Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

This review is to present a general outline of potent & promising natural polymers (on which only slight research is done) along with their attributes & their pharmaceutical functions in the development of GRDDS (gastro retentive drug delivery system). Therefore, there is a need of more attention & focus on some of these natural polymers which are playing a crucial & indispensable role in the fabrication of GRDDS. Recent & current research trends shows that progressively natural polymers are replacing synthetic polymers in the fabrication of GRDDS as they are more safe, non-toxic, biodegradable, biocompatible, economical, regulatory acceptance, Also, it has been noticed by the researchers that natural polymer due to their properties have successfully amplified gastric residence time, dissolution & bioavailability of the gastroretentive dosage forms.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031301526241010021238
2024-10-14
2025-10-08
Loading full text...

Full text loading...

References

  1. GayakwadB.P. Natural polymers in the development of gastroretentive systems: A review.Nat. Volatiles & Essent. Oils20218528952906
    [Google Scholar]
  2. KaganL. HoffmanA. Systems for region selective drug delivery in the gastrointestinal tract: Biopharmaceutical considerations.Expert Opin. Drug Deliv.20085668169210.1517/17425247.5.6.68118532923
    [Google Scholar]
  3. JoshiP. A review on gastroretentive drug delivery system.Journal of Pharmaceutical Science and Bioscientific Research.201223123128
    [Google Scholar]
  4. AinurofiA. DaryatiA. MurtadlaF.A. SalimahF. AkbarN.M. FaizunR.A. The Use of Natural and Synthetic Polymers in the Formulation of Gastro retentive Drug Delivery System.Int. J. Drug Delivery Tech.202313143444110.25258/ijddt.13.1.69
    [Google Scholar]
  5. AnanthakumarR. Drug Invent. Today201810285289
    [Google Scholar]
  6. SinghB. KimK.H. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention.J. Control. Release200063323525910.1016/S0168‑3659(99)00204‑710601721
    [Google Scholar]
  7. LiuY. YangT. WeiS. ZhouC. LanY. CaoA. YangJ. WangW. Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery.Int. J. Pharm.20185371-224525610.1016/j.ijpharm.2017.12.04429288808
    [Google Scholar]
  8. LopesC.M. BettencourtC. RossiA. ButtiniF. BarataP. Overview on gastroretentive drug delivery systems for improving drug bioavailability.Int. J. Pharm.2016510114415810.1016/j.ijpharm.2016.05.01627173823
    [Google Scholar]
  9. SungY.K. KimS.W. Recent advances in polymeric drug delivery systems.Biomater. Res.20202411210.1186/s40824‑020‑00190‑732537239
    [Google Scholar]
  10. SenO. MannaS. NandiG. JanaS. JanaS. Recent advances in alginate based gastroretentive technologies for drug delivery applications.Med. Novel Technol. Devices20231810023610.1016/j.medntd.2023.100236
    [Google Scholar]
  11. VllasaliuD. ThanouM. StolnikS. FowlerR. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery.Expert Opin. Drug Deliv.201815875977010.1080/17425247.2018.150401730033780
    [Google Scholar]
  12. GugulothuD. The extraction and investigation of polysaccharide mucilages for use as excipients in drug delivery systems and their application for developing floating tablets of silymarin.J. Excip. Food Chem.20211247086
    [Google Scholar]
  13. MandalU.K. ChatterjeeB. SenjotiF.G. Gastro-retentive drug delivery systems and their in vivo success: A recent update.Asian J. Pharm. Sci.201611557558410.1016/j.ajps.2016.04.007
    [Google Scholar]
  14. VinchurkarK. SainyJ. KhanM.A. ManeS. MishraD.K. DixitP. Features and Facts of a Gastroretentive Drug Delivery System-A Review.Turk. J. Pharm. Sci.202219447648710.4274/tjps.galenos.2021.4495936047602
    [Google Scholar]
  15. SethN. GillN.S. Gastro retentive drug delivery system: A significant tool to increase the gastric residence time of drugs.Int. J. Curr. Pharm. Res.2021202171110.22159/ijcpr.2021v13i1.40818
    [Google Scholar]
  16. LodhH. SheebaF. ChourasiaP.K. PardheH.A. PallaviN. Floating drug delivery system: A brief review.Asian JPharmTechnol.2020104255264
    [Google Scholar]
  17. PrinderreP. SauzetC. FuxenC. Advances in gastro retentive drug-delivery systems.Expert Opin. Drug Deliv.2011891189120310.1517/17425247.2011.59282821671821
    [Google Scholar]
  18. AndrewsG.P. LavertyT.P. JonesD.S. Mucoadhesive polymeric platforms for controlled drug delivery.Eur. J. Pharm. Biopharm.200971350551810.1016/j.ejpb.2008.09.02818984051
    [Google Scholar]
  19. SuradkarP. MishraR. NandgudeT. Overview on Trends in Development of Gastroretentive Drug Delivery System.Research Journal of Pharmacy and Technology201912115633564010.5958/0974‑360X.2019.00975.2
    [Google Scholar]
  20. JyotiSS A Review On Gastro-Retentive Drug Delivery System Along With Regional Market Survey.J Pharm Exper Med202122110
    [Google Scholar]
  21. PatoleR. ChawareB. MohiteV. RedasaniV. A Review for Gastro - Retentive Drug Delivery System.Asian Journal of Pharmaceutical Research and Development2023114799410.22270/ajprd.v11i4.1291
    [Google Scholar]
  22. KrishnA. in vitro in vivo studies of floating microspheres for gastroretentive drug delivery system:A review.Asian J. Pharm. Clin. Res.20211411326
    [Google Scholar]
  23. MoreS. GavaliK. DokeO. KasgawadeP. Gastroretentive drug delivery system.J. Drug Deliv. Ther.20188410.22270/jddt.v8i4.1788
    [Google Scholar]
  24. SowmyaB. ArvapalliS. GuptaA. A review on gastroretentive drug delivery system.World Journal of Pharmaceutical & Life Sciences201954101110
    [Google Scholar]
  25. PayghanS. Novel approach in gastro retentive drug delivery system: Floating microspheres.Int J Pharm Bio. Sci. Arch.20142922
    [Google Scholar]
  26. GuanJ. ZhouL. NieS. YanT. TangX. PanW. A novel gastric-resident osmotic pump tablet: in vitro and in vivo evaluation.Int. J. Pharm.20103831-2303610.1016/j.ijpharm.2009.08.04319733646
    [Google Scholar]
  27. MurphyC. PillayV. ChoonaraY. du ToitL. Gastroretentive drug delivery systems: current developments in novel system design and evaluation.Curr. Drug Deliv.20096545146010.2174/15672010978994168719751198
    [Google Scholar]
  28. NayakA.K. Gastroretentive drug delivery systems: A review.Asian J. Pharm. Clin. Res.201031210
    [Google Scholar]
  29. ChenJ. ParkK. Synthesis and characterization of superporous hydrogel composites.J. Control. Release2000651-2738210.1016/S0168‑3659(99)00238‑210699272
    [Google Scholar]
  30. KockischS. ReesG.D. YoungS.A. TsibouklisJ. SmartJ.D. Polymeric microspheres for drug delivery to the oral cavity: an in vitro evaluation of mucoadhesive potential.J. Pharm. Sci.20039281614162310.1002/jps.1042312884248
    [Google Scholar]
  31. Techniques and polymers used to design gastroretentive drug delivery systems – a review.World J. Pharm. Pharm. Sci.2014397110
    [Google Scholar]
  32. ChunM.K. SahH. ChoiH.K. Preparation of mucoadhesive microspheres containing antimicrobial agents for eradication of H. pylori.Int. J. Pharm.20052971-217217915907604
    [Google Scholar]
  33. HuangY. LeobandungW. FossA. PeppasN.A. Molecular aspects of muco- and bioadhesion.J. Control. Release2000651-2637110.1016/S0168‑3659(99)00233‑310699271
    [Google Scholar]
  34. GröningR. BerntgenM. GeorgarakisM. Acyclovir serum concentrations following peroral administration of magnetic depot tablets and the influence of extracorporal magnets to control gastrointestinal transit.Eur J Pharm Biopharm.199846328591
    [Google Scholar]
  35. JagdaleS.C. Design development and evaluation of floating tablets of tapentadol hydrochloride using chitosan.Asian J. Pharm. Clin. Res.201254163168
    [Google Scholar]
  36. BhosaleA.R. ShindeJ.V. ChavanR.S. A Comprehensive Review on Floating Drug Delivery System (FDDS).J. Drug Deliv. Ther.202010617418210.22270/jddt.v10i6.4461
    [Google Scholar]
  37. AroraS. Floating drug delivery systems: A review.AAPS PharmSciTech200547372390
    [Google Scholar]
  38. NayakA.K. MalakarJ. SenK.K. Gastroretentive drug delivery technologies: Current approaches and future potential.Journal of Pharmaceutical Education and Research.2010121
    [Google Scholar]
  39. DeshpandeR.D. Development of noneffervescent low density floating tablets of cefpodoxime proxetil.Int J Pharm Res2014336977
    [Google Scholar]
  40. SatinderkakarR.S. ShallusandhanR. Gastroretentive drug delivery systems: A review.Afr. J. Pharm. Pharmacol.201591240541710.5897/AJPP2015.4307
    [Google Scholar]
  41. HwangS.J. ParkH. ParkK. Gastric retentive drug-delivery systems.Crit. Rev. Ther. Drug Carrier Syst.19981532432849699081
    [Google Scholar]
  42. ReddyL.H.V. MurthyR.S.R. Floating dosage systems in drug delivery.Crit. Rev. Ther. Drug Carrier Syst.200219655358510.1615/CritRevTherDrugCarrierSyst.v19.i6.2012822735
    [Google Scholar]
  43. VinodbhaiP.K. Sustained release floating microspheres of acyclovir: formulation, optimization, characterization and in vitro evaluation.Int. J. Drug Deliv.20113242251
    [Google Scholar]
  44. TalukderR. FassihiR. Gastroretentive delivery systems: hollow beads.Drug Dev. Ind. Pharm.200430440541210.1081/DDC‑12003093515132183
    [Google Scholar]
  45. BansalM. GuptaD.K. SachdevaM. Kamini Formulation and Characterization of Expandable Tablet of Diacerein using Swellable Polymers.J. Drug Deliv. Ther.202212515616910.22270/jddt.v12i5.5612
    [Google Scholar]
  46. AhmedW. El-GogaryR.I. NasrM. SammourO.A. Development and in vitro/in vivo Evaluation of Itopride Hydrochloride Expanding Tablets.J. Pharm. Innov.20231831350136110.1007/s12247‑023‑09729‑2
    [Google Scholar]
  47. SivaneswariS. KarthikeyanE. ChandanaP.J. Novel expandable gastro retentive system by unfolding mechanism of levetiracetam using simple lattice design – Formulation optimization and in vitro evaluation.Bull. Fac. Pharm. Cairo Univ.2017551637210.1016/j.bfopcu.2017.02.003
    [Google Scholar]
  48. KotaR.K. BhikshapathiD.V. GandeS. Formulation and in vivo Evaluation of Mucoadhesive Microspheres of Valsartan using Natural Gum.International Journal of Pharmaceutical Sciences and Nanotechnology201912143934402[IJPSN].10.37285/ijpsn.2019.12.1.6
    [Google Scholar]
  49. AminM.L. AhmedT. MannanM.A. Development of floating- mucoadhesive microsphere for site specific release of metronidazole.Adv. Pharm. Bull.20166219520010.15171/apb.2016.02727478781
    [Google Scholar]
  50. El NasharN.F. DoniaA.A. MadyO.Y. El MaghrabyG.M. Formulation of clarithromycin floating microspheres for eradication of Helicobacter pylori.J. Drug Deliv. Sci. Technol.20174121322110.1016/j.jddst.2017.07.016
    [Google Scholar]
  51. WatermanK.C. A critical review of gastric retentive controlled drug delivery.Pharm. Dev. Technol.200712111010.1080/1083745060116868017484139
    [Google Scholar]
  52. BathoolA. GowdaD.V. KhanM. AhmedA. VasudhaS.L. RohitashK. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride.J. Adv. Pharm. Technol. Res.20123212412910.4103/2231‑4040.9729222837961
    [Google Scholar]
  53. IssarachotO. BunlungS. KaewkroekK. WiwattanapatapeeR. Superporous hydrogels based on blends of chitosan and polyvinyl alcohol as a carrier for enhanced gastric delivery of resveratrol.Saudi Pharm. J.202331333534710.1016/j.jsps.2023.01.00137026050
    [Google Scholar]
  54. DesuP.K. PasamV. KotraV. Implications of superporous hydrogel composites-based gastroretentive drug delivery systems with improved biopharmaceutical performance of fluvastatin.J. Drug Deliv. Sci. Technol.20205710166810.1016/j.jddst.2020.101668
    [Google Scholar]
  55. Raghu KiranC.V.S. GopinathC. Development and evaluation of interpenetrating polymer network based superporous hydrogel gastroretentive drug delivery systems (SPH IPN-GRDDS).Mater. Today Proc.2021463056306110.1016/j.matpr.2021.02.381
    [Google Scholar]
  56. KulkarniV.S. Natural polymers-a comprehensive review.Int. J. Res. Pharm. Biomed. Sci.20123415971613
    [Google Scholar]
  57. TuraG.T. EsheteW.B. TuchoG.T. Antibacterial efficacy of local plants and their contribution to public health in rural Ethiopia.Antimicrob. Resist. Infect. Control2017617610.1186/s13756‑017‑0236‑628775846
    [Google Scholar]
  58. BalaR. RanaR. MadaanR. Natural gums and mucilage asmatrix formers in sustained released dosage forms.ResJPharmTechnol.2019121051195125
    [Google Scholar]
  59. ThombreN. AherA. ShimpiP. Formulation development and evaluation of gum damar based sustained release matrix tablet of metoprolol succinate.Asian J. Pharm. Res. Dev.2020838186
    [Google Scholar]
  60. SinghP. Natural excipients inPharmaceutical formulations.Evidence basedvalidation of Traditional Medicines.Berlin, Heidelberg, GermanySpringer2021829869
    [Google Scholar]
  61. AlalorC. Evaluation of ciprofloxacin floating-bioadhesive tablet formulated with okra gum as multifunctional polymer.Pharmaceutical and Biosciences Journal2018621
    [Google Scholar]
  62. OgajiI. HoagS. Novel extraction and application of okra gum as a film coating agent using theophylline as a model drug.J. Adv. Pharm. Technol. Res.201452707710.4103/2231‑4040.13342724959415
    [Google Scholar]
  63. CampoV.L. KawanoD.F. Carrageenan: biological properties, chemical modifications and structural analysis–a review.Carbohydr. Polym.200977216718010.1016/j.carbpol.2009.01.020
    [Google Scholar]
  64. IlangoK. in vitro and in vivo evaluation of okra polysaccharide-based colon-targeted drug delivery systems.Int. J. Pharm. Sci. Rev. Res.20105138145
    [Google Scholar]
  65. SheikhF.A. HussainM.A. AshrafM.U. HaseebM.T. Farid-ul-HaqM. Linseed hydrogel based floating drug delivery system for fluoroquinolone antibiotics: Design, in vitro drug release and in vivo real-time floating detection.Saudi Pharm. J.202028553854910.1016/j.jsps.2020.03.00532435134
    [Google Scholar]
  66. GhummanS.A. NoreenS. tul MuntahaS. Linum usitatissimum seed mucilage-alginate mucoadhesive microspheres of metformin HCl: Fabrication, characterization and evaluation.Int. J. Biol. Macromol.202015535836810.1016/j.ijbiomac.2020.03.18132224187
    [Google Scholar]
  67. MahantS. KhuranaN. DuaS. ThakurP. BakshiI. Formulation and evaluation of mucoadhesive tablets using flax seed mucilage.J. Pharm. Biomed. Sci.201161817
    [Google Scholar]
  68. BahulkarS.S. MunotN.M. SurwaseS.S. Synthesis, characterization of thiolated karaya gum and evaluation of effect of pH on its mucoadhesive and sustained release properties.Carbohydr. Polym.201513018319010.1016/j.carbpol.2015.04.06426076615
    [Google Scholar]
  69. SinghB. SharmaV. ChauhanD. Gastroretentive floating sterculia–alginate beads for use in antiulcer drug delivery.Chem. Eng. Res. Des.2010888997101210.1016/j.cherd.2010.01.017
    [Google Scholar]
  70. SethiS. KaithB.S. KaurM. SharmaN. KhullarS. Study of a cross-linked hydrogel of Karaya gum and Starch as a controlled drug delivery system.J. Biomater. Sci. Polym. Ed.201930181687170810.1080/09205063.2019.165971031443620
    [Google Scholar]
  71. NayakA.K. PalD. SantraK. Tamarind seed polysaccharide–gellan mucoadhesive beads for controlled release of metformin HCl.Carbohydr. Polym.201410315416310.1016/j.carbpol.2013.12.03124528714
    [Google Scholar]
  72. RazaviM. KarimianH. Chai HongY. ChungL.Y. NoordinM.I. NyamathullaS. Gamma scintigraphic evaluation of floating gastroretentive tablets of metformin HCl using a combination of three natural polymers in rabbits.Drug Des. Devel. Ther.201594373438610.2147/DDDT.S8626326273196
    [Google Scholar]
  73. SumathiS. RayA.R. Release behaviour of drugs from tamarind seed polysaccharide tablets.J. Pharm. Pharm. Sci.200251121812042114
    [Google Scholar]
  74. WadherKJ.; Bute, SW.; Umekar, MJ. Formulation and evaluation of Gastroretantive floating tablet using Carbopol with xanthan gum and guar gum.Int. J. Chemtech Res.202110300308
    [Google Scholar]
  75. PrakashU. SinghD.R. Role of xanthan gum (Xanthomonascompestris) in gastroretentive drug delivery system: an overview.Int Res J Pharm20133538
    [Google Scholar]
  76. CaiX. DuX. CuiD. WangX. YangZ. ZhuG. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation.Food Hydrocoll.20199123824510.1016/j.foodhyd.2019.01.034
    [Google Scholar]
  77. BhagwatD.A. KolekarV.R. NadafS.J. ChoudhariP.B. MoreH.N. KilledarS.G. Acrylamide grafted neem (Azadirachta indica) gum polymer: Screening and exploration as a drug release retardant for tablet formulation.Carbohydr. Polym.202022911535710.1016/j.carbpol.2019.11535731826453
    [Google Scholar]
  78. PatilT.Green synthesis of polyacrylamide grafted Neem Gum for gastro retentive floating drug delivery of Ciprofloxacin Hydrochloride: in vitro and in vivo evaluation.J. Drug Deliv. Sci. Technol.2022721-2103417
    [Google Scholar]
  79. RaiA. MalviyaR.K. PatidarD. SharmaK. RajV. Formulation development and evaluation of gastroretentive delivery system (microspheres) using natural polymer.J. Drug Deliv. Ther.20199449650310.22270/jddt.v9i4.3079
    [Google Scholar]
  80. BeraH. GainiC. KumarS. SarkarS. BoddupalliS. IppaguntaS.R. HPMC-based gastroretentive dual working matrices coated with Ca +2 ion crosslinked alginate-fenugreek gum gel membrane.Mater. Sci. Eng. C20166717018110.1016/j.msec.2016.05.01627287111
    [Google Scholar]
  81. MalasiyaR. ShuklaT.P. Formulation development and evaluation of gastroretentive mucoadhesive tablets of glimepiride using natural polymers.J. Drug Deliv. Ther.2020104-s15315910.22270/jddt.v10i4‑s.4264
    [Google Scholar]
  82. RanadeA. RanpiseN. RameshC. Exploring the potential of gastro retentive dosage form in delivery of ellagic acid and aloe vera gel powder for treatment of gastric ulcers.Curr. Drug Deliv.201411228729710.2174/156720181066613112215304124261674
    [Google Scholar]
  83. ChinthaginjalaH. BarghavG.C. ReddyC.M. PradeepkumarB. Abdul AhadH. Formulation and in vitro evaluation of floatingtablets of dicloxacillin sodiumusingdifferentpolymers.J. Young Pharm.201911324725310.5530/jyp.2019.11.51
    [Google Scholar]
  84. ChoudharyP.D. PawarH.A. Recently investigated natural gums and mucilages as pharmaceutical excipients: an overview.J. Pharm. (Cairo)201420141910.1155/2014/20484926556189
    [Google Scholar]
  85. ZengH. Controlled- release emulsion compositions.Tech. Rep., Penwest Pharmaceuticals2007
    [Google Scholar]
  86. AlurH.H. PatherS.I. MitraA.K. JohnstonT.P. Evaluation of the gum from Hakea gibbosa as a sustained-release and mucoadhesive component in buccal tablets.Pharm. Dev. Technol.19994334735810.1081/PDT‑10010137010434280
    [Google Scholar]
  87. ChoudharyP.D. PawarH.A. Recently investigated natural gums & mucilage as pharmaceutical excipient:an OverviewPubl. Corp. J. Pharmacol.20142014ID204849
    [Google Scholar]
  88. KrishnaR.R. MurthyT.e.g.K. Preparation and evaluation of mucoadhesive microcapsules of glipizideformulatedwith gum kondagogu: in vitro and in vivo. ActPharmSci.2010523335344
    [Google Scholar]
  89. RaviV. KumarP. Investigation of kondagogu gum as a pharmaceutical excipient: A case study in developing floating matrix tablet.Int. J. Pharm. Tech. Res.2013517078
    [Google Scholar]
  90. SinghK. KumarA. LangyanN. AhujaM. Evaluation of Mimosa pudica seed mucilage as sustained-release excipient.AAPS PharmSciTech20091041121112710.1208/s12249‑009‑9307‑119763837
    [Google Scholar]
  91. MahorS. ChandraP. PrasadN. Design and in-vitro Evaluation of Float-adhesive Famotidine Microspheres by using Natural Polymers for Gastroretentive Properties.Indian Journal of Pharmaceutical Education and Research202155240741710.5530/ijper.55.2.78
    [Google Scholar]
  92. SaravananC. PurushothamanM. Effect of peanut husk powder as a natural polymer in the formulation and Evaluation of gastro-retentive drug delivery system of valsartan floating tablets.J. Glob. Trends Pharm. Sci.20167231333137
    [Google Scholar]
  93. IshakR.A.H. AwadG.A.S. MortadaN.D. NourS.A.K. Preparation, in vitro and in vivo evaluation of stomach-specific metronidazole-loaded alginate beads as local anti-Helicobacter pylori therapy.J. Control. Release2007119220721410.1016/j.jconrel.2007.02.01217412443
    [Google Scholar]
  94. Chaves de SouzaM.P. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems.Int. J. Biol. Macromol.202015915804822
    [Google Scholar]
  95. SomasekharC. KrishanS.K. AhmedM.G. RameshB. Formulation and evaluation of chitosan based effervescent floating tablet of verapamil hydrochloride.Int J Bio Allied Sci.201211117111720
    [Google Scholar]
  96. SriamornsakP. SungthongjeenS. PuttipipatkhachornS. Use of pectin as a carrier for intragastric floating drug delivery: Carbonate salt contained beads.Carbohydr. Polym.200767343644510.1016/j.carbpol.2006.06.013
    [Google Scholar]
  97. PrajapatiV.D. JaniG.K. KhutliwalaT.A. ZalaB.S. Raft forming system—An upcoming approach of gastroretentive drug delivery system.J. Control. Release2013168215116510.1016/j.jconrel.2013.02.02823500062
    [Google Scholar]
  98. RaoK.P. PrabhashankarB. KumarA. KhanA. BiradarS.S. SrishailS.P. SatyanathB. Formulation and roentgenographic studies of naproxen-pectin-based matrix tablets for colon drug delivery.Yale J. Biol. Med.2003764-614915415482652
    [Google Scholar]
  99. BhuratM. BarhateS. PreliminaryEvaluationof Remusatiavivipara tubersMucilageasGelling Agent.ResJPharmTechnol.20136415
    [Google Scholar]
  100. BonferoniM.C. RossiS. FerrariF. CaramellaC. Development of oral controlled-release tablet formulations based on diltiazem-carrageenan complex.Pharm. Dev. Technol.20049215516210.1081/PDT‑12002742815202574
    [Google Scholar]
  101. JaniG.K. ShahD.P. Evaluation of mucilage of Hibiscus rosasinensis Linn as rate controlling matrix for sustained release of diclofenac.Drug Dev. Ind. Pharm.200834880781610.1080/0363904080192576818686091
    [Google Scholar]
  102. NayakA.K. Chapter 11 - Cashew gum in drug delivery applications.Natural Polysaccharides in Drug Delivery and Biomedical Applications201926328310.1016/B978‑0‑12‑817055‑7.00011‑X
    [Google Scholar]
  103. PaulaH.C.B. de OliveiraE.F. AbreuF.O.M.S. de PaulaR.C.M. Alginate/cashew gum floating bead as a matrix for larvicide release.Mater. Sci. Eng. C20123261421142710.1016/j.msec.2012.04.02124364941
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031301526241010021238
Loading
/content/journals/ddl/10.2174/0122103031301526241010021238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test