Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Background

Low oral permeability and low aqueous solubility are considered significant obstacles in achieving systemic therapeutic concentration to show optimum pharmacological response. Pharmaceutical scientists endeavored to overcome the above-stated problem after utilizing various approaches like salt formation, pro-drugs, co-solvency, complexation, solubilization, pH adjustment, sold dispersion, hydrotrophy, and nanotechnology-based techniques.

Objectives

Among these approaches, nanotechnology-based drug carrier systems have been investigated to address the challenges of the drugs exhibiting poor oral absorption. Essentially, these systems have the potential to overcome the limitations associated with the oral route of drug administration. Among various nano-technological tools, nanoemulsion plays an important role in the bioavailability enhancement of biopharmaceutical classification system Class II, and Class IV drugs, in general and, Class III, in particular.

Methods

A nanoemulsion is a colloidal system with a size in nanometers, an increased fraction of the dispersed phase, and intensified transparency. Either water is dispersed in oil (w/o type) or oil is dispersed in water (o/w type), and it has a longer shelf life.

Results

Nanoemulsion is being utilized as an important drug carrier for bioavailability enhancement; however, it poses some challenges, such as clinical translation, large-scale manufacturing, and regulatory guidelines.

Conclusion

The current review aims to compile and discuss the problems faced in the delivery of drugs exhibiting poor oral absorption, challenges faced in oral drug delivery, oral absorption enhancement techniques, mechanism of oral uptake using nanoemulsion, various modifications of nanoemulsion, clinical status, large-scale manufacturing, regulatory status, and new prospects in the future.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031340010250116180142
2025-01-24
2025-12-25
Loading full text...

Full text loading...

References

  1. AlyamiH. DahmashE. AlyamiF. DahmashD. HuynhC. TerryD. MohammedA.R. Dosage form preference consultation study in children and young adults: Paving the way for patient-centred and patient-informed dosage form development.Eur. J. Hosp. Pharm. Sci. Pract.201724633233710.1136/ejhpharm‑2016‑00102331156967
    [Google Scholar]
  2. AliH. Prasad VermaP.R. DubeyS.K. VenkatesanJ. SeoY. KimS.K. SinghS.K. in vitroin vivo and pharmacokinetic evaluation of solid lipid nanoparticles of furosemide using Gastroplus™.RSC Advances2017753333143332610.1039/C7RA04038E
    [Google Scholar]
  3. HeX. Integration of physical, chemical, mechanical, and biopharmaceutical properties in solid oral dosage form development.Developing Solid Oral Dosage Forms.Elsevier200940744110.1016/B978‑0‑444‑53242‑8.00018‑7
    [Google Scholar]
  4. DahanA. MillerJ.M. AmidonG.L. Prediction of solubility and permeability class membership: Provisional BCS classification of the world’s top oral drugs.AAPS J.200911474074610.1208/s12248‑009‑9144‑x19876745
    [Google Scholar]
  5. LennernäsH. AbrahamssonB. The use of biopharmaceutic classification of drugs in drug discovery and development: Current status and future extension.J. Pharm. Pharmacol.200557327328510.1211/002235705526315807982
    [Google Scholar]
  6. KawabataY. WadaK. NakataniM. YamadaS. OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications.Int. J. Pharm.2011420111010.1016/j.ijpharm.2011.08.03221884771
    [Google Scholar]
  7. DahanA. HoffmanA. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.J. Control. Release2008129111010.1016/j.jconrel.2008.03.02118499294
    [Google Scholar]
  8. KabalnovA. Thermodynamic and theoretical aspects of emulsions and their stability.Curr. Opin. Colloid Interface Sci.19983327027510.1016/S1359‑0294(98)80071‑X
    [Google Scholar]
  9. SutradharK.B. AminM.L. Nanoemulsions: Increasing possibilities in drug delivery.Eur. J. Nanomed.20135210.1515/ejnm‑2013‑0001
    [Google Scholar]
  10. Neslihan GursoyR. BenitaS. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs.Biomed. Pharmacother.200458317318210.1016/j.biopha.2004.02.00115082340
    [Google Scholar]
  11. AmidonG.L. LennernäsH. ShahV.P. CrisonJ.R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability.Pharm. Res.199512341342010.1023/A:10162128042887617530
    [Google Scholar]
  12. DateA.A. DesaiN. DixitR. NagarsenkerM. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances.Nanomedicine20105101595161610.2217/nnm.10.12621143036
    [Google Scholar]
  13. MadyO.Y. OsmanM.A. SarhanN.I. ShatlaA.A. HaggagY.A. Bioavailability enhancement of acyclovir by honey: Analytical and histological evidence.J. Drug Deliv. Sci. Technol.20238010415510.1016/j.jddst.2023.104155
    [Google Scholar]
  14. ArnalJ. Gonzalez-AlvarezI. BermejoM. AmidonG.L. JungingerH.E. KoppS. MidhaK.K. ShahV.P. StavchanskyS. DressmanJ.B. BarendsD.M. Biowaiver monographs for immediate release solid oral dosage forms: Aciclovir.J. Pharm. Sci.200897125061507310.1002/jps.2139218425814
    [Google Scholar]
  15. PatelJ. KevinG. PatelA. RavalM. ShethN. Design and development of a self-nanoemulsifying drug delivery system for telmisartan for oral drug delivery.Int. J. Pharm. Investig.20111211211810.4103/2230‑973X.8243123071930
    [Google Scholar]
  16. EnsignL.M. ConeR. HanesJ. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers.Adv. Drug Deliv. Rev.201264655757010.1016/j.addr.2011.12.00922212900
    [Google Scholar]
  17. CraterJ.S. CarrierR.L. Barrier properties of gastrointestinal mucus to nanoparticle transport.Macromol. Biosci.201010121473148310.1002/mabi.20100013720857389
    [Google Scholar]
  18. SakloetsakunD. DünnhauptS. BarthelmesJ. PereraG. Bernkop-SchnürchA. Combining two technologies: Multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration.Int. J. Biol. Macromol.20136136337210.1016/j.ijbiomac.2013.08.00223933302
    [Google Scholar]
  19. BarthelmesJ. DünnhauptS. HombachJ. Bernkop-SchnürchA. Thiomer nanoparticles: Stabilization via covalent cross-linking.Drug Deliv.201118861361910.3109/10717544.2011.62198622111974
    [Google Scholar]
  20. MudieD.M. AmidonG.L. AmidonG.E. Physiological parameters for oral delivery and in vitro testing.Mol. Pharm.2010751388140510.1021/mp100149j20822152
    [Google Scholar]
  21. AlqahtaniM.S. KaziM. AlsenaidyM.A. AhmadM.Z. Advances in oral drug delivery.Front. Pharmacol.20211261841110.3389/fphar.2021.61841133679401
    [Google Scholar]
  22. ZhuL. LuL. WangS. WuJ. ShiJ. YanT. XieC. LiQ. HuM. LiuZ. Oral Absorption Basics.Developing Solid Oral Dosage Forms.Elsevier201729732910.1016/B978‑0‑12‑802447‑8.00011‑X
    [Google Scholar]
  23. VasirJ.K. TambwekarK. GargS. Bioadhesive microspheres as a controlled drug delivery system.Int. J. Pharm.20032551-2133210.1016/S0378‑5173(03)00087‑512672598
    [Google Scholar]
  24. WangD. JiangQ. DongZ. MengT. HuF. WangJ. YuanH. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway.Adv. Drug Deliv. Rev.202320311513010.1016/j.addr.2023.11513037913890
    [Google Scholar]
  25. FallingborgJ. Intraluminal pH of the human gastrointestinal tract.Dan. Med. Bull.199946318319610421978
    [Google Scholar]
  26. GoldschmiedtM. BarnettC.C. SchwarzB.E. KarnesW.E. RedfernJ.S. FeldmanM. Effect of age on gastric acid secretion and serum gastrin concentrations in healthy men and women.Gastroenterology1991101497799010.1016/0016‑5085(91)90724‑Y1889722
    [Google Scholar]
  27. ChenJ. BlevinsW.E. ParkH. ParkK. Gastric retention properties of superporous hydrogel composites.J. Control. Release2000641-3395110.1016/S0168‑3659(99)00139‑X10640644
    [Google Scholar]
  28. DavisJ.L. Pharmacologic principles.Equine Internal Medicine.Elsevier20187913710.1016/B978‑0‑323‑44329‑6.00002‑4
    [Google Scholar]
  29. BakerJ.K. McChesneyJ.D. ChiH.T. Decomposition of arteether in simulated stomach acid yielding compounds retaining antimalarial activity.Pharm. Res.199310566266610.1023/A:10189433291098321829
    [Google Scholar]
  30. RaffinR.P. ColoméL.M. GuterresS.S. PohlmannA.R. Enteric controlled-release pantoprazole-loaded microparticles prepared by using Eudragit S100 and poly(epsilon-caprolactone) blend.Pharm. Dev. Technol.200712546347110.1080/1083745070155693317963146
    [Google Scholar]
  31. DressmanJ.B. ReppasC. Oral Drug Absorption.CRC Press201610.3109/9781420077346
    [Google Scholar]
  32. SaidH.M. MohammedZ.M. Intestinal absorption of water-soluble vitamins: An update.Curr. Opin. Gastroenterol.200622214014610.1097/01.mog.0000203870.22706.5216462170
    [Google Scholar]
  33. RougeN. BuriP. DoelkerE. Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery.Int. J. Pharm.19961361-211713910.1016/0378‑5173(96)85200‑8
    [Google Scholar]
  34. VinchurkarK. SainyJ. KhanM.A. ManeS. MishraD.K. DixitP. Features and facts of a gastroretentive drug delivery system-A review.Turk. J. Pharm. Sci.202219447648710.4274/tjps.galenos.2021.4495936047602
    [Google Scholar]
  35. YuL.X. AmidonG.L. PolliJ.E. ZhaoH. MehtaM.U. ConnerD.P. ShahV.P. LeskoL.J. ChenM.L. LeeV.H.L. HussainA.S. Biopharmaceutics classification system: The scientific basis for biowaiver extensions.Pharm. Res.200219792192510.1023/A:101647360163312180542
    [Google Scholar]
  36. LennernäsH. Intestinal permeability and its relevance for absorption and elimination.Xenobiotica20073710-111015105110.1080/0049825070170481917968735
    [Google Scholar]
  37. LipinskiC.A. Drug-like properties and the causes of poor solubility and poor permeability.J. Pharmacol. Toxicol. Methods200044123524910.1016/S1056‑8719(00)00107‑611274893
    [Google Scholar]
  38. AvdeefA. Physicochemical profiling (solubility, permeability and charge state).Curr. Top. Med. Chem.20011427735110.2174/156802601339510011899112
    [Google Scholar]
  39. HayashiM. TomitaM. AwazuS. Transcellular and paracellular contribution to transport processes in the colorectal route.Adv. Drug Deliv. Rev.199728219120410.1016/S0169‑409X(97)00072‑0
    [Google Scholar]
  40. DiMarcoR.L. HuntD.R. DewiR.E. HeilshornS.C. Improvement of paracellular transport in the Caco-2 drug screening model using protein-engineered substrates.Biomaterials201712915216210.1016/j.biomaterials.2017.03.02328342321
    [Google Scholar]
  41. CustodioJ.M. WuC.Y. BenetL.Z. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption.Adv. Drug Deliv. Rev.200860671773310.1016/j.addr.2007.08.04318199522
    [Google Scholar]
  42. OmachiF. KanekoM. IijimaR. WatanabeM. ItagakiF. Relationship between the effects of food on the pharmacokinetics of oral antineoplastic drugs and their physicochemical properties.J. Pharm. Health Care Sci.2019512610.1186/s40780‑019‑0155‑131827876
    [Google Scholar]
  43. ChengL. WongH. Food effects on oral drug absorption: Application of physiologically-based pharmacokinetic modeling as a predictive tool.Pharmaceutics202012767210.3390/pharmaceutics1207067232708881
    [Google Scholar]
  44. AmeerB. WeintraubR.A. Drug interactions with grapefruit juice.Clin. Pharmacokinet.199733210312110.2165/00003088‑199733020‑000039260034
    [Google Scholar]
  45. GuoL.Q. FukudaK. OhtaT. YamazoeY. Role of furanocoumarin derivatives on grapefruit juice-mediated inhibition of human CYP3A activity.Drug Metab. Dispos.200028776677110859150
    [Google Scholar]
  46. ZisakiA. MiskovicL. HatzimanikatisV. Antihypertensive drugs metabolism: An update to pharmacokinetic profiles and computational approaches.Curr. Pharm. Des.201421680682210.2174/138161282066614102415111925341854
    [Google Scholar]
  47. AhmadM. KhanS. ShahS.M.H. ZahoorM. HussainZ. HussainH. ShahS.W.A. UllahR. AlotaibiA. Formulation and optimization of repaglinide nanoparticles using microfluidics for enhanced bioavailability and management of diabetes.Biomedicines2023114106410.3390/biomedicines1104106437189682
    [Google Scholar]
  48. GavhaneY.N. YadavA.V. Loss of orally administered drugs in GI tract.Saudi Pharm. J.201220433134410.1016/j.jsps.2012.03.00523960808
    [Google Scholar]
  49. BartheL. WoodleyJ. HouinG. Gastrointestinal absorption of drugs: Methods and studies.Fundam. Clin. Pharmacol.199913215416810.1111/j.1472‑8206.1999.tb00334.x10226759
    [Google Scholar]
  50. Gordon GibsonG. P.S. Introduction to Drug Metabolism.3rd edCheltenham, UKNelson Thornes Publishers2001
    [Google Scholar]
  51. ThummelK. KunzeK.L. ThummelK.E. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction.Adv. Drug Deliv. Rev.1997272-39912710.1016/S0169‑409X(97)00039‑210837554
    [Google Scholar]
  52. ShugartsS. BenetL.Z. The role of transporters in the pharmacokinetics of orally administered drugs.Pharm. Res.20092692039205410.1007/s11095‑009‑9924‑019568696
    [Google Scholar]
  53. GiacominiK.M. HuangS.M. TweedieD.J. BenetL.Z. BrouwerK.L.R. ChuX. DahlinA. EversR. FischerV. HillgrenK.M. HoffmasterK.A. IshikawaT. KepplerD. KimR.B. LeeC.A. NiemiM. PolliJ.W. SugiyamaY. SwaanP.W. WareJ.A. WrightS.H. Wah YeeS. Zamek-GliszczynskiM.J. ZhangL. Membrane transporters in drug development.Nat. Rev. Drug Discov.20109321523610.1038/nrd302820190787
    [Google Scholar]
  54. TiwariS.B. AmijiM.M. Improved oral delivery of paclitaxel following administration in nanoemulsion formulations.J. Nanosci. Nanotechnol.2006693215322110.1166/jnn.2006.44017048539
    [Google Scholar]
  55. HughesJ. CroweA. Inhibition of P-glycoprotein-mediated efflux of digoxin and its metabolites by macrolide antibiotics.J. Pharmacol. Sci.2010113431532410.1254/jphs.10109FP20724802
    [Google Scholar]
  56. LeeH.J. KooA.N. KwonI.K. LeeS.C. Polymer therapeutics for treating cancer.Biomaterials for Cancer Therapeutics.Elsevier201311313310.1533/9780857096760.2.113
    [Google Scholar]
  57. ChoiC.H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal.Cancer Cell Int.2005513010.1186/1475‑2867‑5‑3016202168
    [Google Scholar]
  58. SoaresB. SilvestreA.J.D. Rodrigues PintoP.C. FreireC.S.R. CoutinhoJ.A.P. Hydrotropy and cosolvency in lignin solubilization with deep eutectic solvents.ACS Sustainable Chem. Eng.201971410.1021/acssuschemeng.9b02109
    [Google Scholar]
  59. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: Importance and enhancement techniques.ISRN Pharm.2012201211010.5402/2012/19572722830056
    [Google Scholar]
  60. KumarS. RandhawaJ.K. Preparation and characterization of Paliperidone loaded solid lipid nanoparticles.Colloids Surf. B Biointerfaces201310256256810.1016/j.colsurfb.2012.08.05223104026
    [Google Scholar]
  61. KumarP. MishraB. Colon targeted drug delivery systems-An overview.Curr. Drug Deliv.20085318619810.2174/15672010878491171218673262
    [Google Scholar]
  62. AungstB.J. Absorption enhancers: Applications and advances.AAPS J.2012141101810.1208/s12248‑011‑9307‑422105442
    [Google Scholar]
  63. MisakaS. MüllerF. FrommM.F. Clinical relevance of drug efflux pumps in the gut.Curr. Opin. Pharmacol.201313684785210.1016/j.coph.2013.08.01024028838
    [Google Scholar]
  64. FasinuP. PillayV. NdesendoV.M.K. du ToitL.C. ChoonaraY.E. Diverse approaches for the enhancement of oral drug bioavailability.Biopharm. Drug Dispos.201132418520910.1002/bdd.75021480294
    [Google Scholar]
  65. RugoH.S. UmanzorG.A. BarriosF.J. VasalloR.H. ChivalanM.A. BejaranoS. RamírezJ.R. FeinL. KowalyszynR.D. KramerE.D. WangH. KwanM.F.R. CutlerD.L. Open-label, randomized, multicenter, phase iii study comparing oral paclitaxel plus encequidar versus intravenous paclitaxel in patients with metastatic breast cancer.J. Clin. Oncol.2023411657410.1200/JCO.21.0295335858154
    [Google Scholar]
  66. KwakJ.O. LeeS.H. LeeG.S. KimM.S. AhnY.G. LeeJ.H. KimS.W. KimK.H. LeeM.G. Selective inhibition of MDR1 (ABCB1) by HM30181 increases oral bioavailability and therapeutic efficacy of paclitaxel.Eur. J. Pharmacol.20106271-3929810.1016/j.ejphar.2009.11.00819903471
    [Google Scholar]
  67. ThankiK. GangwalR.P. SangamwarA.T. JainS. Oral delivery of anticancer drugs: Challenges and opportunities.J. Control. Release20131701154010.1016/j.jconrel.2013.04.02023648832
    [Google Scholar]
  68. ChoonaraB.F. ChoonaraY.E. KumarP. BijukumarD. du ToitL.C. PillayV. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules.Biotechnol. Adv.20143271269128210.1016/j.biotechadv.2014.07.00625099657
    [Google Scholar]
  69. AnilkumarP. BadarinathA.V. NaveenN. PrasadK. RaviB. ReddyS. HyndhaviM. NiroshaM. A rationalized description on study of intestinal barrier, drug permeability and permeation enhancers.J. Glob. Trends Pharm. Sci.20112431449
    [Google Scholar]
  70. NainwalN. SinghR. JawlaS. SaharanV.A. The solubility-permeability interplay for solubility-enabling oral formulations.Curr. Drug Targets201920141434144610.2174/138945012066619071711452131333138
    [Google Scholar]
  71. ChenH. KhemtongC. YangX. ChangX. GaoJ. Nanonization strategies for poorly water-soluble drugs.Drug Discov. Today2011167-835436010.1016/j.drudis.2010.02.00920206289
    [Google Scholar]
  72. DhaddeS.B. PatilJ.S. ChandakavatheB.N. ThippeswamyB.S. KavatekarM.G. Relevance of nanotechnology in solving oral drug delivery challenges: A perspective review.Crit. Rev. Ther. Drug Carrier Syst.202037540743410.1615/CritRevTherDrugCarrierSyst.202003258333389846
    [Google Scholar]
  73. OchubiojoM. ChinwudeI. IbangaE. IfianyiS. Nanotechnology in Drug Delivery.Recent Advances in Novel Drug Carrier Systems.InTech201210.5772/51384
    [Google Scholar]
  74. SalawiA. Self-emulsifying drug delivery systems: A novel approach to deliver drugs.Drug Deliv.20222911811182310.1080/10717544.2022.208372435666090
    [Google Scholar]
  75. ShegokarR. MüllerR.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives.Int. J. Pharm.20103991-212913910.1016/j.ijpharm.2010.07.04420674732
    [Google Scholar]
  76. PoutonC.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems.Eur. J. Pharm. Sci.200011Suppl. 2S93S9810.1016/S0928‑0987(00)00167‑611033431
    [Google Scholar]
  77. KangB.K. LeeJ.S. ChonS.K. JeongS.Y. YukS.H. KhangG. LeeH.B. ChoS.H. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs.Int. J. Pharm.20042741-2657310.1016/j.ijpharm.2003.12.02815072783
    [Google Scholar]
  78. ElgartA. CherniakovI. AldoubyY. DombA.J. HoffmanA. Improved oral bioavailability of BCS class 2 compounds by self nano-emulsifying drug delivery systems (SNEDDS): The underlying mechanisms for amiodarone and talinolol.Pharm. Res.201330123029304410.1007/s11095‑013‑1063‑y23686373
    [Google Scholar]
  79. KaziM. Al-SwairiM. AhmadA. RaishM. AlanaziF.K. BadranM.M. KhanA.A. AlanaziA.M. HussainM.D. Evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for poorly water-soluble talinolol: Preparation, in vitro and in vivo assessment.Front. Pharmacol.20191045910.3389/fphar.2019.0045931118895
    [Google Scholar]
  80. SolansC. IzquierdoP. NollaJ. AzemarN. Garcia-CelmaM.J. Nano-emulsions.Curr. Opin. Colloid Interface Sci.2005103-410211010.1016/j.cocis.2005.06.004
    [Google Scholar]
  81. SafayaM. RotliwalaY.C. Nanoemulsions: A review on low energy formulation methods, characterization, applications and optimization technique.Mater. Today Proc.20202745445910.1016/j.matpr.2019.11.267
    [Google Scholar]
  82. SinghY. MeherJ.G. RavalK. KhanF.A. ChaurasiaM. JainN.K. ChourasiaM.K. Nanoemulsion: Concepts, development and applications in drug delivery.J. Control. Release2017252284910.1016/j.jconrel.2017.03.00828279798
    [Google Scholar]
  83. YukuyamaM.N. OselieroP.L.F. KatoE.T.M. LobënbergR. de OliveiraC.L.P. de AraujoG.L.B. Bou-ChacraN.A. High internal vegetable oil nanoemulsion: D-phase emulsification as a unique low energy process.Colloids Surf. A Physicochem. Eng. Asp.201855429630510.1016/j.colsurfa.2018.06.023
    [Google Scholar]
  84. WoosterT.J. GoldingM. SanguansriP. Impact of oil type on nanoemulsion formation and Ostwald ripening stability.Langmuir20082422127581276510.1021/la801685v18850732
    [Google Scholar]
  85. VenishettyV.K. ChedeR. KomuravelliR. AdepuL. SistlaR. DiwanP.V. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: A novel strategy to avoid intraduodenal administration.Colloids Surf. B Biointerfaces2012951910.1016/j.colsurfb.2012.01.00122463845
    [Google Scholar]
  86. TranP. ParkJ.S. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water- soluble drugs.J. Pharm. Investig.202151443946310.1007/s40005‑021‑00516‑0
    [Google Scholar]
  87. ČerpnjakK. ZvonarA. GašperlinM. VrečerF. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs.Acta Pharm.201363442744510.2478/acph‑2013‑004024451070
    [Google Scholar]
  88. HintzenF. PereraG. HauptsteinS. MüllerC. LaffleurF. Bernkop-SchnürchA. in vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin.Int. J. Pharm.20144721-2202610.1016/j.ijpharm.2014.05.04724879935
    [Google Scholar]
  89. ChristiansenA. BackensfeldT. WeitschiesW. Effects of non-ionic surfactants on in vitro triglyceride digestion and their susceptibility to digestion by pancreatic enzymes.Eur. J. Pharm. Sci.201041237638210.1016/j.ejps.2010.07.00520633646
    [Google Scholar]
  90. PorterC.J.H. KaukonenA.M. BoydB.J. EdwardsG.A. CharmanW.N. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation.Pharm. Res.20042181405141210.1023/B:PHAM.0000036914.22132.cc15359575
    [Google Scholar]
  91. HeshmatiN. ChengX. EisenbrandG. FrickerG. Enhancement of oral bioavailability of E804 by self-nanoemulsifying drug delivery system (SNEDDS) in rats.J. Pharm. Sci.2013102103792379910.1002/jps.2369623934779
    [Google Scholar]
  92. ConstantinidesP.P. ScalartJ.P. LancasterC. MarcelloJ. MarksG. EllensH. SmithP.L. Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides.Pharm. Res.199411101385139010.1023/A:10189274028757855039
    [Google Scholar]
  93. BalakumarK. RaghavanC.V. selvanN.T. prasadR.H. AbduS. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation.Colloids Surf. B Biointerfaces201311233734310.1016/j.colsurfb.2013.08.02524012665
    [Google Scholar]
  94. KambleR.N. MehtaP.P. KumarA. Efavirenz self-nano-emulsifying drug delivery system: in vitro and in vivo evaluation.AAPS PharmSciTech20161751240124710.1208/s12249‑015‑0446‑226573159
    [Google Scholar]
  95. SharmaP. SinghS.K. PandeyN.K. RajeshS.Y. BawaP. KumarB. GulatiM. SinghS. VermaS. YadavA.K. WadhwaS. JainS.K. GowthamarajanK. MalikA.H. GuptaS. KhursheedR. Impact of solid carriers and spray drying on pre/post-compression properties, dissolution rate and bioavailability of solid self-nanoemulsifying drug delivery system loaded with simvastatin.Powder Technol.201833883684610.1016/j.powtec.2018.07.092
    [Google Scholar]
  96. AnwerM.K. IqbalM. AldawsariM.F. AlalaiweA. AhmedM.M. MuharramM.M. EzzeldinE. MahmoudM.A. ImamF. AliR. Improved antimicrobial activity and oral bioavailability of delafloxacin by self-nanoemulsifying drug delivery system (SNEDDS).J. Drug Deliv. Sci. Technol.20216410257210.1016/j.jddst.2021.102572
    [Google Scholar]
  97. ShakeelF. HaqN. Al-DhfyanA. AlanaziF.K. AlsarraI.A. Double w/o/w nanoemulsion of 5-fluorouracil for self-nanoemulsifying drug delivery system.J. Mol. Liq.201420018319010.1016/j.molliq.2014.10.013
    [Google Scholar]
  98. QiX. WangL. ZhuJ. HuZ. ZhangJ. Self-double-emulsifying drug delivery system (SDEDDS): A new way for oral delivery of drugs with high solubility and low permeability.Int. J. Pharm.20114091-224525110.1016/j.ijpharm.2011.02.04721356300
    [Google Scholar]
  99. SchmiedF.P. BernhardtA. KleinS. Preparation of solid self-nanoemulsifying drug delivery systems (S-SNEDDS) by co-extrusion of liquid snedds and polymeric carriers—A new and promising formulation approach to improve the solubility of poorly water-soluble drugs.Pharmaceuticals2022159113510.3390/ph1509113536145356
    [Google Scholar]
  100. VithaniK. HawleyA. JanninV. PoutonC. BoydB.J. Inclusion of digestible surfactants in solid SMEDDS formulation removes lag time and influences the formation of structured particles during digestion.AAPS J.201719375476410.1208/s12248‑016‑0036‑628116678
    [Google Scholar]
  101. SilvaL.A.D. AlmeidaS.L. AlonsoE.C.P. RochaP.B.R. MartinsF.T. FreitasL.A.P. TaveiraS.F. Cunha-FilhoM.S.S. MarretoR.N. Preparation of a solid self-microemulsifying drug delivery system by hot-melt extrusion.Int. J. Pharm.20185411-211010.1016/j.ijpharm.2018.02.02029458210
    [Google Scholar]
  102. KimD.S. YangE.S. YongC.S. YounY.S. OhK.T. LiD.X. KimJ.O. JinS.G. ChoiH.G. Effect of inorganic mesoporous carriers on 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol-loaded solid self-emulsifying drug delivery system: Physicochemical characterization and bioavailability in rats.Colloids Surf. B Biointerfaces201716033133610.1016/j.colsurfb.2017.09.04128957774
    [Google Scholar]
  103. Priyanka Tomar SajiJ.M. PatelD. ThakkarH. Formulation and evaluation of solid-self micro emulsifying drug delivery system (S-SMEDDS) of agomelatine.Colloid J.202385227628610.1134/S1061933X22600014
    [Google Scholar]
  104. LondheV. BakshiP. Improved oral bioavailability of febuxostat by liquid self-micro emulsifying drug delivery system in capsule shells.Ann. Pharm. Fr.202381583384210.1016/j.pharma.2023.05.00337178907
    [Google Scholar]
  105. MuraP. ValleriM. CirriM. MenniniN. New solid self-microemulsifying systems to enhance dissolution rate of poorly water soluble drugs.Pharm. Dev. Technol.201217327728410.3109/10837450.2010.53582521108583
    [Google Scholar]
  106. BajwaN. NaryalS. MahalS. SinghP.A. BaldiA. Quality-by-design strategy for the development of arteether loaded solid self-micro emulsifying drug delivery systems.J. Drug Deliv. Sci. Technol.20227710370710.1016/j.jddst.2022.103707
    [Google Scholar]
  107. GauthierG. CapronI. Pickering nanoemulsions: An overview of manufacturing processes, formulations, and applications.JCIS Open2021410003610.1016/j.jciso.2021.100036
    [Google Scholar]
  108. HunterS.J. ArmesS.P. Long-term stability of pickering nanoemulsions prepared using diblock copolymer nanoparticles: Effect of nanoparticle core crosslinking, oil type, and the role played by excess copolymers.Langmuir202238268021802910.1021/acs.langmuir.2c0082135737742
    [Google Scholar]
  109. DiengS.M. AntonN. BouriatP. ThiouneO. SyP.M. MassaddeqN. EnharrarS. DiarraM. VandammeT. Pickering nano-emulsions stabilized by solid lipid nanoparticles as a temperature sensitive drug delivery system.Soft Matter201915408164817410.1039/C9SM01283D31593197
    [Google Scholar]
  110. WilsonR.J. LiY. YangG. ZhaoC.X. Nanoemulsions for drug delivery.Particuology202264859710.1016/j.partic.2021.05.009
    [Google Scholar]
  111. MounkesL.C. ZhongW. Cipres-PalacinG. HeathT.D. DebsR.J. Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo.J. Biol. Chem.199827340261642617010.1074/jbc.273.40.261649748298
    [Google Scholar]
  112. BeltingM. Heparan sulfate proteoglycan as a plasma membrane carrier.Trends Biochem. Sci.200328314515110.1016/S0968‑0004(03)00031‑812633994
    [Google Scholar]
  113. CampbellR.B. FukumuraD. BrownE.B. MazzolaL.M. IzumiY. JainR.K. TorchilinV.P. MunnL.L. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors.Cancer Res.200262236831683612460895
    [Google Scholar]
  114. QuongD. NeufeldR.J. DNA protection from extracapsular nucleases, within chitosan- or poly-L-lysine-coated alginate beads.Biotechnol. Bioeng.199860112413410.1002/(SICI)1097‑0290(19981005)60:1<124::AID‑BIT14>3.0.CO;2‑Q10099413
    [Google Scholar]
  115. SmithJ. ZhangY. NivenR. Toward development of a non-viral gene therapeutic.Adv. Drug Deliv. Rev.1997262-313515010.1016/S0169‑409X(97)00031‑810837539
    [Google Scholar]
  116. JayakumarR. ChennazhiK.P. MuzzarelliR.A.A. TamuraH. NairS.V. SelvamuruganN. Chitosan conjugated DNA nanoparticles in gene therapy.Carbohydr. Polym.20107911810.1016/j.carbpol.2009.08.026
    [Google Scholar]
  117. ShahL.K. AmijiM.M. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS.Pharm. Res.200623112638264510.1007/s11095‑006‑9101‑716969696
    [Google Scholar]
  118. KhachaneP.V. JainA.S. DhawanV.V. JoshiG.V. DateA.A. MulherkarR. NagarsenkerM.S. Cationic nanoemulsions as potential carriers for intracellular delivery.Saudi Pharm. J.201523218819410.1016/j.jsps.2014.07.00725972740
    [Google Scholar]
  119. LiuC.H. YuS.Y. Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery.Colloids Surf. B Biointerfaces201079250951510.1016/j.colsurfb.2010.05.02620541375
    [Google Scholar]
  120. CapronI. RojasO.J. BordesR. Behavior of nanocelluloses at interfaces.Curr. Opin. Colloid Interface Sci.201729839510.1016/j.cocis.2017.04.001
    [Google Scholar]
  121. ChangF. VisC.M. CiptonugrohoW. BruijnincxP.C.A. Recent developments in catalysis with pickering emulsions.Green Chem.20212372575259410.1039/D0GC03604H
    [Google Scholar]
  122. TayebH.H. PiantavignaS. HowardC.B. NouwensA. MahlerS.M. MiddelbergA.P.J. HeL. HoltS.A. SainsburyF. Insights into the interfacial structure–function of poly(ethylene glycol)-decorated peptide-stabilised nanoscale emulsions.Soft Matter201713437953796110.1039/C7SM01614J29038804
    [Google Scholar]
  123. AboalnajaK.O. YaghmoorS. KumosaniT.A. McClementsD.J. Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems.Expert Opin. Drug Deliv.20161391327133610.1517/17425247.2016.116215426984045
    [Google Scholar]
  124. BaiL. McClementsD. Extending emulsion functionality: Post-homogenization modification of droplet properties.Processes 2016421710.3390/pr4020017
    [Google Scholar]
  125. NiroC.M. MedeirosJ.A. FreitasJ.A.M. AzeredoH.M.C. Advantages and challenges of Pickering emulsions applied to bio-based films: A mini-review.J. Sci. Food Agric.202110193535354010.1002/jsfa.1102933345306
    [Google Scholar]
  126. McClementsD.J. Advances in fabrication of emulsions with enhanced functionality using structural design principles.Curr. Opin. Colloid Interface Sci.201217523524510.1016/j.cocis.2012.06.002
    [Google Scholar]
  127. EstabrookD.A. EnnisA.F. DayR.A. SlettenE.M. Controlling nanoemulsion surface chemistry with poly(2-oxazoline) amphiphiles.Chem. Sci.201910143994400310.1039/C8SC05735D31015940
    [Google Scholar]
  128. ElzayatA. Adam-CerveraI. Álvarez-BermúdezO. Muñoz-EspíR. Nanoemulsions for synthesis of biomedical nanocarriers.Colloids Surf. B Biointerfaces202120311176410.1016/j.colsurfb.2021.11176433892282
    [Google Scholar]
  129. AttiaM.F. DiengS.M. CollotM. KlymchenkoA.S. BouillotC. SerraC.A. SchmutzM. Er-RafikM. VandammeT.F. AntonN. Functionalizing nanoemulsions with carboxylates: Impact on the biodistribution and pharmacokinetics in mice.Macromol. Biosci.2017177160047110.1002/mabi.20160047128306222
    [Google Scholar]
  130. HonmaneS.M. ChardeM.S. SalunkheS.S. ChoudhariP.B. NangareS.N. Polydopamine surface-modified nanocarriers for improved anticancer activity: Current progress and future prospects.OpenNano2022710005910.1016/j.onano.2022.100059
    [Google Scholar]
  131. MirtalebM.S. ShahrakyM.K. EkramiE. MirtalebA. Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications.J. Drug Deliv. Sci. Technol.20216110233110.1016/j.jddst.2021.102331
    [Google Scholar]
  132. PriyaS. DesaiV.M. SinghviG. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery.ACS Omega202381748610.1021/acsomega.2c0597636643539
    [Google Scholar]
  133. BhattacharjeeK. Importance of Surface Energy in Nanoemulsion.In Nanoemulsions - Properties, Fabrications and ApplicationsIntechOpen201910.5772/intechopen.84201
    [Google Scholar]
  134. KalepuS. ManthinaM. PadavalaV. Oral lipid-based drug delivery systems – An overview.Acta Pharm. Sin. B20133636137210.1016/j.apsb.2013.10.001
    [Google Scholar]
  135. CharmanW.N. PorterC.J.H. MithaniS. DressmanJ.B. Physiochemical and physiological mechanisms for the effects of food on drug absorption: The role of lipids and pH.J. Pharm. Sci.199786326928210.1021/js960085v9050793
    [Google Scholar]
  136. O’DriscollC.M. Lipid-based formulations for intestinal lymphatic delivery.Eur. J. Pharm. Sci.200215540541510.1016/S0928‑0987(02)00051‑912036717
    [Google Scholar]
  137. PorterC.J.H. TrevaskisN.L. CharmanW.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs.Nat. Rev. Drug Discov.20076323124810.1038/nrd219717330072
    [Google Scholar]
  138. HumberstoneA.J. CharmanW.N. Lipid-based vehicles for the oral delivery of poorly water soluble drugs.Adv. Drug Deliv. Rev.199725110312810.1016/S0169‑409X(96)00494‑2
    [Google Scholar]
  139. KhooS.M. EdwardsG.A. PorterC.J.H. CharmanW.N. A conscious dog model for assessing the absorption, enterocyte-based metabolism, and intestinal lymphatic transport of halofantrine.J. Pharm. Sci.200190101599160710.1002/jps.111011745718
    [Google Scholar]
  140. AliH. SinghS.K. Biological voyage of solid lipid nanoparticles: A proficient carrier in nanomedicine.Ther. Deliv.201671069170910.4155/tde‑2016‑003827790956
    [Google Scholar]
  141. KumarP. KumarP. KumarR. KumarN. An overview on lipid based formulation for oral drug delivery.Drug Invent. Today20102390395
    [Google Scholar]
  142. Erlanson-AlbertssonC. Pancreatic colipase. Structural and physiological aspects.Biochim. Biophys. Acta Lipids Lipid Metab.1992112511710.1016/0005‑2760(92)90147‑N1567900
    [Google Scholar]
  143. van den BoschH. PostemaN.M. de HaasG.H. van DeenenL.L.M. On the positional specificity of phospholipase A from pancreas.Biochim. Biophys. Acta Lipids Lipid Metab.196598365765910.1016/0005‑2760(65)90168‑25837465
    [Google Scholar]
  144. MüllerJ. KeiserM. DrozdzikM. OswaldS. Expression, regulation and function of intestinal drug transporters: An update.Biol. Chem.2017398217519210.1515/hsz‑2016‑025927611766
    [Google Scholar]
  145. TrevaskisN.L. CharmanW.N. PorterC.J.H. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update.Adv. Drug Deliv. Rev.200860670271610.1016/j.addr.2007.09.00718155316
    [Google Scholar]
  146. CaiS. YangQ. BagbyT.R. ForrestM.L. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles.Adv. Drug Deliv. Rev.20116310-1190190810.1016/j.addr.2011.05.01721712055
    [Google Scholar]
  147. ClarkM. JepsonM.A. HirstB.H. ExploitingM. Exploiting M cells for drug and vaccine delivery.Adv. Drug Deliv. Rev.2001501-28110610.1016/S0169‑409X(01)00149‑111489335
    [Google Scholar]
  148. CaliphS.M. CharmanW.N. PorterC.J.H. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats.J. Pharm. Sci.20008981073108410.1002/1520‑6017(200008)89:8<1073::AID‑JPS12>3.0.CO;2‑V10906731
    [Google Scholar]
  149. PaliwalR. RaiS. VaidyaB. KhatriK. GoyalA.K. MishraN. MehtaA. VyasS.P. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery.Nanomedicine20095218419110.1016/j.nano.2008.08.00319095502
    [Google Scholar]
  150. PorterC.J.H. CharmanW.N. in vitro assessment of oral lipid based formulations.Adv. Drug Deliv. Rev.200150Suppl. 1S127S14710.1016/S0169‑409X(01)00182‑X11576699
    [Google Scholar]
  151. ZhangZ. GaoF. JiangS. ChenL. LiuZ. YuH. LiY. Bile salts enhance the intestinal absorption of lipophilic drug loaded lipid nanocarriers: Mechanism and effect in rats.Int. J. Pharm.20134521-237438110.1016/j.ijpharm.2013.05.02123694804
    [Google Scholar]
  152. SanjulaB. ShahF.M. JavedA. AlkaA. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement.J. Drug Target.200917324925610.1080/1061186090271867219255893
    [Google Scholar]
  153. ZhangX.Q. XuX. BertrandN. PridgenE. SwamiA. FarokhzadO.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine.Adv. Drug Deliv. Rev.201264131363138410.1016/j.addr.2012.08.00522917779
    [Google Scholar]
  154. SinghN. ManshianB. JenkinsG.J.S. GriffithsS.M. WilliamsP.M. MaffeisT.G.G. WrightC.J. DoakS.H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials.Biomaterials20093023-243891391410.1016/j.biomaterials.2009.04.00919427031
    [Google Scholar]
  155. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn Rev20104811812610.4103/0973‑7847.70902
    [Google Scholar]
  156. MankeA. WangL. RojanasakulY. Mechanisms of nanoparticle-induced oxidative stress and toxicity.Biomed Res Int2013201394291610.1155/2013/942916
    [Google Scholar]
  157. KermanizadehA. BalharryD. WallinH. LoftS. MøllerP. Nanomaterial translocation-The biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs-A review.Crit Rev Toxicol2015451083787210.3109/10408444.2015.1058747
    [Google Scholar]
  158. ModoM. Kolosnjaj-tabiJ. NichollsF. LingW. WilhelmC. DebargeO. GazeauF. ClementO. Considerations for the clinical use of contrast agents for cellular MRI in regenerative medicine.Contrast Media Mol Imaging20138643945510.1002/cmmi.1547
    [Google Scholar]
  159. NoP. Withdrawal Assessment Report.201744
  160. FalknerR. JaspersN. Regulating nanotechnologies: Risk, uncertainty and the global governance gap.Glob. Environ. Polit.2012121305510.1162/GLEP_a_00096
    [Google Scholar]
  161. BuyaA.B. BeloquiA. MemvangaP.B. PréatV. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery.Pharmaceutics20201212119410.3390/pharmaceutics1212119433317067
    [Google Scholar]
  162. NakmodeD. BhavanaV. ThakorP. MadanJ. SinghP.K. SinghS.B. RosenholmJ.M. BansalK.K. MehraN.K. Fundamental aspects of lipid-based excipients in lipid-based product development.Pharmaceutics202214483110.3390/pharmaceutics1404083135456665
    [Google Scholar]
  163. ShresthaH. BalaR. AroraS. Lipid-based drug delivery systems.J. Pharm.2014201411010.1155/2014/80182026556202
    [Google Scholar]
  164. SolèI. SolansC. MaestroA. GonzálezC. GutiérrezJ.M. Study of nano-emulsion formation by dilution of microemulsions.J. Colloid Interface Sci.2012376113313910.1016/j.jcis.2012.02.06322480397
    [Google Scholar]
  165. Kumar GuptaPraveen. Pharmaceutical nanotechnology novel nanoemulsion–High energyemulsification preparation, evaluation and application.T. Ph. Res.20103117138
    [Google Scholar]
  166. AntonN. BenoitJ.P. SaulnierP. Design and production of nanoparticles formulated from nano-emulsion templates—A review.J. Control. Release2008128318519910.1016/j.jconrel.2008.02.00718374443
    [Google Scholar]
  167. CalderóG. García-CelmaM.J. SolansC. Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation.J. Colloid Interface Sci.2011353240641110.1016/j.jcis.2010.09.07320971472
    [Google Scholar]
  168. AAPS Advances in the Pharmaceutical Sciences SeriesSpringer International PublishingCham201520
    [Google Scholar]
  169. RagelleH. DanhierF. PréatV. LangerR. AndersonD.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures.Expert Opin. Drug Deliv.201714785186410.1080/17425247.2016.124418727730820
    [Google Scholar]
  170. DasS.S. SinghA. KarS. GhoshR. PalM. FatimaM. SinghN. SinghS.K. Application of QbD Framework for Development of Self-Emulsifying Drug Delivery Systems.Pharmaceutical Quality by Design.Elsevier201929735010.1016/B978‑0‑12‑815799‑2.00015‑0
    [Google Scholar]
  171. PanigrahiK.C. JenaJ. JenaG.K. PatraC.N. RaoM.E.B. QBD-based systematic development of Bosentan SNEDDS: Formulation, characterization and pharmacokinetic assessment.J. Drug Deliv. Sci. Technol.201847314210.1016/j.jddst.2018.06.021
    [Google Scholar]
  172. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.0079030065653
    [Google Scholar]
  173. TagamiT. OzekiT. Recent trends in clinical trials related to carrier-based drugs.J. Pharm. Sci.201710692219222610.1016/j.xphs.2017.02.02628259767
    [Google Scholar]
  174. BenaoudaF. JonesS.A. MartinG.P. BrownM.B. Localized epidermal drug delivery induced by supramolecular solvent structuring.Mol. Pharm.2016131657210.1021/acs.molpharmaceut.5b0049926593153
    [Google Scholar]
  175. LuanL. ChiZ. LiuC. Chinese white wax solid lipid nanoparticles as a novel nanocarrier of curcumin for inhibiting the formation of staphylococcus aureus biofilms.Nanomaterials 20199576310.3390/nano905076331109013
    [Google Scholar]
  176. GantaS. TalekarM. SinghA. ColemanT.P. AmijiM.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy.AAPS PharmSciTech201415369470810.1208/s12249‑014‑0088‑924510526
    [Google Scholar]
  177. McClementsD.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities.Soft Matter2012861719172910.1039/C2SM06903B
    [Google Scholar]
  178. ParveenR. BabootaS. AliJ. AhujaA. VasudevS.S. AhmadS. Oil based nanocarrier for improved oral delivery of silymarin: in vitro and in vivo studies.Int. J. Pharm.20114131-224525310.1016/j.ijpharm.2011.04.04121549187
    [Google Scholar]
  179. Di CostanzoA. AngelicoR. Formulation strategies for enhancing the bioavailability of silymarin: The state of the art.Molecules20192411215510.3390/molecules2411215531181687
    [Google Scholar]
  180. JózsaL. VasváriG. SinkaD. NemesD. UjhelyiZ. VecsernyésM. VáradiJ. FenyvesiF. LekliI. GyöngyösiA. BácskayI. FehérP. Enhanced antioxidant and anti-inflammatory effects of self-nano and microemulsifying drug delivery systems containing curcumin.Molecules20222719665210.3390/molecules2719665236235189
    [Google Scholar]
  181. Iurciuc-TincuC.E. CretanM.S. PurcarV. PopaM. DarabaO.M. AtanaseL.I. OchiuzL. Drug delivery system based on ph-sensitive biocompatible Poly(2-vinyl pyridine)-b-poly(ethylene oxide) nanomicelles loaded with curcumin and 5-Fluorouracil.Polymers 2020127145010.3390/polym1207145032605272
    [Google Scholar]
  182. KaziM. AlmarriF. ShahbaA.A.W. AhmadA. AlbraikiS. AlanaziF.K. Nutraceutically-enhanced oral delivery of vitamin D3 via Bio-SNEDDS: Demonstrating in vivo superiority over pediatric formulations.Biochem. Biophys. Res. Commun.202470914985210.1016/j.bbrc.2024.14985238574607
    [Google Scholar]
  183. KhursheedR. SinghS.K. KumarB. WadhwaS. GulatiM. AA. AwasthiA. VishwasS. KaurJ. CorrieL. K RA. KumarR. JhaN.K. GuptaP.K. ZacconiF. DuaK. ChitranshiN. MustafaG. KumarA. Self-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats.Int. J. Pharm.202261212130610.1016/j.ijpharm.2021.12130634813906
    [Google Scholar]
  184. SharmaS. RabbaniS.A. NarangJ.K. Hyder PottooF. AliJ. KumarS. BabootaS. Role of rutin nanoemulsion in ameliorating oxidative stress: Pharmacokinetic and pharmacodynamics studies.Chem. Phys. Lipids202022810489010.1016/j.chemphyslip.2020.10489032032570
    [Google Scholar]
  185. TahaE. GhorabD. ZaghloulA. Bioavailability assessment of vitamin A self-nanoemulsified drug delivery systems in rats: A comparative study.Med. Princ. Pract.200716535535910.1159/00010480817709923
    [Google Scholar]
  186. YenC.C. ChenY.C. WuM.T. WangC.C. WuY.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide.Int. J. Nanomedicine20181366968010.2147/IJN.S15482429440893
    [Google Scholar]
  187. AlqahtaniS. AlayoubiA. NazzalS. SylvesterP.W. KaddoumiA. Nonlinear absorption kinetics of self-emulsifying drug delivery systems (SEDDS) containing tocotrienols as lipophilic molecules: in vivo and in vitro studies.AAPS J.201315368469510.1208/s12248‑013‑9481‑723572242
    [Google Scholar]
  188. ZengF. WangD. TianY. WangM. LiuR. XiaZ. HuangY. Nanoemulsion for improving the oral bioavailability of hesperetin: formulation optimization and absorption mechanism.J. Pharm. Sci.202111062555256110.1016/j.xphs.2021.02.03033652015
    [Google Scholar]
  189. HaT.V.A. KimS. ChoiY. KwakH.S. LeeS.J. WenJ. OeyI. KoS. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract.Food Chem.201517811512110.1016/j.foodchem.2015.01.04825704691
    [Google Scholar]
  190. WilhelmS. TavaresA.J. DaiQ. OhtaS. AudetJ. DvorakH.F. ChanW.C.W. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  191. GutiérrezJ.M. GonzálezC. MaestroA. SolèI. PeyC.M. NollaJ. Nano-emulsions: New applications and optimization of their preparation.Curr. Opin. Colloid Interface Sci.200813424525110.1016/j.cocis.2008.01.005
    [Google Scholar]
  192. WilkingJ.N. MasonT.G. Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing.Phys. Rev. E Stat. Nonlin. Soft Matter Phys.200775404140710.1103/PhysRevE.75.04140717500894
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031340010250116180142
Loading
/content/journals/ddl/10.2174/0122103031340010250116180142
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test