan C. Urtti A. Biopharmaceutics of topical ophthalmic suspensions: Importance of viscosity and particle size in ocular absorption of indomethacin. Pharmaceutics 2021 13 4 452 10.3390/pharmaceutics13040452 33810564
    [Google Scholar]
  11. Mohamed H.B. Abd El-Hamid B.N. Fathalla D. Fouad E.A. Current trends in pharmaceutical treatment of dry eye disease: A review. Eur. J. Pharm. Sci. 2022 175 106206 10.1016/j.ejps.2022.106206 35568107
    [Google Scholar]
  12. Jacques E.R. Alexandridis P. Tablet scoring: Current practice, fundamentals, and knowledge gaps. Appl. Sci. 2019 9 15 3066 10.3390/app9153066
    [Google Scholar]
  13. Raina N. Rani R. Thakur V.K. Gupta M. New insights in topical drug delivery for skin disorders: From a nanotechnological perspective. ACS Omega 2023 8 22 19145 19167 10.1021/acsomega.2c08016 37305231
    [Google Scholar]
  14. Jumelle C. Gholizadeh S. Annabi N. Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release 2020 321 1 22 10.1016/j.jconrel.2020.01.057
    [Google Scholar]
  15. Dewan M. Adhikari A. Jana R. Chattopadhyay D. Development, evaluation and recent progress of ocular in situ gelling drug delivery vehicle based on poloxamer 407. J. Drug Deliv. Sci. Technol. 2023 88 104885 10.1016/j.jddst.2023.104885
    [Google Scholar]
  16. Yang H. Zhao M. Xing D. Zhang J. Fang T. Zhang F. Nie Z. Liu Y. Yang L. Li J. Wang D. Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review. Asian J. Pharm. Sci. 2023 18 5 100847 10.1016/j.ajps.2023.100847 37915758
    [Google Scholar]
  17. Vigani B. Rossi S. Sandri G. Bonferoni M.C. Caramella C.M. Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics 2020 12 9 859 10.3390/pharmaceutics12090859 32927595
    [Google Scholar]
  18. Cassano R. Di Gioia M.L. Trombino S. Gel-based materials for ophthalmic drug delivery. Gels 2021 7 3 130 10.3390/gels7030130 34563016
    [Google Scholar]
  19. Sridhar M. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018 66 2 190 194 10.4103/ijo.IJO_646_17 29380756
    [Google Scholar]
  20. Boote C. Sigal I.A. Grytz R. Hua Y. Nguyen T.D. Girard M.J.A. Scleral structure and biomechanics. Prog. Retin. Eye Res. 2020 74 100773 10.1016/j.preteyeres.2019.100773 31412277
    [Google Scholar]
  21. Rupenthal I.D. Daugherty A.L. Ocular drugs and drug delivery systems — Current trends and future perspectives. Drug Discov. Today 2019 24 8 1425 1426 10.1016/j.drudis.2019.07.005 31330186
    [Google Scholar]
  22. Bachu R. Chowdhury P. Al-Saedi Z. Karla P. Boddu S. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018 10 1 28 10.3390/pharmaceutics10010028 29495528
    [Google Scholar]
  23. Ahmed S. Amin M.M. Sayed S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023 24 2 66 10.1208/s12249‑023‑02516‑9 36788150
    [Google Scholar]
  24. Agarwal P. Craig J.P. Rupenthal I.D. Formulation considerations for the management of dry eye disease. Pharmaceutics 2021 13 2 207 10.3390/pharmaceutics13020207 33546193
    [Google Scholar]
  25. Mofidfar M. Abdi B. Ahadian S. Mostafavi E. Desai T.A. Abbasi F. Sun Y. Manche E.E. Ta C.N. Flowers C.W. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int. J. Pharm. 2021 607 120924 10.1016/j.ijpharm.2021.120924 34324989
    [Google Scholar]
  26. Varela-Fernández R. Díaz-Tomé V. Luaces-Rodríguez A. Conde-Penedo A. García-Otero X. Luzardo-Álvarez A. Fernández-Ferreiro A. Otero-Espinar F. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics 2020 12 3 269 10.3390/pharmaceutics12030269 32188045
    [Google Scholar]
  27. Lee Y.R. Son M. Kim Y.S. Kim J.S. Kim C.H. Jung S.H. Evaluation of a rapid and simple method for assessing retinal vessel structures in adult zebrafish. Int. J. Mol. Sci. 2022 23 23 15069 10.3390/ijms232315069 36499406
    [Google Scholar]
  28. Okur N.Ü. Yağcılar A.P. Siafaka P.I. Promising polymeric drug carriers for local delivery: The case of in situ gels. Curr. Drug Deliv. 2020 17 8 675 693 10.2174/1567201817666200608145748 32510291
    [Google Scholar]
  29. Rykowska I Nowak I Nowak R Soft contact lenses as drug delivery systems: A review. Molecules 2021 26 18 5577 10.3390/molecules26185577
    [Google Scholar]
  30. Alsheikh R. Haimhoffer Á. Nemes D. Ujhelyi Z. Fehér P. Józsa L. Vasvári G. Pető Á. Kósa D. Nagy L. Horváth L. Balázs B. Bácskay I. Formulation of thermo-sensitive in situ gels loaded with dual spectrum antibiotics of azithromycin and ofloxacin. Polymers 2024 16 21 2954 10.3390/polym16212954 39518163
    [Google Scholar]
  31. Fan R Cheng Y Wang R Zhang T Zhang H Li J Song S Zheng A Thermosensitive hydrogels and advances in their application in disease therapy. Polymers 2022 14 12 2379 10.3390/polym14122379
    [Google Scholar]
  32. Ni X. Guo Q. Zou Y. Xuan Y. Mohammad I.S. Ding Q. Hu H. Preparation and characterization of bear bile-loaded pH sensitive in-situ gel eye drops for ocular drug delivery. Iran. J. Basic Med. Sci. 2020 23 7 922 929 32774815
    [Google Scholar]
  33. Meshram S. Thorat S. Ocular in Situ gels: Development, evaluation and advancements. Sch Acad J Pharm. 2015 4 7 340 346
    [Google Scholar]
  34. Patel R. Kuwar U. Dhote N. Alexander A. Nakhate K. Jain P. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr. Drug Deliv. 2024 21 2 193 210 10.2174/1567201820666230112170035 36644864
    [Google Scholar]
  35. Gugleva V. Mihaylova R. Kamenova K. Zheleva-Dimitrova D. Stefanova D. Tzankova V. Zaharieva M.M. Najdenski H. Forys A. Trzebicka B. Petrov P.D. Momekova D. Development and characterization of dual-loaded niosomal ion-sensitive in situ gel for ocular delivery. Gels 2024 10 12 816 10.3390/gels10120816 39727573
    [Google Scholar]
  36. Nirmal HB. In-situ gel: New trends in controlled and sustained drug delivery system. Int. J. PharmTech Res. 2010 2 2 1398 1408
    [Google Scholar]
  37. Bhairam M. Prasad J. Verma K. Jain P. Gidwani B. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes. Mater. Today Proc. 2023 83 59 68 10.1016/j.matpr.2023.01.147
    [Google Scholar]
  38. Gurny R Ibrahim H Buri P The development and use of in situ formed gels, triggered by pH. Biopharmaceutics of ocular drug delivery 1st ed 1993 81 90
    [Google Scholar]
  39. Vodithala S. Khatry S. Shastri N. Sadanandam M. Development and evaluation of thermoreversible ocular gels of ketorolac tromethamine. Int J Biopharm 2010 1 1 39 45
    [Google Scholar]
  40. Aishwarya J.J. Sheetal B.G. Ravindra B.S. A review on nasal drug delivery system. World J. Pharm. Pharm. Sci. 2014 3 231 254
    [Google Scholar]
  41. Singh R Prasad J Satapathy T Jain P Singh S Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles. Indian J. Biochem. Biophys. 2021 58 2 156 161
    [Google Scholar]
  42. Kavitha K. Santosh K.P. Rup M. Jagadeesh S. Recent development and strategies of ocular Insitu drug delivery system: A review. Int. J. Pharm. Clin. Res. 2013 5 2 64 71
    [Google Scholar]
  43. Almeida H. Ameral M.H. Lobão P. Application of poloxamers in ophthalmic pharmaceutical formulation: An overview. Expert Opin Drug Deliv. 2013 10 9 1223 1237 10.1517/17425247.2013.796360 23688342
    [Google Scholar]
  44. Kurniawansyah I.S. Rusdiana T. Sopyan I. Subarnas A. A review on poloxamer and hydroxy propyl methyl cellulose combination as thermoresponsive polymers in noval ophthalmic in situ gel formulation and their characterization. Int. J. Appl. Pharm. 2021 13 1 27 31 10.22159/ijap.2021v13i1.39697
    [Google Scholar]
  45. Cabana A. Aït-Kadi A. Juhász J. Study of the gelation process of polyethylene oxide a-polypropylene oxide b-polyethylene oxide a copolymer (Poloxamer 407) aqueous solutions. J. Colloid Interface Sci. 1997 190 2 307 312 10.1006/jcis.1997.4880 9241171
    [Google Scholar]
  46. Irimia T. Dinu-Pîrvu C.E. Ghica M.V. Lupuleasa D. Muntean D.L. Udeanu D.I. Popa L. Chitosan-based in in situ gels for ocular delivery of therapeutic: A state-of-the art review. Mar. Drugs 2018 16 10 373 10.3390/md16100373 30304825
    [Google Scholar]
  47. Sahu B. Comprehensive review on non-alcoholic fatty liver disease (NAFLD). Clinical Advancement and Drug Treatments. Prob. Sci. 2024 1 1 1 7
    [Google Scholar]
  48. Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Drug Deliv. Rev. 2005 57 11 1595 1639 10.1016/j.addr.2005.07.005
    [Google Scholar]
  49. Rajas N.J. Kavitha K. Gounder T. In situ opthalmic gels: A developing trend. Int. J. Pharm. Sci. Rev. Res. 2011 7 1 8 14
    [Google Scholar]
  50. Biswal S. Parmanik A. Das D. Sahoo R.N. Nayak A.K. Gellan gum-based in-situ gel formulations for ocular drug delivery: A practical approach. Int. J. Biol. Macromol. 2025 290 138979 10.1016/j.ijbiomac.2024.138979 39708866
    [Google Scholar]
  51. Mohanty D. Bakshi Dr K. Simharaju N. Haque M.A. Sahoo C.K. A review on in situ gel: A Novel drug delivery system. Int. J. Pharm. Sci. Rev. Res. 2018 50 1 175 181
    [Google Scholar]
  52. Nanjawade B.K. Manvi F.V. Manjappa A.S. RETRACTED: In situ-forming hydrogels for sustained ophthalmic drug delivery. J. Control. Release 2007 122 2 119 134 10.1016/j.jconrel.2007.07.009 17719120
    [Google Scholar]
  53. Shahien M.M. Alshammari A. Ibrahim S. Ahmed E.H. Atia H.A. Elariny H.A. Abdallah M.H. Development of glycerosomal pH triggered in situ gelling system to ameliorate the nasal delivery of sulpiride for pediatric psychosis. Gels 2024 10 9 608 10.3390/gels10090608 39330210
    [Google Scholar]
  54. Nanjawade B.K. Manjappa A.S. Murthy R.S.R. A novel pH- triggered in situ gel for sustained ophthalmic delivery of ketorolac tromethamine. Asian J. Pharm. Sci. 2009 4 3 189 199
    [Google Scholar]
  55. Fathalla Z. Mustafa W.W. Abdelkader H. Moharram H. Sabry A.M. Alany R.G. Hybrid thermosensitive-mucoadhesive in situ forming gels for enhanced corneal wound healing effect of L-carnosine. Drug Deliv. 2022 29 1 374 385 10.1080/10717544.2021.2023236 35068268
    [Google Scholar]
  56. El-Kamel A.H. in vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int. J. Pharm. 2002 241 1 47 55 10.1016/S0378‑5173(02)00234‑X 12086720
    [Google Scholar]
  57. Liu Z Li J Nie S Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int. J. Pharm. 2006 315 1-2 12 17 10.1016/j.ijpharm.2006.01.029 16616442
    [Google Scholar]
  58. Séchoy O. Tissié G. Sébastian C. Maurin F. Driot J.Y. Trinquand C. A new long acting ophthalmic formulation of Carteolol containing alginic acid. Int. J. Pharm. 2000 207 1-2 109 116 10.1016/S0378‑5173(00)00539‑1 11036236
    [Google Scholar]
  59. Cohen S. Lobel E. Trevgoda A. Peled Y. A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J. Control. Release 1997 44 2-3 201 208 10.1016/S0168‑3659(96)01523‑4
    [Google Scholar]
  60. Rahman M.S. Hasan M.S. Nitai A.S. Nam S. Karmakar A.K. Ahsan M.S. Shiddiky M.J.A. Ahmed M.B. Recent developments of carboxymethyl cel- lulose. Polymers 2021 13 8 1345 10.3390/polym13081345 33924089
    [Google Scholar]
  61. Joshi S.C. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 2011 4 10 1861 1905 10.3390/ma4101861 28824113
    [Google Scholar]
  62. Shivhare R. Pathak A. Shrivastava N. Singh C. Tiwari G. Goyal R. An update review on novel advanced ocular drug delivery system. World J. Pharm. Pharm. Sci. 2012 1 2 545 568
    [Google Scholar]
  63. Gawkowska D. Cybulska J. Zdunek A. Structure-related gelling of pectins and linking with other natural compounds: A review. Polymers 2018 10 7 762 10.3390/polym10070762 30960687
    [Google Scholar]
  64. Nokhodchi A. Raja S. Patel P. Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts 2012 2 4 175 187 23678458
    [Google Scholar]
  65. Sinha L. Jain S.K. Choudhary R. Current trends in the treatment of hepatocellular carcinoma: Clinical applications and advancement. Prob. Sci. 2024 1 1 24 33
    [Google Scholar]
  66. Kumar M.K. Narayan S. Singh P.K. A review on advancement of mouth dissolving tablets. Prob. Sci. 2024 1 1 34 49
    [Google Scholar]
  67. Singh J. Chhabra G. Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex-vivo evaluation and pharmacodynamic study. Drug Dev. Ind. Pharm. 2014 40 9 1223 1232 10.3109/03639045.2013.814061 23837522
    [Google Scholar]
  68. Zöller K. To D. Bernkop-Schnürch A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025 312 122718 10.1016/j.biomaterials.2024.122718 39084097
    [Google Scholar]
  69. Budai L. Hajdú M. Budai M. Gróf P. Béni S. Noszál B. Klebovich I. Antal I. Gels and liposomes in optimized ocular drug delivery: Studies on ciprofloxacin formulations. Int. J. Pharm. 2007 343 1-2 34 40 10.1016/j.ijpharm.2007.04.013 17537601
    [Google Scholar]
  70. Fang G. Yang X. Wang Q. Zhang A. Tang B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. Mater. Sci. Eng. C 2021 127 112212 10.1016/j.msec.2021.112212 34225864
    [Google Scholar]
  71. Fernández-Ferreiro A. Fernández Bargiela N. Varela M.S. Martínez M.G. Pardo M. Piñeiro Ces A. Méndez J.B. Barcia M.G. Lamas M.J. Otero-Espinar F. Cyclodextrin–polysaccharide-based, in situ-gelled system for ocular antifungal delivery. Beilstein J. Org. Chem. 2014 10 2903 2911 10.3762/bjoc.10.308 25550757
    [Google Scholar]
  72. Xu X. Weng Y. Xu L. Chen H. Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int. J. Biol. Macromol. 2013 60 272 276 10.1016/j.ijbiomac.2013.05.034 23748006
    [Google Scholar]
  73. Lou J. Hu W. Tian R. Zhang H. Jia Y. Zhang J. Zhang L. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int. J. Nanomedicine 2014 9 2517 2525 24904211
    [Google Scholar]
  74. Yu J. Xu X. Yao F. Luo Z. Jin L. Xie B. Shi S. Ma H. Li X. Chen H. In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. Int. J. Pharm. 2014 470 1-2 151 157 10.1016/j.ijpharm.2014.04.053 24768405
    [Google Scholar]
  75. Ammar H.O. Salama H.A. Ghorab M. Mahmoud A.A. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev. Ind. Pharm. 2010 36 11 1330 1339 10.3109/03639041003801885 20545523
    [Google Scholar]
  76. Pathak M.K. Chhabra G. Pathak K. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: Ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev. Ind. Pharm. 2013 39 5 780 790 10.3109/03639045.2012.707203 22873799
    [Google Scholar]
  77. Famili A. Kahook M.Y. Park D. A combined micelle and poly(serinol hexamethylene urea)-co-poly(N-isopropylacrylamide) reverse thermal gel as an injectable ocular drug delivery system. Macromol. Biosci. 2014 14 12 1719 1729 10.1002/mabi.201400250 25187427
    [Google Scholar]
  78. Abdelkader H. Pierscionek B. Alany R.G. Novel in situ gelling ocular films for the opioid growth factor-receptor antagonist-naltrexone hydrochloride: Fabrication, mechanical properties, mucoadhesion, tolerability and stability studies. Int. J. Pharm. 2014 477 1-2 631 642 10.1016/j.ijpharm.2014.10.069 25445974
    [Google Scholar]
  79. El-Laithy H.M. Nesseem D.I. Shoukry M. Evaluation of two in situ gelling systems for ocular delivery of Moxifloxacin: in vitro and in vivo studies. J. Chem. Pharm. Res. 2011 3 2 66 79
    [Google Scholar]
  80. Mundada A.S. Shrikhande B.K. Formulation and evaluation of ciprofloxacin hydrochloride soluble ocular drug insert. Curr. Eye Res. 2008 33 5-6 469 475 10.1080/02713680802023104 18568884
    [Google Scholar]
  81. Srividya B. Cardoza R.M. Amin P.D. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J. Control. Release 2001 73 2-3 205 211 10.1016/S0168‑3659(01)00279‑6 11516498
    [Google Scholar]
  82. Bellotti E. Fedorchak M.V. Velankar S. Little S.R. Tuning of thermoresponsive pNIPAAm hydrogels for the topical retention of controlled release ocular therapeutics. J. Mater. Chem. B Mater. Biol. Med. 2019 7 8 1276 1283 10.1039/C8TB02976H 30931126
    [Google Scholar]
  83. Osswald C.R. Guthrie M.J. Avila A. Valio J.A. Jr Mieler W.F. Kang-Mieler J.J. in vivo efficacy of an injectable microsphere-hydrogel ocular drug delivery system. Curr. Eye Res. 2017 42 9 1293 1301 10.1080/02713683.2017.1302590 28557571
    [Google Scholar]
  84. Khan N. Aqil M. Imam S.S. Ali A. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: in vitro and ex-vivo characterization. Pharm. Dev. Technol. 2015 20 6 662 669 10.3109/10837450.2014.910807 24754411
    [Google Scholar]
  85. Yu S. Zhang X. Tan G. Tian L. Liu D. Liu Y. Yang X. Pan W. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr. Polym. 2017 155 208 217 10.1016/j.carbpol.2016.08.073 27702506
    [Google Scholar]
  86. Haki M. Shafaei N. Moeini M. In situ gelling silk Fibroin/ ECM hydrogel with sustained oxygen release for neural tissue engineering applications. J. Biomed. Mater. Res. A 2025 113 1 e37837 10.1002/jbm.a.37837 39739320
    [Google Scholar]
  87. Horvát G. Gyarmati B. Berkó S. Szabó-Révész P. Szilágyi B.Á. Szilágyi A. Soós J. Sandri G. Bonferoni M.C. Rossi S. Ferrari F. Caramella C. Csányi E. Budai-Szűcs M. Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. Eur. J. Pharm. Sci. 2015 67 1 11 10.1016/j.ejps.2014.10.013 25445832
    [Google Scholar]
  88. Yu S. Wang Q.M. Wang X. Liu D. Zhang W. Ye T. Yang X. Pan W. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int. J. Pharm. 2015 480 1-2 128 136 10.1016/j.ijpharm.2015.01.032 25615987
    [Google Scholar]
  89. Dholakia M. Thakkar V. Patel N. Gandhi T. Development and characterisation of thermo reversible mucoadhesive moxifloxacin hydrochloride in situ ophthalmic gel. J. Pharm. Bioallied Sci. 2012 4 5 Suppl. 1 42 10.4103/0975‑7406.94138 23066202
    [Google Scholar]
  90. Gratieri T. Gelfuso G.M. de Freitas O. Rocha E.M. Lopez R.F.V. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur. J. Pharm. Biopharm. 2011 79 2 320 327 10.1016/j.ejpb.2011.05.006 21641994
    [Google Scholar]
  91. Chen X. Li X. Zhou Y. Wang X. Zhang Y. Fan Y. Huang Y. Liu Y. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: Preparation, characterization, and in vivo evaluation. J. Biomater. Appl. 2012 27 4 391 402 10.1177/0885328211406563 21750179
    [Google Scholar]
  92. Gonjari I.D. Karmarkar A.B. Khade T.S. Hosmani A.H. Navale R.B. Use of factorial design in formulation and evaluation of ophthalmic gels of gatifloxacin: Comparison of different mucoadhesive polymers. Drug Discov. Ther. 2010 4 6 423 434 22491308
    [Google Scholar]
  93. Qian Y. Wang F. Li R. Zhang Q. Xu Q. Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide. Drug Dev. Ind. Pharm. 2010 36 11 1340 1347 10.3109/03639041003801893 20849349
    [Google Scholar]
  94. Shastri D.H. Prajapati S.T. Patel L.D. Design and development of thermoreversible ophthalmic in situ hydrogel of moxifloxacin HCl. Curr. Drug Deliv. 2010 7 3 238 243 10.2174/156720110791560928 20497100
    [Google Scholar]
  95. Nesseem D.I. Ophthalmic delivery of sparfloxacin from in situ gel formulation for treatment of experimentally induced bacterial keratitis. Drug Test. Anal. 2011 3 2 106 115 10.1002/dta.170 21322120
    [Google Scholar]
  96. a Gupta S Vyas SP Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci. Pharm. 2010 78 4 959
    [Google Scholar]
  97. b Singh B Khurana RK Stimuli-responsive systems with diverse drug delivery and biomedical applications: Recent updates and mechanistic pathways. Crit. Rev. Ther. Drug Carrier Syst. 2017 34 3 209 255 10.1615/CritRevTherDrugCarrierSyst.2017017284
    [Google Scholar]
  98. Gupta H. Velpandian T. Jain S. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery. J. Drug Target. 2010 18 7 499 505 10.3109/10611860903508788 20055752
    [Google Scholar]
  99. Agrawal A.K. Gupta P.N. Khanna A. Sharma R.K. Chandrawanshi H.K. Gupta N. Patil U.K. Yadav S.K. Development and characterization of in situ gel system for nasal insulin delivery. Pharmazie 2010 65 3 188 193 20383938
    [Google Scholar]
  100. Sangeetha S. Harish G. Samanta M.K. Formation and evaluation of oro-sustained release in situ gelling sol using xanthan gum. Int J Pharm Bio Sci. 2010 1 2 1 8
    [Google Scholar]
  101. Bhalerao B.V. Singh S. In situ gelling ophthlamic drug-delivery system for glaucoma. Int. J. Pharm. Biol. Sci. 2011 2 2 7 14
    [Google Scholar]
  102. Abraham S. Furtado S. Bharath S. Basavaraj B.V. Deveswaran R. Madhavan V. Sustained ophthalmic delivery of ofloxacin from an ion-activated in situ gelling system. Pak. J. Pharm. Sci. 2009 22 2 175 179 19339228
    [Google Scholar]
  103. Cao F. Zhang X. Ping Q. New method for ophthalmic delivery of azithromycin by poloxamer/carbopol-based in situ gelling system. Drug Deliv. 2010 17 7 500 507 10.3109/10717544.2010.483255 20500130
    [Google Scholar]
  104. Qi H. Chen W. Huang C. Li L. Chen C. Li W. Wu C. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int. J. Pharm. 2007 337 1-2 178 187 10.1016/j.ijpharm.2006.12.038 17254725
    [Google Scholar]
  105. Al-Kassas R.S. El-Khatib M.M. Ophthalmic controlled release in situ gelling systems for ciprofloxacin based on polymeric carriers. Drug Deliv. 2009 16 3 145 152 10.1080/10717540802689008 19514974
    [Google Scholar]
  106. Singh S.R. Carreiro S.T. Chu J. Prasanna G. Niesman M.R. Collette W.W. III Younis H.S. Sartnurak S. Gukasyan H.J. l -Carnosine: Multifunctional dipeptide buffer for sustained-duration topical ophthalmic formulations. J. Pharm. Pharmacol. 2009 61 6 733 742 10.1211/jpp.61.06.0005 19505363
    [Google Scholar]
  107. Gan L. Gan Y. Zhu C. Zhang X. Zhu J. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results. Int. J. Pharm. 2009 365 1-2 143 149 10.1016/j.ijpharm.2008.08.004 18773948
    [Google Scholar]
  108. Kalam M.A. Sultana Y. Samad A. Ali A. Aqil M. Sharma M. Mishra A.K. Gelrite-based in vitro gelation ophthalmic drug-delivery system of gatifloxacin. J. Dispers. Sci. Technol. 2008 29 1 89 96 10.1080/01932690701688482
    [Google Scholar]
  109. Sultana Y. Aqil M. Ali A. Ion-activated, Gelrite-based in situ ophthalmic gels of pefloxacin mesylate: Comparison with conventional eye drops. Drug Deliv. 2006 13 3 215 219 10.1080/10717540500309164 16556574
    [Google Scholar]
  110. El-Kamel A. Al-Dosari H. Al-Jenoobi F. Environmentally responsive ophthalmic gel formulation of carteolol hydrochloride. Drug Deliv. 2006 13 1 55 59 10.1080/10717540500309073 16401594
    [Google Scholar]
  111. Balasubramaniam J. Kant S. Pandit J.K. in vitro and in vivo evaluation of the Gelrite gellan gum-based ocular delivery system for indomethacin. Acta Pharm. 2003 53 4 251 261 14769232
    [Google Scholar]
  112. Jain S.P. Shah S.P. Rajadhyaksha N.S. Singh P S P.P. Amin P.D. In situ ophthalmic gel of ciprofloxacin hydrochloride for once a day sustained delivery. Drug Dev. Ind. Pharm. 2008 34 4 445 452 10.1080/03639040701831710 18401787
    [Google Scholar]
  113. Mansour M. Mansour S. Mortada N.D. Abd ElHady S.S. Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels. Drug Dev. Ind. Pharm. 2008 34 7 744 752 10.1080/03639040801926030 18612913
    [Google Scholar]
  114. Ma W.D. Xu H. Wang C. Nie S.F. Pan W.S. Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int. J. Pharm. 2008 350 1-2 247 256 10.1016/j.ijpharm.2007.09.005 17961940
    [Google Scholar]
  115. Cao Y. Zhang C. Shen W. Cheng Z. Yu L.L. Ping Q. Poly(N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Control. Release 2007 120 3 186 194 10.1016/j.jconrel.2007.05.009 17582643
    [Google Scholar]
  116. Doijad R.C. Manvi F.V. Malleswara Rao V. Alase P. Sustained ophthalmic delivery of gatifloxacin from in situ gelling system. Int. J. Pharm. 2006 68 6 814
    [Google Scholar]
  117. Lin H.R. Sung K.C. Vong W.J. In situ gelling of alginate/pluronic solutions for ophthalmic delivery of pilocarpine. Biomacromolecules 2004 5 6 2358 2365 10.1021/bm0496965 15530052
    [Google Scholar]
  118. Wu H. Liu Z. Peng J. Li L. Li N. Li J. Pan H. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int. J. Pharm. 2011 410 1-2 31 40 10.1016/j.ijpharm.2011.03.007 21397671
    [Google Scholar]
  119. Alsaidan O.A. Zafar A. Yasir M. Alzarea S.I. Alqinyah M. Khalid M. Develop- ment of ciprofloxacin-loaded bilosomes in-situ gel for ocular delivery: Optimization, in-vitro characterization, ex-vivo permeation, and antimi- crobial study. Gels 2022 8 11 687 10.3390/gels8110687 36354595
    [Google Scholar]
  120. Salunke S.R. Patil S.B. Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration. Int. J. Biol. Macromol. 2016 87 41 47 10.1016/j.ijbiomac.2016.02.044 26899173
    [Google Scholar]
  121. Elmowafy E. Cespi M. Bonacucina G. Soliman M.E. In situ composite ion-triggered gellan gum gel incorporating amino methacrylate copolymer microparticles: A therapeutic modality for buccal applicability. Pharm. Dev. Technol. 2019 24 10 1258 1271 10.1080/10837450.2019.1659314 31437077
    [Google Scholar]
  122. Zhu L. Ao J. Li P. A novel in situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: in vitro and in vivo evaluation. Drug Des. Devel. Ther. 2015 9 3943 3949 26251573
    [Google Scholar]
  123. Bhalerao H. Koteshwara K.B. Chandran S. Brinzolamide dimethyl sulfox- ide in situ gelling ophthalmic solution: formulation optimisation and in vitro and in vivo evaluation. AAPS PharmSciTech 2020 21 2 69 10.1208/s12249‑019‑1555‑0 31950311
    [Google Scholar]
  124. Liu H. Liu J. Qi C. Fang Y. Zhang L. Zhuo R. Jiang X. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater. 2016 35 228 237 10.1016/j.actbio.2016.02.028 26911882
    [Google Scholar]
  125. Al Khateb K. Ozhmukhametova E.K. Mussin M.N. Seilkhanov S.K. Rakhypbekov T.K. Lau W.M. Khutoryanskiy V.V. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int. J. Pharm. 2016 502 1-2 70 79 10.1016/j.ijpharm.2016.02.027 26899977
    [Google Scholar]
  126. Pandurangan D. Bodagala P. Palanirajan V. Govindaraj S. Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel. Int. J. Pharm. Investig. 2016 6 1 56 62 10.4103/2230‑973X.176488 27014620
    [Google Scholar]
  127. Badran M.M. Alsubaie A. Salem Bekhit M.M. Alomrani A.H. Almomen A. Ibrahim M.A. Alshora D.H. Bioadhesive hybrid system of niosomes and pH sensitive in situ gel for itraconazole ocular delivery: Dual approach for efficient treatment of fungal infections. Saudi Pharm. J. 2024 32 12 102208 10.1016/j.jsps.2024.102208 39697473
    [Google Scholar]
  128. Dey S. Ghosh B. Mukherjee K. Giri T.K. Development and evaluation of locust bean gum based in situ gel for ocular delivery of ofloxacin for treatment of bacterial keratitis. Int. J. Biol. Macromol. 2024 281 Pt 2 136374 10.1016/j.ijbiomac.2024.136374 39383900
    [Google Scholar]
  129. Chen Z. Wang A. Qin Y. Chen X. Feng X. He G. Zhu X. Xiao Y. Yu X. Zhong T. Zhang K. Preparation of a thermosensitive and antibacterial in situ gel using poloxamer-quaternized chitosan for sustained ocular delivery of Levofloxacin hydrochloride. Int. J. Biol. Macromol. 2024 283 Pt 1 137479 10.1016/j.ijbiomac.2024.137479 39537073
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031336060250214043138
Loading
/content/journals/ddl/10.2174/0122103031336060250214043138
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test