Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Hydrogels are special materials that can hold a large amount of water and form 3D networks. In the past few years, there have been exciting improvements in hydrogel technology, bringing new ideas to many different areas. By trying out new materials like smart hydrogels that can respond to different conditions, provided new ways to deliver medicine precisely, build tissues, and create wearable gadgets. Among the most significant developments is the creation of smart hydrogels, which can react dynamically to different environmental stimuli. With their ability to release therapeutic chemicals under regulated conditions in response to particular physiological cues, these intelligent materials have enormous potential for the administration of precision medicine. These kinds of customized drug delivery systems have the power to completely change how treatments are administered by reducing adverse effects and increasing therapeutic efficacy. Hydrogels are also useful in tissue engineering, where they are used as scaffolds to create biological tissues that function. Hydrogel-based tissue constructions, which imitate the extracellular matrix, offer a favorable microenvironment for cell proliferation and differentiation, promoting the healing of injured or ill tissues. With its enormous potential in regenerative medicine, this revolutionary strategy offers hope for the treatment of ailments including organ failure. this article gives a thorough look at the recent developments in hydrogels, characterization techniques, and the new application of hydrogels in various fields of science.

In summary, new developments in hydrogel technology have opened up a plethora of opportunities in a variety of scientific fields. The adaptable properties of hydrogels continue to spur innovation in a variety of fields, including wearable technology, tissue engineering, and precision medicine. These applications offer revolutionary answers to urgent social issues.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031318362241015062649
2024-10-17
2025-07-11
Loading full text...

Full text loading...

References

  1. AlkayyaliL.B. Abu-DiakO.A. AndrewsG.P. JonesD.S. Hydrogels as drug-delivery platforms: Physicochemical barriers and solutions.Ther. Deliv.20123677578610.4155/tde.12.4822838072
    [Google Scholar]
  2. VashistA. AhmadS. Hydrogels: Smart materials for drug delivery.Orient. J. Chem.201329386187010.13005/ojc/290303
    [Google Scholar]
  3. LiJ. MooneyD.J. Designing hydrogels for controlled drug delivery.Nat. Rev. Mater.20161121607110.1038/natrevmats.2016.7129657852
    [Google Scholar]
  4. GhasemiyehP. Mohammadi-SamaniS. Hydrogels as drug delivery systems: Pros and cons.Trends Pharmacol. Sci.201951724
    [Google Scholar]
  5. SinghS.K. DhyaniA. JuyalD. Hydrogel: Preparation, characterization and applications.Pharma Innov.2017625
    [Google Scholar]
  6. RasoolA. IslamA. FayyazS. Hydrogels and their emerging applications.Hydrogels2023103126
    [Google Scholar]
  7. ZamanM.U. SiddiqueW.A. WaheedS.A. SarfrazR. MahmoodA.S. QureshiJ.U. IqbalJ.A. ChughtaiF.S. RahmanM.U. KhalidU.S. Hydrogels, their applications, and polymers used for hydrogels: A review.Int. J. Biol. Pharm. Allied Sci.2015465816603
    [Google Scholar]
  8. HoareT.R. KohaneD.S. Hydrogels in drug delivery: Progress and challenges.Polymer20084981993200710.1016/j.polymer.2008.01.027.
    [Google Scholar]
  9. SinghA. SharmaP. GargP. GargG. Hydrogels: A review.Int. J. Pharm. Sci. Rev. Res.20104297
    [Google Scholar]
  10. BhaleraoS.B. MahajanV.R. MaskeR.R. Hydrogel based drug delivery system: A review.World J Bio Pharm Health Sci202212303905310.30574/wjbphs.2022.12.3.0227.
    [Google Scholar]
  11. MishraB. UpadhyayM. Reddy AdenaS. VasantB.G. MuthuM. Hydrogels: an introduction to a controlled drug delivery device, synthesis and application in drug delivery and tissue engineering.Austin J Biomed Eng.2017411037
    [Google Scholar]
  12. OliveiraJ.T. ReisR.L. Hydrogels from polysaccharide-based materials: Fundamentals and applications in regenerative medicine.Natural-based polymers for biomedical applications.Woodhead Publishing200848551410.1533/9781845694814.4.485
    [Google Scholar]
  13. KhansariM.M. SorokinaL.V. MukherjeeP. MukhtarF. ShirdarM.R. ShahidiM. ShokuhfarT. Classification of hydrogels based on their source: A review and application in stem cell regulation.J. Miner. Met. Mater. Soc.20176981340134710.1007/s11837‑017‑2412‑9
    [Google Scholar]
  14. AhmadZ. SalmanS. KhanS.A. AminA. RahmanZ.U. Al-GhamdiY.O. AkhtarK. BakhshE.M. KhanS.B. Versatility of hydrogels: From synthetic strategies, classification, and properties to biomedical applications.Gels20228316710.3390/gels803016735323280
    [Google Scholar]
  15. MessingR. SchmidtA.M. Perspectives for the mechanical manipulation of hybrid hydrogels.Polym. Chem.201121183210.1039/C0PY00129E
    [Google Scholar]
  16. CatoiraM.C. FusaroL. Di FrancescoD. RamellaM. BoccafoschiF. Overview of natural hydrogels for regenerative medicine applications.J. Mater. Sci. Mater. Med.2019301011510.1007/s10856‑019‑6318‑731599365
    [Google Scholar]
  17. WuL.C. YangJ. KopečekJ. Hybrid hydrogels self-assembled from graft copolymers containing complementary β-sheets as hydroxyapatite nucleation scaffolds.Biomaterials201132235341535310.1016/j.biomaterials.2011.04.01421549421
    [Google Scholar]
  18. ThakurS. ThakurV.K. ArotibaO.A. History, classification, properties and application of hydrogels: An overview.Hydrogels2018295010.1007/978‑981‑10‑6077‑9_2.
    [Google Scholar]
  19. RanaT. FatimaM. KhanA.Q. NaeemZ. JavaidS. SajidN. HabibA. Hydrogels: A novel drug delivery system.Journal ISSN.202027662276
    [Google Scholar]
  20. SikarwarU. KhasheraoB.Y. SandhuD. A review on hydrogel: Classification, preparation techniques and applications.Pharm Innov Int J202211710.22271/tpi.2022.v11.i7o.13944.
    [Google Scholar]
  21. VinchhiP. RawalS.U. PatelM.M. Biodegradable hydrogels.Drug Delivery Devices and Therapeutic Systems.Academic Press202139541910.1016/B978‑0‑12‑819838‑4.00012‑2
    [Google Scholar]
  22. AswathyS.H. NarendrakumarU. ManjubalaI. Commercial hydrogels for biomedical applications.Heliyon202064e0371910.1016/j.heliyon.2020.e0371932280802
    [Google Scholar]
  23. BahramM. MohseniN. MoghtaderM. An introduction to hydrogels and some recent applications.Emerging concepts in analysis and applications of hydrogels.Intech Open201610.5772/64301
    [Google Scholar]
  24. PandeP.P. Polymer hydrogels and their applications.Int. J. Mater. Sci.2017121
    [Google Scholar]
  25. ChauhanL. ThakurP. SharmaS. Hydrogels: A review on classification, preparation methods, properties and its applications.Indo Am J Pharm Sci.201961349013503
    [Google Scholar]
  26. MaitraJ. ShuklaV.K. Cross-linking in hydrogels: A review.Am. J. Pol. Sci.2014422531
    [Google Scholar]
  27. parhiR. Cross-linked hydrogel for pharmaceutical applications: A review.Adv. Pharm. Bull.20177451553010.15171/apb.2017.06429399542
    [Google Scholar]
  28. RanaD. DesaiN. SalaveS. KarunakaranB. GiriJ. BenivalD. GorantlaS. KommineniN. Collagen-based hydrogels for the eye: A comprehensive review.Gels20239864310.3390/gels908064337623098
    [Google Scholar]
  29. ThangN.H. ChienT.B. CuongD.X. Polymer-based hydrogels applied in drug delivery: An overview.Gels20239752310.3390/gels907052337504402
    [Google Scholar]
  30. JoseJ. AthiraV.P. MichelH. HafeelaA.R. BhatS.G. ThomasS. MariaL.P. Hydrogels: An overview of the history, classification, principles, applications, and kinetics.Sustainable Hydrogels202312210.1016/B978‑0‑323‑91753‑7.00005‑3.
    [Google Scholar]
  31. Madduma-BandarageU.S.K. MadihallyS.V. Synthetic hydrogels: Synthesis, novel trends, and applications.J. Appl. Polym. Sci.2021138195037610.1002/app.50376
    [Google Scholar]
  32. DasD. Crosslinked galactomannan hydrogel as a stimuli responsive drug delivery device for ibuprofen.
    [Google Scholar]
  33. de Cássia NovaesW. BergA. Experiences with a new nonbiodegradable hydrogel (Aquamid): A pilot study.Aesthetic Plast. Surg.200327537638010.1007/s00266‑003‑2119‑x14612994
    [Google Scholar]
  34. KaurP. AgrawalR. PfefferF.M. WilliamsR. BohidarH.B. Hydrogels in agriculture: Prospects and challenges.J. Polym. Environ.202318
    [Google Scholar]
  35. Gun’koV. SavinaI. MikhalovskyS. Properties of water bound in hydrogels.Gels2017343710.3390/gels304003730920534
    [Google Scholar]
  36. AhsanA. TianW.X. FarooqM.A. KhanD.H. An overview of hydrogels and their role in transdermal drug delivery.Int. J. Polym. Mater.202170857458410.1080/00914037.2020.1740989
    [Google Scholar]
  37. Arman AlimA.A. Mohammad ShirajuddinS.S. AnuarF.H. A review of nonbiodegradable and biodegradable composites for food packaging application.J. Chem.202210.1155/2022/7670819
    [Google Scholar]
  38. GanjiF. VasheghaniF.S. VasheghaniF.E. Theoretical description of hydrogel swelling: A review.Iran. Polym. J.2010195375398
    [Google Scholar]
  39. DattiloM. PatitucciF. PreteS. ParisiO.I. PuociF. Polysaccharide-based hydrogels and their application as drug delivery systems in cancer treatment: A review.J. Funct. Biomater.20231425510.3390/jfb1402005536826854
    [Google Scholar]
  40. BashirS. HinaM. IqbalJ. RajparA.H. MujtabaM.A. AlghamdiN.A. WagehS. RameshK. RameshS. Fundamental concepts of hydrogels: Synthesis, properties, and their applications.Polymers (Basel)20201211270210.3390/polym1211270233207715
    [Google Scholar]
  41. SoniR. KewatkarS. JainV. SalujaM. A review of hydrogels, with its properties and applications in medicine.J Biomed Pharm Res2023122202310.32553/jbpr.v12i2.970.
    [Google Scholar]
  42. KhanM.U.A. StojanovićG.M. AbdullahM.F.B. Dolatshahi-PirouzA. MareiH.E. AshammakhiN. HasanA. Fundamental properties of smart hydrogels for tissue engineering applications: A review.Int. J. Biol. Macromol.2024254Pt 312788210.1016/j.ijbiomac.2023.12788237951446
    [Google Scholar]
  43. MishraS. RaniP. SenG. DeyK.P. Preparation, properties and application of hydrogels: A review.Hydrogels201814517310.1007/978‑981‑10‑6077‑9_6
    [Google Scholar]
  44. Sachyani KenethE. KamyshnyA. TotaroM. BeccaiL. MagdassiS. 3D printing materials for soft robotics.Adv. Mater.20213319200338710.1002/adma.20200338733164255
    [Google Scholar]
  45. LeeY. SongW.J. SunJ.Y. Hydrogel soft robotics.Materials Today Physics20201510025810.1016/j.mtphys.2020.100258
    [Google Scholar]
  46. WalkerJ. ZidekT. HarbelC. YoonS. StricklandF.S. KumarS. ShinM. Soft robotics: A review of recent developments of pneumatic soft actuators.Actuators202091310.3390/act9010003
    [Google Scholar]
  47. SlaughterB.V. KhurshidS.S. FisherO.Z. KhademhosseiniA. PeppasN.A. Hydrogels in regenerative medicine.Adv. Mater.20092132-333307332910.1002/adma.20080210620882499
    [Google Scholar]
  48. ChakrapaniG ZareM RamakrishnaS Intelligent hydrogels and their biomedical applications.Mater Adv20223217757777210.1039/D2MA00527A
    [Google Scholar]
  49. VegaS.L. KwonM.Y. BurdickJ.A. Recent advances in hydrogels for cartilage tissue engineering.Eur. Cell. Mater.201733597510.22203/eCM.v033a0528138955
    [Google Scholar]
  50. WeiW. MaY. YaoX. ZhouW. WangX. LiC. LinJ. HeQ. LeptihnS. OuyangH. Advanced hydrogels for the repair of cartilage defects and regeneration.Bioact. Mater.202164998101110.1016/j.bioactmat.2020.09.03033102942
    [Google Scholar]
  51. SpillerK.L. MaherS.A. LowmanA.M. Hydrogels for the repair of articular cartilage defects.Tissue Eng. Part B Rev.201117428129910.1089/ten.teb.2011.007721510824
    [Google Scholar]
  52. FranceskoA. PetkovaP. TzanovT. Hydrogel dressings for advanced wound management.Curr. Med. Chem.201925415782579710.2174/092986732466617092016124628933299
    [Google Scholar]
  53. KoehlerJ. BrandlF.P. GoepferichA.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds.Eur. Polym. J.201810011110.1016/j.eurpolymj.2017.12.046
    [Google Scholar]
  54. TavakoliJ. TangY. Hydrogel based sensors for biomedical applications: An updated review.Polymers (Basel)20179836410.3390/polym908036430971040
    [Google Scholar]
  55. LiuH. ChenB. ZhuQ. Potential application of hydrogel to the diagnosis and treatment of multiple sclerosis.J. Biol. Eng.20221611010.1186/s13036‑022‑00288‑735395765
    [Google Scholar]
  56. IshiharaK. ShiX. FukazawaK. YamaokaT. YaoG. WuJ.Y. Biomimetic engineered silicone hydrogel contacts lens materials.ACS Appl. Bio Mater.2023693600361610.1021/acsabm.3c0029637616500
    [Google Scholar]
  57. TranN.P.D. YangM.C. The ophthalmic performance of hydrogel contacts lenses loaded with silicone nanoparticles.Polymers (Basel)2020125112810.3390/polym1205112832423074
    [Google Scholar]
  58. McAlindenC. KhadkaJ. PesudovsK. Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology.Ophthalmic Physiol. Opt.201131433033810.1111/j.1475‑1313.2011.00851.x21615445
    [Google Scholar]
  59. BagherianH. Zarei-GhanavatiS. Momeni-MoghaddamH. WolffsohnJ.S. SedaghatM.R. NarooS.A. MonfaredN. Masked comparison of two silicone hydrogel bandage contact lenses after photorefractive keratectomy.Cont. Lens Anterior Eye202043324424910.1016/j.clae.2020.02.00532098716
    [Google Scholar]
  60. TaberneroJ. GilP. FarcasA. HernandezC. BenitoA. Functional vision testing to study the benefits of the correction of small astigmatism with toric lenses in contact lens neophytes.Invest. Ophthalmol. Vis. Sci.20226372251F0459
    [Google Scholar]
  61. SrinivasanS. Today’s contact lens materials and designs: understanding the makeup of these devices can help ODs select the right option for each patient.Review of Optometry.201715483643
    [Google Scholar]
  62. Abd MananT.S.B. BedduS. MohamadD. Mohd KamalN.L. ItamZ. KhanT. JusohH. Abdul RahmanN.A. Mohamed NazriF. Mohd YapandiM.F.K. Wan MohtarW.H.M. IsaM.H. Che MudaZ. AhmadA. Wan RasdiN. Physicochemical properties of absorbent hydrogel polymers in disposable baby diapers.Chem. Phys. Lett.202177413860510.1016/j.cplett.2021.138605
    [Google Scholar]
  63. MalpureP.S. PatilS.S. MoreY.M. NikamP.P. A review on-hydrogel.Am J PharmTech Res201883416110.46624/ajptr.2018.v8.i3.005
    [Google Scholar]
  64. BillahS.R. MondalM.I. SomoalS.H. PervezM.N. Cellulose-based hydrogel for industrial applications.Cellulose-Based Superabsorbent Hydrogels201814110.1007/978‑3‑319‑76573‑0_63‑1.
    [Google Scholar]
  65. KaliarajG. ShanmugamD. DasanA. MosasK. Hydrogels—A promising materials for 3D printing technology.Gels20239326010.3390/gels903026036975708
    [Google Scholar]
  66. GeQ. ChenZ. ChengJ. ZhangB. ZhangY.F. LiH. HeX. YuanC. LiuJ. MagdassiS. QuS. 3D printing of highly stretchable hydrogel with diverse UV curable polymers.Sci. Adv.202172eaba426110.1126/sciadv.aba426133523958
    [Google Scholar]
  67. SiacorF.D.C. ChenQ. ZhaoJ.Y. HanL. ValinoA.D. TaboadaE.B. CaldonaE.B. AdvinculaR.C. On the additive manufacturing (3D printing) of viscoelastic materials and flow behavior: From composites to food manufacturing.Addit. Manuf.20214510204310.1016/j.addma.2021.102043
    [Google Scholar]
  68. MohiteP.B. AdhavS.S. A hydrogels: Methods of preparation and applications.Int. J. Adv. Pharm.2017637985
    [Google Scholar]
  69. SahuN. GuptaD. NautiyalU. Hydrogel: Preparation, characterization and applications.Asian Pac. J. Nurs. and Health Sci.20203111110.46811/apjnh/3.1.2
    [Google Scholar]
  70. KhanS. UllahA. UllahK. RehmanN. Insight into hydrogels.Des. Monomers Polym.201619545647810.1080/15685551.2016.1169380
    [Google Scholar]
  71. RamazaniA. AghahosseiniH. The biological properties of hydrogels based on natural polymers.Hydrogels based on natural polymers.Elsevier202024726910.1016/B978‑0‑12‑816421‑1.00009‑4
    [Google Scholar]
  72. AminS. RajabnezhadS. KohliK. Hydrogels as potential drug delivery systems.Sci. Res. Essays200941111751183
    [Google Scholar]
  73. AzeeraM. VaideviS. KumarJ. ShanmugarathinamA. RuckmaniK. Chitosan-based systems in tissue engineering.Functional Chitosan. JanaS. JanaS. SingaporeSpringer201910.1007/978‑981‑15‑0263‑7_10
    [Google Scholar]
  74. DcostaP. ShabarayaA.R. MirandaF.C. Hydrogel in novel drug delivery: A review.Int J Pharm Res Appl202274527535
    [Google Scholar]
  75. Martinez-GarciaF.D. FischerT. HaynA. MierkeC.T. BurgessJ.K. HarmsenM.C. A beginner’s guide to the characterization of hydrogel microarchitecture for cellular applications.Gels20228953510.3390/gels809053536135247
    [Google Scholar]
  76. QamruzzamanM. AhmedF. MondalM.I.H. An overview on starch-based sustainable hydrogels: Potential applications and aspects.J. Polym. Environ.2022301195010.1007/s10924‑021‑02180‑9
    [Google Scholar]
  77. BarkerK. RastogiS.K. DominguezJ. CantuT. BrittainW. IrvinJ. BetancourtT. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.J. Biomater. Sci. Polym. Ed.2016271223910.1080/09205063.2015.110359026541212
    [Google Scholar]
  78. SataniH. KuwataM. IshiiH. InoueT. ShimizuA. Preparation of SEM hydrogel samples using a high pressure water freeze fracture method.High Press. Res.20214119710810.1080/08957959.2020.1863399
    [Google Scholar]
  79. WangW. NarainR. ZengH. Hydrogels.Polymer science and nanotechnology.Elsevier202020324410.1016/B978‑0‑12‑816806‑6.00010‑8
    [Google Scholar]
  80. ThirupathiK. RaoraneC.J. RamkumarV. UlagesanS. SanthamoorthyM. RajV. KrishnakumarG.S. PhanT.T.V. KimS.C. Update on chitosan-based hydrogels: Preparation, characterization, and its antimicrobial and antibiofilm applications.Gels2022913510.3390/gels901003536661802
    [Google Scholar]
  81. GulrezS.K. Al-AssafS. PhillipsG.O. Hydrogels: Methods of preparation, characterisation and applications.Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology ApplicationsInTech Open201110.5772/24553
    [Google Scholar]
  82. AliA. ChiangY.W. SantosR.M. X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions.Minerals (Basel)202212220510.3390/min12020205
    [Google Scholar]
  83. BunaciuA.A. UdriştioiuE. Aboul-EneinH.Y. X-ray diffraction: Instrumentation and applications.Crit. Rev. Anal. Chem.201545428929910.1080/10408347.2014.94961625831472
    [Google Scholar]
  84. PatilP.B. DatirS.K. SaudagarR.B. A review on topical gels as drug delivery system.J. Drug Deliv. Ther.201993-s98999410.22270/jddt.v9i3‑s.2930
    [Google Scholar]
  85. SailajaA.K. SuprajaR. An overall review on topical preparation-gel.Innov Int J Med Pharm Sci201611172
    [Google Scholar]
  86. JayawardenaI. TurunenP. GarmsB.C. RowanA. CorrieS. GrøndahlL. Evaluation of techniques used for visualisation of hydrogel morphology and determination of pore size distributions.Mater Adv20234266968210.1039/D2MA00932C
    [Google Scholar]
  87. GuptaN.V. ShivakumarH.G. Investigation of swelling behaviour and mechanical properties of a pH-sensitive superporous hydrogel composite.Iran J Pharm Sci201211248124250471
    [Google Scholar]
  88. DantasM.G. ReisS.A. DamascenoC.M. RolimL.A. Rolim-NetoP.J. CarvalhoF.O. Quintans-JuniorL.J. AlmeidaJ.R. Development and evaluation of stability of a gel formulation containing the monoterpene borneol.ScientificWorldJournal20162016739468510.1155/2016/7394685
    [Google Scholar]
  89. NurmanS. YuliaR. Irmayanti NoorE. Candra SunartiT. . Irmayanti. NoorE. Candra SunartiT. The optimization of gel preparations using the active compounds of arabica coffee ground nanoparticles.Sci. Pharm.20198743210.3390/scipharm87040032
    [Google Scholar]
  90. KashyapA. DasA. AhmedA.B. Formulation and evaluation of transdermal topical gel of ibuprofen.J. Drug Deliv. Ther.2020102202510.22270/jddt.v10i2.3902
    [Google Scholar]
  91. SieversJ. SperlichK. StahnkeT. KreinerC. EicknerT. MartinH. GuthoffR.F. SchünemannM. BohnS. StachsO. Determination of hydrogel swelling factors by two established and a novel non-contact continuous method.J. Appl. Polym. Sci.2021138185032610.1002/app.50326
    [Google Scholar]
  92. HolbackH. YeoY. ParkK. Hydrogel swelling behaviour and its biomedical applications.Biomedical Hydrogels.Woodhead Publishing201132410.1533/9780857091383.1.3
    [Google Scholar]
  93. AlthansD. EndersS. Investigation of the swelling behaviour of hydrogels in aqueous acid or alkaline solutions.Mol. Phys.2014112172249225710.1080/00268976.2014.902517
    [Google Scholar]
  94. SathianA. VijayN. JoshyK.S. DalviY.B. MraicheF. Hydrogels: Smart materials in drug delivery.Hydrogels-From Tradition to Innovative Platforms with Multiple Applications.IntechOpen202210.5772/intechopen.104804.
    [Google Scholar]
  95. ShoukatH. BukshK. NoreenS. PervaizF. MaqboolI. Hydrogels as potential drug-delivery systems: network design and applications.Ther. Deliv.202112537539610.4155/tde‑2020‑011433792360
    [Google Scholar]
  96. SharpeL.A. DailyA.M. HoravaS.D. PeppasN.A. Therapeutic applications of hydrogels in oral drug delivery.Expert Opin. Drug Deliv.201411690191510.1517/17425247.2014.90204724848309
    [Google Scholar]
  97. IlochonwuB.C. UrttiA. HenninkW.E. VermondenT. Intravitreal hydrogels for sustained release of therapeutic proteins.J. Control. Release202032641944110.1016/j.jconrel.2020.07.03132717302
    [Google Scholar]
  98. FangG. YangX. WangQ. ZhangA. TangB. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases.Mater. Sci. Eng. C202112711221210.1016/j.msec.2021.11221234225864
    [Google Scholar]
  99. BajpaiS.K. SonkusleyS.J. Hydrogels for colon-specific oral drug delivery: Synthesis and characterization.J. Macromol. Sci. Part A Pure Appl. Chem.200138436538110.1081/MA‑100103355
    [Google Scholar]
  100. BishopM.J. HoytB.K. PatriziR. BaiM. Ocular comfort observed with three marketed solutions.Cont. Lens Anterior Eye2019426e2410.1016/j.clae.2019.10.080
    [Google Scholar]
  101. PeppasN.A. Hydrogels in medicine and pharmacy.Boca Raton, FLCRC press198610.1201/9780429285097.
    [Google Scholar]
  102. HenninkW.E. van NostrumC.F. Novel crosslinking methods to design hydrogels.Adv. Drug Deliv. Rev.20126422323610.1016/j.addr.2012.09.00911755704
    [Google Scholar]
  103. NguyenK.T. WestJ.L. Photopolymerizable hydrogels for tissue engineering applications.Biomaterials200223224307431410.1016/S0142‑9612(02)00175‑812219820
    [Google Scholar]
  104. HoffmanA.S. Hydrogels for biomedical applications.Adv. Drug Deliv. Rev.201264182310.1016/j.addr.2012.09.01011755703
    [Google Scholar]
  105. JangJ.G. LeeN.K. LeeH.K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers.Constr. Build. Mater.20145016917610.1016/j.conbuildmat.2013.09.048
    [Google Scholar]
  106. MituraS. SionkowskaA. JaiswalA. Biopolymers for hydrogels in cosmetics: Review.J. Mater. Sci. Mater. Med.20203165010.1007/s10856‑020‑06390‑w32451785
    [Google Scholar]
  107. KasaiR.D. RadhikaD. ArchanaS. ShanavazH. KoutavarapuR. LeeD.Y. ShimJ. A review on hydrogels classification and recent developments in biomedical applications.Int. J. Polym. Mater.202372131059106910.1080/00914037.2022.2075872
    [Google Scholar]
  108. PanZ. YeH. WuD. Recent advances on polymeric hydrogels as wound dressings.APL Bioeng.20215101150410.1063/5.003836433644627
    [Google Scholar]
  109. TsegayF. ElsherifM. ButtH. Smart 3D printed hydrogel skin wound bandages: A review.Polymers (Basel)2022145101210.3390/polym1405101235267835
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031318362241015062649
Loading
/content/journals/ddl/10.2174/0122103031318362241015062649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test