Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Skin is a formidable natural barrier that represents the most important obstacle in clinical practices pertaining to the cutaneous administration of exogenous molecules/drugs. As transdermal therapy systems offer a more dependable way of distributing drugs by way of permeation enhancers, it is vital to use tried-and-true augmentation procedures to increase topical bioavailability. The term “permeation enhancers” refers to compounds that can help medications penetrate the skin. Nowadays, skin permeation enhancers from natural origin have gained momentum and came into existence after researchers deciphered the remarkable potential for enhancement of transdermally administered drugs. They are regarded as non-toxic, pharmacologically inactive, non-allergenic, non-irritating, and safe compounds and allow for the transport of a wider range of drug classes through the stratum corneum. This review provides a thorough overview of natural products that can improve the permeation of both hydrophilic and lipophilic compounds by reversibly lowering skin barrier resistance. It then briefly describes their current status in light of structural activity relationship (SAR) studies, which demonstrate significant enhancer activities.

This review aimed to highlight the ability of natural skin permeation enhancers to overcome the barriers of skin and demonstrate significant potential in the enhancement of transdermally administered drugs.

Manual and electronic databases were used for the systematic search of literature and to extract those from inception up to 2022 using relevant key words. The main focus was to identify and report the natural skin permeation enhancers executing remarkable potential in the improvement of transdermally administered drugs from the published articles.

Skin permeation enhancers from various natural sources have been demonstrated and exhibited remarkable potential in promoting the administration of larger groups of medications that are non- toxic, pharmacologically inactive, non-allergenic, non-irritating, and safe through the stratum corneum.

This article offers a comprehensive overview of natural chemicals that can reduce skin barrier resistance and promote the penetration of both hydrophilic and lipophilic substances. On the basis of structure activity relationship (SAR) studies that have shown strong enhancer actions, it also provides a brief overview of the condition of natural products at the moment.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031307565240806112110
2024-08-21
2025-12-17
Loading full text...

Full text loading...

References

  1. ChiS. ParkE.S. KimH. Effect of penetration enhancers on flurbiprofen permeation through rat skin.Int. J. Pharm.19951261-226727410.1016/0378‑5173(95)04137‑0
    [Google Scholar]
  2. Sameer KhanM. Jaswanth GowdaB.H. HasanN. GuptaG. SinghT. MdS. KesharwaniP. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives.Eur. Polym. J.202420611280010.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  3. WoldemichaelG.M. WinkM. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa.J. Agric. Food Chem.20014952327233210.1021/jf001349911368598
    [Google Scholar]
  4. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  5. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  6. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  7. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  8. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  9. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  10. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  11. NagS. MitraO. PS. BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  12. YamaneM.A. WilliamsA.C. BarryB.W. Terpene penetration enhancers in propylene glycol/water co-solvent systems: effectiveness and mechanism of action.J. Pharm. Pharmacol.20114712A97898910.1111/j.2042‑7158.1995.tb03282.x8932680
    [Google Scholar]
  13. BarryB.W. Dermatological formulation: Percutaneous absorption.Mercel Dekker: New York198318225238
    [Google Scholar]
  14. BarryB.W. Mode of action of penetration enhancers in human skin.J. Control. Release198761859710.1016/0168‑3659(87)90066‑6
    [Google Scholar]
  15. BarryB.W. Modern methods of promoting drug absorption through the skin.Mol. Aspects Med.199112319524110.1016/0098‑2997(91)90002‑41770837
    [Google Scholar]
  16. ChoC.W. ChoiJ.S. YangK.H. ShinS.C. Enhanced transdermal absorption and pharmacokinetic evaluation of pranoprofen-ethylene-vinyl acetate matrix containing penetration enhancer in rats.Arch. Pharm. Res.200932574775310.1007/s12272‑009‑1514‑519471890
    [Google Scholar]
  17. GuyR.H. HadgraftJ. The effect of penetration enhancers on the kinetics of percutaneous absorption.J. Control. Release198751435110.1016/0168‑3659(87)90036‑8
    [Google Scholar]
  18. BarryB.W. Lipid-Protein-Partitioning theory of skin penetration enhancement.J. Control. Release199115323724810.1016/0168‑3659(91)90115‑T
    [Google Scholar]
  19. GuyR.H. HadgraftJ. Selection of dug candidates for transdermal drug delivery.Transdermal drug delivery developmental issues and research initiatives. WaltersK.A. HadgraftJ. New YorkMarcel Dekker19895981
    [Google Scholar]
  20. HadgraftJ. Skin, the final frontier.Int. J. Pharm.20012241-211810.1016/S0378‑5173(01)00731‑111512545
    [Google Scholar]
  21. AungstB.J. RogersN.J. ShefterE. Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amines.Int. J. Pharm.19863322523410.1016/0378‑5173(86)90057‑8
    [Google Scholar]
  22. KligmanA.M. Topical pharmacology and toxicology of dimethylsulfoxide.JAMA19651931079680410.1001/jama.1965.0309010004201014329978
    [Google Scholar]
  23. SouthwellD. BarryB.W. Penetration enhancers for human skin: Mode of action of 2-pyrrolidone and dimethylformamide on partition and diffusion of model compounds water, n-alcohols, and caffeine.J. Invest. Dermatol.198380650751410.1111/1523‑1747.ep125350906854051
    [Google Scholar]
  24. KanikkannanN. SinghM. Skin permeation enhancement effect and skin irritation of saturated fatty alcohols.Int. J. Pharm.20022481-221922810.1016/S0378‑5173(02)00454‑412429475
    [Google Scholar]
  25. BensonH. Transdermal drug delivery: Penetration enhancement techniques.Curr. Drug Deliv.200521233310.2174/156720105277291516305405
    [Google Scholar]
  26. AkimotoT. AoyagiT. MinoshimaJ. NagaseY. Polymeric percutaneous drug penetration enhancer.J. Control. Release1997492-322924110.1016/S0168‑3659(97)00092‑8
    [Google Scholar]
  27. AkimotoT. KawaharaK. NagaseY. AoyagiT. Polymeric transdermal drug penetration enhancer.J. Control. Release2001771-2495710.1016/S0168‑3659(01)00455‑211689259
    [Google Scholar]
  28. Ben-ShabatS. BaruchN. SintovA.C. Conjugates of unsaturated fatty acids with propylene glycol as potentially less-irritant skin penetration enhancers.Drug Dev. Ind. Pharm.200733111169117510.1080/0363904070119925818058312
    [Google Scholar]
  29. MontiD. ChetoniP. BurgalassiS. NajarroM. SaettoneM.F. BoldriniE. Effect of different terpene-containing essential oils on permeation of estradiol through hairless mouse skin.Int. J. Pharm.20022371-220921410.1016/S0378‑5173(02)00032‑711955818
    [Google Scholar]
  30. BarryB.W. WilliamsA.C. Terpenes as skin penetration enhancers.Pharmaceutical skin penetration enhancement. WaltersK.A. HadgraftJ. New YorkMarcel Dekker199395111
    [Google Scholar]
  31. ChoiS. JungS.Y. KimC.H. KimH.S. RhimH. KimS.C. NahS.Y. Effect of ginsenosides on voltage-dependent Ca2+ channel subtypes in bovine chromaffin cells.J. Ethnopharmacol.2001741758110.1016/S0378‑8741(00)00353‑611137351
    [Google Scholar]
  32. KimuraC. NakanishiT. TojoK. Skin permeation of ketotifen applied from stick-type formulation.Eur. J. Pharm. Biopharm.200767242042410.1016/j.ejpb.2007.02.02217433642
    [Google Scholar]
  33. BarryB.W. The LPP theory of skin penetration enhancement. in vitro percutaneous absorption: Principles, fundamentals and applications.FloridaCRC Press1991165185
    [Google Scholar]
  34. OkamotoH. OhyabuM. HashidaM. SezakiH. Enhanced penetration of mitomycin C through hairless mouse and rat skin by enhancers with terpene moieties.J. Pharm. Pharmacol.201139753153410.1111/j.2042‑7158.1987.tb03172.x2886622
    [Google Scholar]
  35. ThakurR.A. WangY. MichniakB.B. Essential oils and terpenes.Percutaneous penetration enhancers.2nd ed SmithE.W. MaibachH.I. Boca RatonCRC Press2006159173
    [Google Scholar]
  36. KangL. YapC.W. LimP.F.C. ChenY.Z. HoP.C. ChanY.W. WongG.P. ChanS.Y. Formulation development of transdermal dosage forms: Quantitative structure-activity relationship model for predicting activities of terpenes that enhance drug penetration through human skin.J. Control. Release2007120321121910.1016/j.jconrel.2007.05.00617582639
    [Google Scholar]
  37. JeevanR. VenkatR. KhanM.A. Kunta Goskonda BrothertonH.O. ReddyI.K. Effect of menthol and related terpenes on the percutaneous absorption of propranolol across excised hairless mouse skin.J. Pharm. Sci.199786121369137310.1021/js970161+9423148
    [Google Scholar]
  38. JainR. AqilM. AhadA. AliA. KharR.K. Basil oil is a promising skin penetration enhancer for transdermal delivery of labetolol hydrochloride.Drug Dev. Ind. Pharm.200834438438910.1080/0363904070165795818401780
    [Google Scholar]
  39. WilliamsA.C. BarryB.W. The enhancement index concept applied to terpene penetration enhancers for human skin and model lipophilic (oestradiol) and hydrophilic (5-fluorouracil) drugs.Int. J. Pharm.1991742-315716810.1016/0378‑5173(91)90232‑D
    [Google Scholar]
  40. YamaneM.A. WilliamsA.C. BarryB.W. Effects of terpenes and oleic acid as skin penetration enhancers towards 5-fluorouracil as assessed with time; permeation, partitioning and differential scanning calorimetry.Int. J. Pharm.1995116223725110.1016/0378‑5173(94)00312‑S
    [Google Scholar]
  41. NielsenJ.B. Natural oils affect the human skin integrity and the percutaneous penetration of benzoic acid dose-dependently.Basic Clin. Pharmacol. Toxicol.200698657558110.1111/j.1742‑7843.2006.pto_388.x16700820
    [Google Scholar]
  42. FangJ.Y. LeuY.L. HwangT.L. ChengH.C. Essential oils from sweet basil (Ocimum basilicum) as novel enhancers to accelerate transdermal drug delivery.Biol. Pharm. Bull.200427111819182510.1248/bpb.27.181915516730
    [Google Scholar]
  43. VasudevanD.T. RajanR. Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole.J. Adv. Pharm. Technol. Res.20123211211610.4103/2231‑4040.9728622837959
    [Google Scholar]
  44. FangJ.Y. LeuY.L. HwangT.L. ChengH.C. HungC.F. Development of sesquiterpenes from Alpinia oxyphylla as novel skin permeation enhancers.Eur. J. Pharm. Sci.200319425326210.1016/S0928‑0987(03)00118‑012885390
    [Google Scholar]
  45. AminS. KohliK. KharR.K. MirS.R. PillaiK.K. Mechanism of in vitro percutaneous absorption enhancement of carvedilol by penetration enhancers.Pharm. Dev. Technol.200813653353910.1080/1083745080230964618720242
    [Google Scholar]
  46. TakayamaK. NagaiT. Limonene and related compounds as potential skin penetration promoters.Drug Dev. Ind. Pharm.199420467768410.3109/03639049409038325
    [Google Scholar]
  47. WilliamsA.C. BarryB.W. Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement.Pharm. Res.199181172410.1023/A:10158138032052014203
    [Google Scholar]
  48. JainA. ThomasN.S. PanchagnulaR. Transdermal drug delivery of imipramine hydrochloride. I. Effect of terpenes.J. Control. Release2002791-39310110.1016/S0168‑3659(01)00524‑711853921
    [Google Scholar]
  49. AqilM. AhadA. SultanaY. AliA. Status of terpenes as skin penetration enhancers.Drug Discov. Today20071223-241061106710.1016/j.drudis.2007.09.00118061886
    [Google Scholar]
  50. KarandeP. JainA. ErgunK. KisperskyV. MitragotriS. Design principles of chemical penetration enhancers for transdermal drug delivery.Proc. Natl. Acad. Sci. USA2005102134688469310.1073/pnas.050117610215774584
    [Google Scholar]
  51. SchallerM. KortingH.C. Allergie airborne contact dermatitis from essential oils used in aromatherapy.Clin. Exp. Dermatol.199520214314510.1111/j.1365‑2230.1995.tb02719.x8565250
    [Google Scholar]
  52. LimP.F.C. LiuX.Y. KangL. HoP.C.L. ChanY.W. ChanS.Y. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol.Int. J. Pharm.20063111-215716410.1016/j.ijpharm.2005.12.04216451823
    [Google Scholar]
  53. ClarysP. AlewaetersK. JadoulA. BarelA. ManadasR.O. PréatV. in vitro percutaneous penetration through hairless rat skin: Influence of temperature, vehicle and penetration enhancers.Eur. J. Pharm. Biopharm.199846327928310.1016/S0939‑6411(98)00044‑79885299
    [Google Scholar]
  54. Femenía-FontA. Balaguer-FernándezC. MerinoV. RodillaV. López-CastellanoA. Effect of chemical enhancers on the in vitro percutaneous absorption of sumatriptan succinate.Eur. J. Pharm. Biopharm.2005611-2505510.1016/j.ejpb.2005.02.01415925502
    [Google Scholar]
  55. MoghimiH.R. MakhmalzadehB.S. ManafiA. Enhancement effect of terpenes on silver sulphadiazine permeation through third-degree burn eschar.Burns20093581165117010.1016/j.burns.2009.02.00619447550
    [Google Scholar]
  56. KrishnaiahY.S.R. SatyanarayanaV. BhaskarP. Influence of limonene on the bioavailability of nicardipine hydrochloride from membrane-moderated transdermal therapeutic systems in human volunteers.Int. J. Pharm.20022471-29110210.1016/S0378‑5173(02)00401‑512429488
    [Google Scholar]
  57. KararliT.T. KirchhoffC.F. PenzottiS.C.Jr Enhancement of transdermal transport of azidothymidine (AZT) with novel terpene and terpene-like enhancers: in vivo-in vitro correlations.J. Control. Release1995341435110.1016/0168‑3659(94)00128‑H
    [Google Scholar]
  58. CornwellP.A. BarryB.W. BouwstraJ.A. GoorisG.S. Modes of action of terpene penetration enhancers in human skin; Differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies.Int. J. Pharm.1996127192610.1016/0378‑5173(95)04108‑7
    [Google Scholar]
  59. WilliamsA.C. BarryB.W. Essential oils as novel human skin penetration enhancers.Int. J. Pharm.1989572R7R910.1016/0378‑5173(89)90310‑4
    [Google Scholar]
  60. AmnuaikitC. IkeuchiI. OgawaraK. HigakiK. KimuraT. Skin permeation of propranolol from polymeric film containing terpene enhancers for transdermal use.Int. J. Pharm.20052891-216717810.1016/j.ijpharm.2004.11.00715652209
    [Google Scholar]
  61. GaoS. SinghJ. in vitro percutaneous absorption enhancement of a lipophilic drug tamoxifen by terpenes.J. Control. Release1998512-319319910.1016/S0168‑3659(97)00168‑59685917
    [Google Scholar]
  62. KrishnaiahY.S.R. SatyanarayanaV. BhaskarP. Formulation and in vivo evaluation of membrane-moderated transdermal therapeutic systems of nicardipine hydrochloride using carvone as a penetration enhancer.Drug Deliv.200310210110910.1080/71384036712746056
    [Google Scholar]
  63. ArellanoA. SantoyoS. MartinC. YgartuaP. Enhancing effect of terpenes on the in vitro percutaneous absorption of diclofenac sodium.Int. J. Pharm.1996130114114510.1016/0378‑5173(95)04364‑0
    [Google Scholar]
  64. GodwinD.A. MichniakB.B. Influence of drug lipophilicity on terpenes as transdermal penetration enhancers.Drug Dev. Ind. Pharm.199925890591510.1081/DDC‑10010225110434134
    [Google Scholar]
  65. HanifR.M. QinengP. ZhanG. Penetration enhancing effect of tetrahydrogeraniol on the percutaneous absorption of 5-fluorouracil from gels in excised rat skin.J. Control. Release1998552-329730210.1016/S0168‑3659(98)00062‑59795085
    [Google Scholar]
  66. CornwellP.A. BarryB.W. Sesquiterpene components of volatile oils as skin penetration enhancers for the hydrophilic permeant 5-fluorouracil.J. Pharm. Pharmacol.201146426126910.1111/j.2042‑7158.1994.tb03791.x8051608
    [Google Scholar]
  67. El-KattanA.F. AsbillC.S. KimN. MichniakB.B. The effects of terpene enhancers on the percutaneous permeation of drugs with different lipophilicities.Int. J. Pharm.20012151-222924010.1016/S0378‑5173(00)00699‑211250108
    [Google Scholar]
  68. AungstB. Fatty acids as skin permeation enhancers.Percutaneous penetration enhancers. SmithE.W. MaibachH.I. FloridaCRC Press1995277287
    [Google Scholar]
  69. ShintaniM. OgisoT. Mechanism for the enhancement effect of fatty acids on the percutaneous absorption of propranolol.J. Pharm. Sci.199079121065107110.1002/jps.26007912062079652
    [Google Scholar]
  70. MorimotoK. TojimaH. HarutaT. SuzukiM. KakemiM. Enhancing effects of unsaturated fatty acids with various structures on the permeation of indomethacin through rat skin.J. Pharm. Pharmacol.201148111133113710.1111/j.2042‑7158.1996.tb03908.x8961160
    [Google Scholar]
  71. KomataY. InaokaM. KanekoA. FujieT. in vitro percutaneous absorption of thiamine disulfide from a mixture of propylene glycol and fatty acid.J. Pharm. Sci.199281874474610.1002/jps.26008108041403716
    [Google Scholar]
  72. HjaltasonB. New frontiers in the processing and utilization of fish oil.Nutritional impact of food processing. Bibl Nutr Dieta SomogyiJ.C. MüllerH.R. Basel, SwitzerlandKarger Publishing19899610610.1159/000416695
    [Google Scholar]
  73. LoftssonT. GudmundsdóttirT.K. FridriksdóttirH. SigurdardóttirA.M. ThorkelssonJ. GudmundssonG. HjaltasonB. Fatty acids from cod-liver oil as skin penetration enhancers.Pharmazie19955031881907732049
    [Google Scholar]
  74. LoftssonT. ThormarH. OlafssonJ.H. GunnarsdottirT.M. HjaltsasonB. GudmundssonG. Fatty acid extract from cod-liver oil: Activity against herpes simplex virus and enhancement of transdermal delivery of acyclovir in vitro.Pharm. Pharmacol. Commun.19984287291
    [Google Scholar]
  75. PrescottG.W. The Algae: A review.Oikos19692056910.2307/3543222
    [Google Scholar]
  76. LeeR.E. Phycology.3rd edCambridge, UKCambridge University Press19993177
    [Google Scholar]
  77. FangJ.Y. ChiuH.C. WuJ.T. ChiangY.R. HsuS.H. Fatty acids in Botryococcus braunii accelerate topical delivery of flurbiprofen into and across skin.Int. J. Pharm.20042761-216317310.1016/j.ijpharm.2004.02.02615113623
    [Google Scholar]
  78. GarrettR.H. GrishamC.M. Principles of Biochemistry: With a human focus.1st edPacific Grove, CA, USABrooks/Cole2001158633
    [Google Scholar]
  79. Valjakka-KoskelaR. KirjavainenM. MönkkönenJ. UrttiA. KiesvaaraJ. Enhancement of percutaneous absorption of naproxen by phospholipids.Int. J. Pharm.1998175222523010.1016/S0378‑5173(98)00285‑3
    [Google Scholar]
  80. YokomizoY. SagitaniH. Effects of phospholipids on the in vitro percutaneous penetration of prednisolone and analysis of mechanism by using attenuated total reflectance-Fourier transform infrared spectroscopy.J. Pharm. Sci.199685111220122610.1021/js960044z8923329
    [Google Scholar]
  81. YokomizoY. SagitaniH. Effects of phospholipids on the percutaneous penetration of indomethacin through the dorsal skin of guinea pigs in vitro.J. Control. Release1996382-326727410.1016/0168‑3659(95)00127‑1
    [Google Scholar]
  82. YokomizoY. SagitaniH. The effects of phospholipids on the percutaneous penetration of indomethacin through the dorsal skin of guinea pig in vitro. 2. The effects of the hydrophobic group in phospholipids and a comparison with general enhancers.J. Control. Release1996421374610.1016/0168‑3659(96)01349‑1
    [Google Scholar]
  83. NishihataT. KoteraK. NakanoY. YamazakiM. Rat percutaneous transport of diclofenac and influence of hydrogenated soya phospholipids.Chem. Pharm. Bull. (Tokyo)19873593807381210.1248/cpb.35.38073435976
    [Google Scholar]
  84. KatoA. IshibashiY. MiyakeY. Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride.J. Pharm. Pharmacol.201139539940010.1111/j.2042‑7158.1987.tb03407.x2886592
    [Google Scholar]
  85. KirjavainenM. UrttiA. Valjakka-KoskelaR. KiesvaaraJ. MönkkönenJ. Liposome–skin interactions and their effects on the skin permeation of drugs.Eur. J. Pharm. Sci.19997427928610.1016/S0928‑0987(98)00037‑29971910
    [Google Scholar]
  86. MuraS. ManconiM. SinicoC. ValentiD. FaddaA.M. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil.Int. J. Pharm.20093801-2727910.1016/j.ijpharm.2009.06.04019589377
    [Google Scholar]
  87. Dragicevic-CuricN. ScheglmannD. AlbrechtV. FahrA. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies.J. Control. Release20081271596910.1016/j.jconrel.2007.12.01318281119
    [Google Scholar]
  88. TouitouE. DayanN. BergelsonL. GodinB. EliazM. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties.J. Control. Release200065340341810.1016/S0168‑3659(99)00222‑910699298
    [Google Scholar]
  89. SaidinN.M. AnuarN.K. AffandiM.M.R. Roles of polysaccharides in transdermal drug delivery system and future prospects.J. Appl. Pharm. Sci.201883141157
    [Google Scholar]
  90. LiQ. NiuY. XingP. WangC. Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair.Chin. Med.2018131710.1186/s13020‑018‑0166‑029445417
    [Google Scholar]
  91. SchaferN. BalwierzR. BiernatP. Ochędzan-SiodłakW. LipokJ. Natural ingredients of transdermal drug delivery systems as permeation enhancers of active substances through the Stratum Corneum.Mol. Pharm.20232073278329710.1021/acs.molpharmaceut.3c0012637279070
    [Google Scholar]
  92. SaidinN.M. AnuarN.K. Tin WuiW. Meor Mohd AffandiM.M.R. Wan EngahW.R. Skin barrier modulation by Hibiscus rosa-sinensis L. mucilage for transdermal drug delivery.Polym. Bull.20227953099311510.1007/s00289‑021‑03658‑1
    [Google Scholar]
  93. JaipakdeeN. JarukamjornK. PutalunW. LimpongsaE. Permeation, stability and acute dermal irritation of miroestrol and deoxymiroestrol from Pueraria candollei var. mirifica crude extract loaded transdermal gels.Pharm. Dev. Technol.202126996797710.1080/10837450.2021.196798234382493
    [Google Scholar]
  94. SudhaP.N. RoseM.H. Beneficial effects of hyaluronic acid.Adv. Food Nutr. Res.20147213717610.1016/B978‑0‑12‑800269‑8.00009‑925081082
    [Google Scholar]
  95. ZhuJ. TangX. JiaY. HoC.T. HuangQ. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – A review.Int. J. Pharm.202057811912710.1016/j.ijpharm.2020.119127
    [Google Scholar]
  96. ZhangX. WeiD. XuY. ZhuQ. Hyaluronic acid in ocular drug delivery.Carbohydr. Polym.202126411800610.1016/j.carbpol.2021.11800633910737
    [Google Scholar]
  97. YanL.H. ZhangY.J. HuH.J. ZhangC. WangY. XuX.T. ZhangT.C. SuR. LuoX.G. Enhanced transdermal absorption of hyaluronic acid via fusion with Pep-1 and a hyaluronic acid binding peptide.Macromol. Biosci.2023233220017310.1002/mabi.20220017336448643
    [Google Scholar]
  98. ChenY. ZhangZ. XinY. ZhouR. JiangK. SunX. HeD. SongJ. ZhangY. Synergistic transdermal delivery of nanoethosomes embedded in hyaluronic acid nanogels for enhancing photodynamic therapy.Nanoscale20201228154351544210.1039/D0NR03494K32662485
    [Google Scholar]
  99. PandeyM. ChoudhuryH. GunasegaranT.A.P. NathanS.S. MdS. GorainB. TripathyM. HussainZ. Hyaluronic acid- modified betamethasone encapsulated polymeric nanoparticles: Fabrication, characterisation, in vitro release kinetics, and dermal targeting.Drug Deliv. Transl. Res.20199252053310.1007/s13346‑018‑0480‑129488170
    [Google Scholar]
  100. ZhangY. XiaQ. LiY. HeZ. LiZ. GuoT. WuZ. FengN. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin.Theranostics201991486410.7150/thno.2971530662553
    [Google Scholar]
  101. KawarD. AbdelkaderH. Hyaluronic acid gel-core liposomes (hyaluosomes) enhance skin permeation of ketoprofen.Pharm. Dev. Technol.201924894795310.1080/10837450.2019.157276130676142
    [Google Scholar]
  102. XieJ. JiY. XueW. MaD. HuY. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery.Colloids Surf. B Biointerfaces201817232332910.1016/j.colsurfb.2018.08.06130176512
    [Google Scholar]
  103. KimA.R. LeeS.L. ParkS.N. Properties and in vitro drug release of pH- and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin.Int. J. Biol. Macromol.2018118Pt A73174010.1016/j.ijbiomac.2018.06.06129940230
    [Google Scholar]
  104. ZhuoF. AbourehabM.A.S. HussainZ. Hyaluronic acid decorated tacrolimus-loaded nanoparticles: Efficient approach to maximize dermal targeting and anti-dermatitis efficacy.Carbohydr. Polym.201819747848910.1016/j.carbpol.2018.06.02330007638
    [Google Scholar]
  105. WittingM. BorehamA. BrodwolfR. VávrováK. AlexievU. FriessW. HedtrichS. Interactions of hyaluronic Acid with the skin and implications for the dermal delivery of biomacromolecules.Mol. Pharm.20151251391140110.1021/mp500676e25871518
    [Google Scholar]
  106. KongB.J. KimA. ParkS.N. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.Carbohydr. Polym.201614747348110.1016/j.carbpol.2016.04.02127178954
    [Google Scholar]
  107. BurrowsF. LouimeC. AbazingeM. OnokpiseO. Extraction and evaluation of chitosan from crab exoskeleton as a seed fungicide and plant growth enhancer.Am.-Eurasian J. Agric. Environ. Sci.20072103111
    [Google Scholar]
  108. HeW. GuoX. XiaoL. FengM. Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers.Int. J. Pharm.20093821-223424310.1016/j.ijpharm.2009.07.03819686826
    [Google Scholar]
  109. HeW. GuoX. ZhangM. Transdermal permeation enhancement of N-trimethyl chitosan for testosterone.Int. J. Pharm.20083561-2828710.1016/j.ijpharm.2007.12.05018337030
    [Google Scholar]
  110. TaveiraS.F. NomizoA. LopezR.F.V. Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity.J. Control. Release20091341354010.1016/j.jconrel.2008.11.00219047006
    [Google Scholar]
  111. LvH.X. ZhangZ.H. WangX.P. ChengQ.Q. WangW. HuangX.H. ZhouJ.P. ZhangQ. HouL.L. HuoW. A biomimetic chitosan derivates: Preparation, characterization and transdermal enhancement studies of N-arginine chitosan.Molecules20111686778679010.3390/molecules1608677821829153
    [Google Scholar]
  112. MelzigM.F. BaderG. LooseR. Investigations of the mechanism of membrane activity of selected triterpenoid saponins.Planta Med.2001671434810.1055/s‑2001‑1063211270721
    [Google Scholar]
  113. PlockA. Sokolowska-KöhlerW. PresberW. Application of flow cytometry and microscopical methods to characterize the effect of herbal drugs on Leishmania Spp.Exp. Parasitol.200197314115310.1006/expr.2001.459811312576
    [Google Scholar]
  114. KlangV. MatskoN. ZimmermannA.M. VojnikovicE. ValentaC. Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions.Int. J. Pharm.20103931-215316110.1016/j.ijpharm.2010.04.02920434531
    [Google Scholar]
  115. SeemanP. Ultrastructure of membrane lesions in immune lysis, osmotic lysis and drug-induced lysis.Fed. Proc.19743310211621244607618
    [Google Scholar]
  116. SeemanP. ChengD. IlesG.H. Structure of membrane holes in osmotic and saponin hemolysis.J. Cell Biol.197356251952710.1083/jcb.56.2.5194566525
    [Google Scholar]
  117. OhH. OhY.K. KimC.K. Effects of vehicles and enhancers on transdermal delivery of melatonin.Int. J. Pharm.20012121637110.1016/S0378‑5173(00)00598‑611165821
    [Google Scholar]
  118. BrainK. HadgraftJ.Jr Al-ShatalebiM. Membrane modification in activity of plant molluscicides.Planta Med.199056666310.1055/s‑2006‑961323
    [Google Scholar]
  119. BrownM.B. MartinG.P. JonesS.A. AkomeahF.K. Dermal and transdermal drug delivery systems: Current and future prospects.Drug Deliv.200613317518710.1080/1071754050045597516556569
    [Google Scholar]
  120. HostettmannK. MarstonA. Chemistry and pharmacology of natural products: Saponins.CambridgeCambridge University Press1995234284
    [Google Scholar]
  121. DengS. MayB.H. ZhangA.L. LuC. XueC.C.L. Topical herbal medicine combined with pharmacotherapy for psoriasis: A systematic review and meta-analysis.Arch. Dermatol. Res.2013305317918910.1007/s00403‑013‑1316‑y23354931
    [Google Scholar]
  122. KataokaS. HattoriK. DateA. TamuraH. Human keratinocyte caspase-14 expression is altered in human epidermal 3D models by dexamethasone and by natural products used in cosmetics.Arch Dermatol Res.20133058683910.1007/s00403‑013‑1359‑0
    [Google Scholar]
  123. YamasakiY. ItoK. EnomotoY. SutkoJ.L. Alterations by saponins of passive Ca2+ permeability and Na+-Ca2+ exchange activity of canine cardiac sarcolemmal vesicles.Biochim. Biophys. Acta Biomembr.1987897348148710.1016/0005‑2736(87)90445‑73814597
    [Google Scholar]
  124. KageM. TokudomeY. HashimotoF. Permeation of hyaluronan tetrasaccharides through hairless mouse skin: An in vitro and in vivo study.Arch. Dermatol. Res.20133051697710.1007/s00403‑012‑1252‑222740084
    [Google Scholar]
  125. FrancisG. KeremZ. MakkarH.P.S. BeckerK. The biological action of saponins in animal systems: A review.Br. J. Nutr.200288658760510.1079/BJN200272512493081
    [Google Scholar]
  126. KimY.S. Carbohydrates.New perspectives on aloe. ParkY.I. LeeS.K. New York, NY, USASpringer Science2006576210.1007/0‑387‑34636‑8_5
    [Google Scholar]
  127. ColeL. HeardC. Skin permeation enhancement potential of Aloe Vera and a proposed mechanism of action based upon size exclusion and pull effect.Int. J. Pharm.20073331-2101610.1016/j.ijpharm.2006.09.04717088033
    [Google Scholar]
  128. BallamL. HeardC.M. Pre-treatment with Aloe vera juice does not enhance the in vitro permeation of ketoprofen across skin.Skin Pharmacol. Physiol.201023211311610.1159/00026568220016253
    [Google Scholar]
  129. FoxL.P. MerkH.F. BickersD.R. Dermatological pharmacology.The pharmacological basis of therapeutics; Goodman & Gilman’s.11th ed BruntonL.L. LazoJ.S. ParkerK.L. New York, NY, USAMcGraw-Hill200616791706
    [Google Scholar]
  130. McGawD.R. HolderR. CommissiongE. MaxwellA. Extraction of volatile and fixed oil products from hot peppers.Proceedings of the 6th international symposium on supercritical fluids, international society for advancement of supercritical fluidsVersailles, France20032830
    [Google Scholar]
  131. TrivediJ.S. KrillS.L. FortJ.J. Vitamin E as a human skin penetration enhancer.Eur. J. Pharm. Sci.19953424124310.1016/0928‑0987(95)00014‑5
    [Google Scholar]
  132. MerfortI. HeilmannJ. Hagedorn-LewekeU. LippoldB.C. in vivo skin penetration studies of camomile flavones.Pharmazie19944975095118073060
    [Google Scholar]
  133. NambaT. SekiyaK. ToshinaiA. KadotaS. HatanakaT. KatayamaK. KoizumiT. [Study on baths with crude drug. II.: The effects of coptidis rhizoma extracts as skin permeation enhancer].Yakugaku Zasshi1995115861862510.1248/yakushi1947.115.8_6187473059
    [Google Scholar]
  134. NambaT. SekiyaK. KadotaS. HattoriM. KatayamaK. KoizumiT. [Studies on the baths with crude drug: The effects of Senkyu extract as skin penetration enhancer].Yakugaku Zasshi1992112963864410.1248/yakushi1947.112.9_6381469611
    [Google Scholar]
  135. MuhammadF. WileyJ. RiviereJ.E. Influence of some plant extracts on the transdermal absorption and penetration of marker penetrants.Cutan. Ocul. Toxicol.2017361606610.3109/15569527.2016.114745627027912
    [Google Scholar]
  136. FuhY.M. PhamD.C. WengC.F. Effects of sting plant extracts as penetration enhancers on transdermal delivery of hypoglycemic compounds.Medicina (Kaunas)201955512110.3390/medicina5505012131067805
    [Google Scholar]
  137. PfisterW.R. HsiehD.S. Permeation enhancers compatible with transdermal drug delivery systems: Part II: System design considerations.Med. Device Technol.199016283310171149
    [Google Scholar]
  138. WangY. ThakurR. FanQ. MichniakB. Transdermal iontophoresis: Combination strategies to improve transdermal iontophoretic drug delivery.Eur. J. Pharm. Biopharm.200560217919110.1016/j.ejpb.2004.12.00815939232
    [Google Scholar]
  139. WilliamsA.C. BarryB.W. Penetration enhancers.Adv. Drug Deliv. Rev.200456560361810.1016/j.addr.2003.10.02515019749
    [Google Scholar]
  140. KanikkannanN. BabuR.J. SinghM. Structure-activity relationship of chemical penetration enhancers.Percutaneous penetration enhancers.2nd ed SmithE.W. MaibachH.I. FloridaCRC Press20061732
    [Google Scholar]
  141. GhafourianT. ZandasrarP. HamishekarH. NokhodchiA. The effect of penetration enhancers on drug delivery through skin: A QSAR study.J. Control. Release200499111312510.1016/j.jconrel.2004.06.01015342185
    [Google Scholar]
  142. MossG.P. CroninM.T.D. Quantitative structure–permeability relationships for percutaneous absorption: Re-analysis of steroid data.Int. J. Pharm.20022381-210510910.1016/S0378‑5173(02)00057‑111996814
    [Google Scholar]
  143. PottsR.O. GuyR.H. Predicting skin permeability.Pharm. Res.19929566366910.1023/A:10158103124651608900
    [Google Scholar]
  144. HostýnekJ.J. MageeP.S. Modelling in vivo human skin absorption.Quant. Struct.-Act. Relationsh.199716647347910.1002/qsar.19970160606
    [Google Scholar]
  145. SongkroS. An overview of skin penetration enhancers: Penetration enhancing activity, skin irritation potential and mechanism of action.Songklanakarin J. Sci. Technol.2009313299321
    [Google Scholar]
  146. GoldenG.M. GuzekD.B. HarrisR.R. McKieJ.E. PottsR.O. Lipid thermotropic transitions in human stratum corneum.J. Invest. Dermatol.198686325525910.1111/1523‑1747.ep122853733745950
    [Google Scholar]
  147. GoodmanM. BarryB.W. Differential scanning calorimetry of human stratum corneum effects of penetration enhancers azone and dimethyl sulphoxide.Anal. Proc.198623397398
    [Google Scholar]
  148. LundborgM. WennbergC.L. NarangifardA. LindahlE. NorlénL. Predicting drug permeability through skin using molecular dynamics simulation.J. Control. Release201828326927910.1016/j.jconrel.2018.05.02629864475
    [Google Scholar]
  149. SapraB. JainS. TiwaryA.K. Effect of Asparagus racemosus extract on transdermal delivery of carvedilol: A mechanistic study.AAPS PharmSciTech200910119921010.1208/s12249‑009‑9198‑119238554
    [Google Scholar]
  150. ShamsherA.A. CharooN.A. RahmanZ. PillaiK.K. KohliK. Tulsi oil as a potential penetration enhancer for celecoxib transdermal gel formulations.Pharm. Dev. Technol.2014191213010.3109/10837450.2012.75140323281713
    [Google Scholar]
  151. NanL. LiuC. LiQ. WanX. GuoJ. QuanP. FangL. Investigation of the enhancement effect of the natural transdermal permeation enhancers from Ledum palustre L. var. angustum N. Busch: Mechanistic insight based on interaction among drug, enhancers and skin.Eur. J. Pharm. Sci.201812410511310.1016/j.ejps.2018.08.02530153525
    [Google Scholar]
  152. GaoS. SinghJ. Mechanism of transdermal transport of 5-fluorouracil by terpenes: Carvone, 1,8-cineole and thymol.Int. J. Pharm.19971541677710.1016/S0378‑5173(97)00123‑3
    [Google Scholar]
  153. ZhangL.C. HuJ.H. LiL. GaoL.H. ZhuQ.G. LiZ. WangZ.Z. SuD.F. in vivo and in vitro evaluation of essential oils from Ligusticum chuanxiong Hort on the transdermal delivery of flurbiprofen in rabbits.Biol. Pharm. Bull.20062961217122210.1248/bpb.29.121716755020
    [Google Scholar]
  154. WantJ. Percutaneous penetration enhancement effect of essential oil of mint (Mentha haplocalyx Briq.) on Chinese herbal components with different lipophilicity.J. Tradit. Chin. Med. Sci.201412109119
    [Google Scholar]
  155. VaddiH.K. HoP.C. ChanS.Y. Terpenes in propylene glycol as skin-penetration enhancers: Permeation and partition of haloperidol, fourier transform infrared spectroscopy, and differential scanning calorimetry.J. Pharm. Sci.20029171639165110.1002/jps.1016012115825
    [Google Scholar]
  156. ChenJ. JiangQ.D. WuY.M. LiuP. YaoJ.H. LuQ. ZhangH. DuanJ.A. Potential of essential oils as penetration enhancers for transdermal administration of ibuprofen to treat dysmenorrhoea.Molecules20152010182191823610.3390/molecules20101821926457698
    [Google Scholar]
  157. JiangQ. WuY. ZhangH. LiuP. YaoJ. YaoP. ChenJ. DuanJ. Development of essential oils as skin permeation enhancers: Penetration enhancement effect and mechanism of action.Pharm. Biol.20175511592160010.1080/13880209.2017.131246428399694
    [Google Scholar]
  158. RheeY.S. ChoiJ.G. ParkE.S. ChiS.C. Transdermal delivery of ketoprofen using microemulsions.Int. J. Pharm.20012281-216117010.1016/S0378‑5173(01)00827‑411576778
    [Google Scholar]
  159. Mohammadi-SamaniS. JamshidzadehA. MontaseriH. Rangbar-ZahedaniM. KianradR. The effects of some permeability enhancers on the percutaneous absorption of lidocaine.Pak. J. Pharm. Sci.2010231838820067872
    [Google Scholar]
  160. ZafarS. AliA. AqilM. AhadA. Transdermal drug delivery of labetalol hydrochloride: Feasibility and effect of penetration enhancers.J. Pharm. Bioallied Sci.20102432132410.4103/0975‑7406.7213221180464
    [Google Scholar]
  161. VashisthI. AhadA. AqilM. AgarwalS.P. Investigating the potential of essential oils as penetration enhancer for transdermal losartan delivery: Effectiveness and mechanism of action.Asian J Pharmaceut Sci20149526026710.1016/j.ajps.2014.06.007
    [Google Scholar]
  162. HeardC.M. KungD. ThomasC.P. Skin penetration enhancement of mefenamic acid by ethanol and 1,8-cineole can be explained by the ‘pull’ effect.Int. J. Pharm.20063211-216717010.1016/j.ijpharm.2006.05.01816787720
    [Google Scholar]
  163. HuangY.B. WuP.C. KoH.M. TsaiY.H. Effect of pretreatment by cardamom oil on in vitro percutaneous penetration of piroxicam gel.Int. J. Pharm.1996131213714110.1016/0378‑5173(95)04282‑2
    [Google Scholar]
  164. PugliaC. BoninaF. Effect of polyunsaturated fatty acids and some conventional penetration enhancers on transdermal delivery of atenolol.Drug Deliv.200815210711210.1080/1071754080190509018293196
    [Google Scholar]
  165. AminS. MirS.R. KohliK. AliB. AliM. A study of the chemical composition of black cumin oil and its effect on penetration enhancement from transdermal formulations.Nat. Prod. Res.201024121151115710.1080/1478641090294090920582810
    [Google Scholar]
  166. KimM.J. DohH.J. ChoiM.K. ChungS.J. ShimC.K. KimD.D. KimJ.S. YongC.S. ChoiH.G. Skin permeation enhancement of diclofenac by fatty acids.Drug Deliv.200815637337910.1080/1071754080200689818686081
    [Google Scholar]
  167. IbrahimS.A. LiS.K. Efficiency of fatty acids as chemical penetration enhancers: Mechanisms and structure enhancement relationship.Pharm. Res.201027111512510.1007/s11095‑009‑9985‑019911256
    [Google Scholar]
  168. van ZylL. du PreezJ. GerberM. du PlessisJ. ViljoenJ. Essential fatty acids as transdermal penetration enhancers.J. Pharm. Sci.2016105118819310.1016/j.xphs.2015.11.03226852854
    [Google Scholar]
  169. FangJ.Y. HwangT.L. FangC.L. ChiuH.C. in vitro and in vivo evaluations of the efficacy and safety of skin permeation enhancers using flurbiprofen as a model drug.Int. J. Pharm.20032551-215316610.1016/S0378‑5173(03)00086‑312672611
    [Google Scholar]
  170. BhatiaK.S. SinghJ. Synergistic effect of ionto-ability through porcine skin.J. Pharm. Sci.19988746246910.1021/js970301f9548900
    [Google Scholar]
  171. ChoC.W. ChoiJ.S. KimS.J. ShinS.C. Enhanced transdermal delivery of loratadine from the EVA matrix.Drug Deliv.200916423023510.1080/1071754090287226419514983
    [Google Scholar]
  172. Li-RenH. Yaw-BinH. Pao-ChuW. Yi-HungT. Percutaneous absorption of piroxicam from FAPG base through rat skin: Effects of fatty acid added to FAPG base.Int. J. Pharm.199410611610.1016/0378‑5173(94)90269‑0
    [Google Scholar]
  173. ShahK.K. ShiradkarM.R. BinduH. Transdermal delivery of aceclofenac: Effect of gymnema sylvestre and caralluma adscendens with its mechanism of action.RJPBCS201123762772
    [Google Scholar]
  174. SapraB. JainS. TiwaryA.K. Transdermal delivery of carvedilol containing glycyrrhizin and chitosan as permeation enhancers: Biochemical, biophysical, microscopic and pharmacodynamic evaluation.Drug Deliv.200815744345410.1080/1071754080232704718712622
    [Google Scholar]
  175. NokhodchiA. NazemiyehH. GhafourianT. Hassan-ZadehD. ValizadehH. BaharyL.A.S. The effect of glycyrrhizin on the release rate and skin penetration of diclofenac sodium from topical formulations.Farmaco2002571188388810.1016/S0014‑827X(02)01298‑312484536
    [Google Scholar]
  176. MoghimipourE. Sajadi TabassiS.A. RamazaniM. LobenbergR. Enhanced permeability of gentamicin sulfate through shed snake-skin and liposomal membranes by different enhancers.I.J.B.200261920
    [Google Scholar]
  177. DegimI.T. UsluA. HadgraftJ. AtayT. AkayC. CevherogluS. The effects of Azone and capsaicin on the permeation of naproxen through human skin.Int. J. Pharm.19991791212510.1016/S0378‑5173(98)00353‑610053198
    [Google Scholar]
  178. AbdE. YousefS.A. PastoreM.N. TelaproluK. MohammedY.H. NamjoshiS. GriceJ.E. RobertsM.S. Advances and applications: Skin models for the testing of transdermal drugs.Clin. Pharmacol: Adv. Appl.20168163176
    [Google Scholar]
  179. PatilU.K. SaraogiR. Natural products as potential drug permeation enhancer in transdermal drug delivery system.Arch. Dermatol. Res.2014306541942610.1007/s00403‑014‑1445‑y24481830
    [Google Scholar]
  180. MauryaS.K. DivakarS. PatilU.K. Potentials of plant derived products for the treatment of skin disorders.German Journal of Pharmaceuticals and Biomaterials202323093110.5530/gjpb.2023.3.8
    [Google Scholar]
  181. RajputD. SinghM. SahuP. JainD. KashawS.K. PatilU.K. Advances in Nanogel as Drug Delivery System for Cancer therapeutics: An overview.Mini Rev. Med. Chem.202323212053207210.2174/138955752366623022212443836809967
    [Google Scholar]
  182. HaniU. Jaswanth GowdaB.H. SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303710.1016/j.molliq.2023.123037
    [Google Scholar]
  183. SanjanaA. AhmedM.G. Gowda BHJ. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo.Mater. Today Proc.20225019720510.1016/j.matpr.2021.04.120
    [Google Scholar]
  184. NarayanaS. AhmedM.G. GowdaB.H.J. ShettyP.K. NasrineA. ThriveniM. NoushidaN. SanjanaA. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Future Journal of Pharmaceutical Sciences20217118610.1186/s43094‑021‑00331‑2
    [Google Scholar]
  185. GowdaB.H.J. AhmedM.G. ChinnamS. PaulK. AshrafuzzamanM. ChavaliM. GahtoriR. PanditS. KesariK.K. GuptaP.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20227110330510.1016/j.jddst.2022.103305
    [Google Scholar]
  186. HaniU. OsmaniR.A.M. YasminS. GowdaB.H.J. AtherH. AnsariM.Y. SiddiquaA. GhazwaniM. FateaseA.A. AlamriA.H. RahamathullaM. BegumM.Y. WahabS. Novel drug delivery systems as an emerging platform for stomach cancer therapy.Pharmaceutics2022148157610.3390/pharmaceutics1408157636015202
    [Google Scholar]
  187. NarayanaS. NasrineA. Gulzar AhmedM. SultanaR. Jaswanth GowdaB.H. SuryaS. AlmuqbilM. AsdaqS.M.B. AlshehriS. Arif HussainS. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation.Saudi Pharm. J.202331346247110.1016/j.jsps.2023.01.01337026047
    [Google Scholar]
  188. DamiriF GowdaBJ AndraS BaluS RojekarS BerradaM Chitosan nanocomposites as scaffolds for bone tissue regeneration.Chitosan NanocompositesChamSpringer202310.1007/978‑981‑19‑9646‑7_16
    [Google Scholar]
  189. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  190. AhamedJ. Jaswanth GowdaB.H. AlmalkiW.H. GuptaN. SahebkarA. KesharwaniP. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges.Eur. Polym. J.202319311211110.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  191. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327610.1016/j.ijpharm.2023.12327637516217
    [Google Scholar]
  192. WuS. PengL. SangH. Ping LiQ. ChengS. Anticancer effects of α-Bisabolol in human non-small cell lung carcinoma cells are mediated via apoptosis induction, cell cycle arrest, inhibition of cell migration and invasion and upregulation of P13K/AKT signalling pathway.J. BUON20182351407141230570866
    [Google Scholar]
  193. MasyitaA. Mustika SariR. Dwi AstutiA. YasirB. Rahma RumataN. EmranT.B. NainuF. Simal-GandaraJ. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives.Food Chem. X20221310021710.1016/j.fochx.2022.10021735498985
    [Google Scholar]
  194. PeterleL. SanfilippoS. BorgiaF. Li PomiF. VadalàR. CostaR. CiceroN. GangemiS. The role of nutraceuticals and functional foods in skin cancer: Mechanisms and therapeutic potential.Foods20231213262910.3390/foods1213262937444367
    [Google Scholar]
  195. HuangT.H. WangP.W. YangS.C. ChouW.L. FangJ.Y. Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin.Mar. Drugs201816825610.3390/md1608025630061538
    [Google Scholar]
  196. HuangT.H. Compositions and methods related to cannabinoids, terpenoids and essential oils.US Patent 20200316016A12019
  197. DanielB. Permeation enhancers for topical formulations.US Patent 8906397B22012
  198. NicoleS. Transdermal cannabinoid patch.US Patent 2020338041A12020
  199. CharlesC. Compositions and methods of transdermal delivery for therapeutic agents.WO Patent 2017100103A12017
  200. JamesC. Cannabis plant formulations and methods of delivery.US Patent 2021369802A12021
  201. XuegangL. Novel hyaluronic acid binding peptide (HaBP) and transdermal absorption and subcutaneous targeted release preparation.CN Patent 107226846B2020
  202. BenderL. Method of treating cancer.KR Patent 101839864B12020
/content/journals/ddl/10.2174/0122103031307565240806112110
Loading
/content/journals/ddl/10.2174/0122103031307565240806112110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test