Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Rectal Drug Delivery System (RDDS) emerges as an alternative administration route due to the rectum's small surface area and limited enzyme activity, which contribute to efficient drug absorption. RDDS offers various advantages, such as reduced first-pass metabolism, rapid absorption of low molecular weight drugs, and the ability to accommodate large retention volumes and facilitate absorption the lymphatic system. Moreover, RDDS is preferable for drugs with low stability, solubility, and permeability oral administration, as well as effectively addressing concerns related to gastric irritation or degradation. This review delves into the factors influencing drug absorption in RDDS, including drug properties, formulation types, and physiological and pathology-associated considerations. It further explores conventional RDDS, including enemas, suppositories, tablets, gels, sprays, ointments, and creams, as well as novel approaches involving nanoparticles, liposomes, microspheres, and solid lipid nanoparticles (SLNs) in rectal dosage forms. Furthermore, the challenges and prospects of RDDS in treating rectal diseases are discussed. This review provides valuable insights into the potential of RDDS, highlighting the importance of continuous research and development in enhancing patient outcomes and advancing healthcare practices.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031328871241023075235
2024-10-31
2025-12-15
Loading full text...

Full text loading...

References

  1. EzikeT.C. OkpalaU.S. OnojaU.L. NwikeC.P. EzeakoE.C. OkparaO.J. OkoroaforC.C. EzeS.C. KaluO.L. OdohE.C. NwadikeU.G. OgbodoJ.O. UmehB.U. OssaiE.C. NwangumaB.C. Advances in drug delivery systems, challenges and future directions.Heliyon202396e1748810.1016/j.heliyon.2023.e1748837416680
    [Google Scholar]
  2. VargasonA.M. AnselmoA.C. MitragotriS. The evolution of commercial drug delivery technologies.Nat. Biomed. Eng.20215995196710.1038/s41551‑021‑00698‑w33795852
    [Google Scholar]
  3. MignaniS. El KazzouliS. BousminaM. MajoralJ-P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview.Adv. Drug Deliv. Rev.201365101316133010.1016/j.addr.2013.01.00123415951
    [Google Scholar]
  4. KimJ. De JesusO. Medication Routes of Administration.StatPearls Publishing,Treasure Island (FL)202433760436
    [Google Scholar]
  5. RathiR. Sanshita. KumarA. VishvakarmaV. HuanbuttaK. SinghI. SangnimT. Advancements in rectal drug delivery systems: Clinical trials, and patents perspective.Pharmaceutics20221410221010.3390/pharmaceutics14102210
    [Google Scholar]
  6. Hua, S. Physiological and pharmaceutical considerations for rectal drug formulations.Front. Pharmacol.201910119610.3389/fphar.2019.0119631680970
    [Google Scholar]
  7. GlykA. SolleD. ScheperT. BeutelS. Evaluation of driving forces for protein partition in PEG-salt aqueous twophase systems and optimization by design of experiments.J. Chromatogr. Sep. Tech.20178610.4172/2157‑7064.1000389
    [Google Scholar]
  8. Lakshmi PrasannaJ. DeepthiB. Rama RaoN. Rectal drug delivery: A promising route for enhancing drug absorption.Asian J. Res. Pharm. Sci.20122143149
    [Google Scholar]
  9. JanninV. LemagnenG. GueroultP. LarroutureD. TuleuC. Rectal route in the 21st Century to treat children.Adv. Drug Deliv. Rev.201473344910.1016/j.addr.2014.05.01224871671
    [Google Scholar]
  10. LamJ.K.W. CheungC.C.K. ChowM.Y.T. HarropE. LapwoodS. BarclayS.I.G. WongI.C.K. Transmucosal drug administration as an alternative route in palliative and end-of-life care during the COVID-19 pandemic.Adv. Drug Deliv. Rev.202016023424310.1016/j.addr.2020.10.01833137363
    [Google Scholar]
  11. PreetiS.S. SambhakarS. SaharanR. NarwalS. MalikR. GahlotV. KhalidA. NajmiA. ZoghebiK. HalawiM.A. AlbrattyM. MohanS. Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review.Saudi Pharm. J.2023311210187010.1016/j.jsps.2023.10187038053738
    [Google Scholar]
  12. SandriG. BonferoniM.C. FerrariF. RossiS. CaramellaC.M. The role of particle size in drug release and absorption.Particulate Products: Tailoring Properties for Optimal Performance. MerkusH.G. MeestersG.M.H. ChamSpringer201432334110.1007/978‑3‑319‑00714‑4_11
    [Google Scholar]
  13. BaviskarP. BedseA. SadiqueS. KundeV. JaiswalS. Drug delivery on rectal absorption: Suppositories.Int. J. Pharm. Sci. Rev. Res.2013217076
    [Google Scholar]
  14. HuanbuttaK. SangnimT. Bioadhesive films for drug delivery systems.Bioadhesives in Drug DeliveryWiley MittalK.L. BakshiI.S. NarangJ.K. 202010.1002/9781119640240.ch4
    [Google Scholar]
  15. Arévalo-PérezR. MaderueloC. LanaoJ.M. Recent advances in colon drug delivery systems.J. Control. Release202032770372410.1016/j.jconrel.2020.09.02632941930
    [Google Scholar]
  16. AmidonS. BrownJ.E. DaveV.S. Colon-targeted oral drug delivery systems: Design trends and approaches.AAPS PharmSciTech201516473174110.1208/s12249‑015‑0350‑926070545
    [Google Scholar]
  17. AhnY. HongG.S. LeeJ.H. LeeC.W. KimS.O. Ischemic colitis after enema administration: Incidence, timing, and clinical features.World J. Gastroenterol.202026416442645410.3748/wjg.v26.i41.644233244204
    [Google Scholar]
  18. DonnellyR.F. Stability of levodopa/carbidopa rectal suspensions.Hosp. Pharm.2016511191592110.1310/hpj5111‑91528057951
    [Google Scholar]
  19. QinS.B. GaoX.S. LiH.Z. LiuC.X. HouD.L. NianW.D. LiX.Y. WangD. Intra-rectal use of epinephrine in radiotherapy of prostate cancer.Cancer Manag. Res.2019114847485410.2147/CMAR.S18704931213905
    [Google Scholar]
  20. VuongM.T. McBrideA. MishalN. PhilipsonG. Topiramate rectal suspensions in pediatric patients.Seizure202185454710.1016/j.seizure.2020.12.02233418165
    [Google Scholar]
  21. HavaldarV. YadavA. DiasR. MaliK. GhorpadeV. SalunkheN. Rectal suppository as an effective alternative for oral administration.Res. J. Pharma. Technol.2015875976610.5958/0974‑360X.2015.00122.5
    [Google Scholar]
  22. MelnykG. YarnykhT. HerasymovaI. Analytical review of the modern range of suppository bases.Syst. Rev. Pharm.20201150350810.31838/srp.2020.4.76
    [Google Scholar]
  23. HamA.S. BuckheitR.W. Designing and developing suppository formulations for anti-HIV drug delivery.Ther. Deliv.20178980581710.4155/tde‑2017‑005628825395
    [Google Scholar]
  24. Abou el ElaAel.S. AllamA.A. IbrahimE.H. Pharmacokinetics and anti-hypertensive effect of metoprolol tartrate rectal delivery system.Drug Deliv.2016231697810.3109/10717544.2014.90402124758140
    [Google Scholar]
  25. AlwanL.A. Al-AkkamE.J. Formulation and in vitro evaluation of piroxicam conventional and hollow suppositories.2019Int. J. Drug Deliv. Technol.10220020910.25258/ijddt.10.2.3
    [Google Scholar]
  26. NiefR.A. Design and in vitro characterization of bisacodyl as a hollow type suppositories.J. Pharm. Res.2018125702706
    [Google Scholar]
  27. MatsumotoA. MurakamiK. WatanabeC. MurakamiM. Improved systemic delivery of insulin by condensed drug loading in a dimpled suppository.Drug Discov. Ther.201711629329910.5582/ddt.2017.0107229332886
    [Google Scholar]
  28. BialikM. KurasM. SobczakM. OledzkaE. Achievements in thermosensitive gelling systems for rectal administration.Int. J. Mol. Sci.20212211550010.3390/ijms2211550034071110
    [Google Scholar]
  29. AklM.A. IsmaelH.R. Abd AllahF.I. KassemA.A. SamyA.M. Tolmetin sodium-loaded thermosensitive mucoadhesive liquid suppositories for rectal delivery; strategy to overcome oral delivery drawbacks.Drug Dev. Ind. Pharm.201945225226410.1080/03639045.2018.153485830303407
    [Google Scholar]
  30. BirnbaumA.K. KrielR.L. BurkhardtR.T. RemmelR.P. Rectal absorption of lamotrigine compressed tablets.Epilepsia200041785085310.1111/j.1528‑1157.2000.tb00252.x10897156
    [Google Scholar]
  31. KhanR.U. El-RefaeyH. SharmaS. SoorannaD. StaffordM. Oral, rectal, and vaginal pharmacokinetics of misoprostol.Obstet. Gynecol.20041035 Pt 186687010.1097/01.AOG.0000124783.38974.5315121558
    [Google Scholar]
  32. BulićM. TuleuC. Rectal drug delivery to pediatric population.Croat. Med. J.202117680
    [Google Scholar]
  33. MettaS. KhanM. LakshmiM.S. DeviP. KannaS. A Review: Pharmaceutical gels and its types with prominence role of its drug delivery systems.Int. J. Res. Anal. Rev.1022023686701
    [Google Scholar]
  34. CiolacuD.E. NicuR. CiolacuF. Cellulose-based hydrogels as sustained drug-delivery systems.Materials (Basel)202013221310.3390/ma1322527033233413
    [Google Scholar]
  35. ReanmongkolW. KaewnopparatN. RatanajamitC. Development of tramadol hydrochloride rectal gel preparations and evaluation of analgesic activity in experimental animals.J. Drug Deliv. Sci. Technol.201121503507
    [Google Scholar]
  36. Al-JoufiF. ElmowafyM. AlruwailiN.K. AlharbiK.S. ShalabyK. AlsharariS.D. AliH.M. Mucoadhesive in situ rectal gel loaded with rifampicin: Strategy to improve bioavailability and alleviate liver toxicity.Pharmaceutics20211331310.3390/pharmaceutics1303033633807729
    [Google Scholar]
  37. SakranW. Abdel-RashidR.S. SalehF. Abdel-MonemR. Ethosomal gel for rectal transmucosal delivery of domperidone: Design of experiment, in vitro, and in vivo evaluation.Drug Deliv.20222911477149110.1080/10717544.2022.207254235543451
    [Google Scholar]
  38. SalatinS. TarzamaniM. FarjamiA. JelvehgariM. Development and characterization of a novel mucoadhesive sol-gel suppository of sumatriptan: Design, optimization, in vitro and ex-vivo evaluation for rectal drug delivery.Ther. Deliv.20221329510810.4155/tde‑2021‑006935128946
    [Google Scholar]
  39. BatchelorH. Rectal drug delivery.Pediatric Formulations: A Roadmap. Bar-ShalomD. RoseK. New YorkSpringer2014303310
    [Google Scholar]
  40. MahalingamR. LiX. JastiB.R. Semisolid dosages: Ointments, creams, and gels.Pharmaceutical Manufacturing HandbookJohn Wiley & Sons, Inc.New Jersey GadS.C. 2673122008
    [Google Scholar]
  41. AmaturoA. MeucciM. MariF.S. Treatment of haemorrhoidal disease with micronized purified flavonoid fraction and sucralfate ointment.Acta Biomed.202091113914110.23750/abm.v91i1.936132191669
    [Google Scholar]
  42. PietrolettiR. GiulianiA. BuonannoA. MatteiA. FiascaF. GalloG. Efficacy and tolerability of a new formulation in rectal ointment based on Zn-L-carnosine (Proctilor®) in the treatment of haemorrhoidal disease.Front. Surg.2022981888710.3389/fsurg.2022.81888735402488
    [Google Scholar]
  43. LawranceI.C. CopelandT-S. Rectal tacrolimus in the treatment of resistant ulcerative proctitis.Aliment. Pharmacol. Ther.200828101214122010.1111/j.1365‑2036.2008.03841.x18761706
    [Google Scholar]
  44. VahabiS. BeiranvandS. KarimiA. MoradkhaniM. Comparative study of 0.2% glyceryl trinitrate ointment for pain reduction after hemorrhoidectomy surgery.Surg. J. (N.Y.)201954e192e19610.1055/s‑0039‑340053231803842
    [Google Scholar]
  45. KestřánekJ. Hemorrhoid management in women: The role of tribenoside + lidocaine.Drugs Context2019821260210.7573/dic.21260231555338
    [Google Scholar]
  46. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers (Basel)2023157153705021010.3390/polym15071596
    [Google Scholar]
  47. Al-KassasR. BansalM. ShawJ. Nanosizing techniques for improving bioavailability of drugs.J. Control. Release201726020221210.1016/j.jconrel.2017.06.00328603030
    [Google Scholar]
  48. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  49. RachmawatiH. PradanaA.T. SafitriD. AdnyanaI.K. Multiple functions of d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as curcumin nanoparticle stabilizer: in vivo kinetic profile and anti-ulcerative colitis analysis in animal model.Pharmaceutics2017932410.3390/pharmaceutics903002428754010
    [Google Scholar]
  50. SeoY.G. KimD.W. YeoW.H. RamasamyT. OhY.K. ParkY.J. KimJ.A. OhD.H. KuS.K. KimJ.K. YongC.S. KimJ.O. ChoiH.G. Docetaxel-loaded thermosensitive and bioadhesive nanomicelles as a rectal drug delivery system for enhanced chemotherapeutic effect.Pharm. Res.20133071860187010.1007/s11095‑013‑1029‑023549753
    [Google Scholar]
  51. ZhangX.M. LiangJ.W. WangZ. KouJ.T. ZhouZ.X. Effect of preoperative injection of carbon nanoparticle suspension on the outcomes of selected patients with mid-low rectal cancer.Chin. J. Cancer2016353310.1186/s40880‑016‑0097‑z27044280
    [Google Scholar]
  52. NunesR. AraújoF. BarreirosL. BártoloI. SegundoM.A. TaveiraN. SarmentoB. das NevesJ. Noncovalent PEG coating of nanoparticle drug carriers improves the local pharmacokinetics of rectal Anti-HIV microbicides.ACS Appl. Mater. Interfaces20181041349423495310.1021/acsami.8b1221430234288
    [Google Scholar]
  53. JiaY. WangX. LiL. LiF. ZhangJ. LiangX-J. Lipid nanoparticles optimized for targeting and release of nucleic acid.Adv. Mater.2024364e230530010.1002/adma.20230530037547955
    [Google Scholar]
  54. ChavdaV.P. ViholD. MehtaB. ShahD. PatelM. VoraL.K. Pereira-SilvaM. Paiva-SantosA.C. Phytochemical-loaded liposomes for anticancer therapy: An updated review.Nanomedicine (Lond.)202217854756810.2217/nnm‑2021‑046335259920
    [Google Scholar]
  55. YangC. MerlinD. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy.Nanomaterials (Basel)2020107142410.3390/nano1007142432708193
    [Google Scholar]
  56. ZhouF. KraehenbuhlJ-P. NeutraM.R. Mucosal IgA response to rectally administered antigen formulated in IgA-coated liposomes.Vaccine199513763764410.1016/0264‑410x(94)00029‑m7668033
    [Google Scholar]
  57. GabevE.E. SvilenovD.K. Poljakova-KrustevaO.T. VassilevI. Brain, liver and spleen detection of liposomes after rectal administration.J. Microencapsul.198522858910.3109/026520485090315523880482
    [Google Scholar]
  58. SangR. StrattonB. EngelA. DengW. Liposome technologies towards colorectal cancer therapeutics.Acta Biomater.2021127244010.1016/j.actbio.2021.03.05533812076
    [Google Scholar]
  59. ScavoM.P. CutrignelliA. DepaloN. FanizzaE. LaquintanaV. GaspariniG. GiannelliG. DenoraN. Effectiveness of a controlled 5-FU delivery based on FZD10 antibody-conjugated liposomes in colorectal cancer in vitro models.Pharmaceutics20201271210.3390/pharmaceutics1207065032664186
    [Google Scholar]
  60. AlomraniA. BadranM. HarisaG.I. ALshehryM. AlhaririM. AlshamsanA. AlkholiefM. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer.Saudi Pharm. J.201927560361110.1016/j.jsps.2019.02.00831297013
    [Google Scholar]
  61. BadwaikH.R. KumariL. NakhateK. VermaV.S. SakureK. Chapter 13 - Phytoconstituent plumbagin: Chemical, biotechnological and pharmaceutical aspects.Studies in Natural Products ChemistryElsevier201941546010.1016/B978‑0‑12‑817901‑7.00013‑7
    [Google Scholar]
  62. JawadiZ. YangC. HaidarZ.S. Santa MariaP.L. MassaS. Bio-inspired muco-adhesive polymers for drug delivery applications.Polymers (Basel)2022142454593655982510.3390/polym14245459
    [Google Scholar]
  63. GaoP. NieX. ZouM. ShiY. ChengG. Recent advances in materials for extended-release antibiotic delivery system.J. Antibiot. (Tokyo)201164962563410.1038/ja.2011.5821811264
    [Google Scholar]
  64. El-LeithyE.S. ShakerD.S. GhorabM.K. Abdel-RashidR.S. Evaluation of mucoadhesive hydrogels loaded with diclofenac sodium-chitosan microspheres for rectal administration.AAPS PharmSciTech20101141695170210.1208/s12249‑010‑9544‑321108027
    [Google Scholar]
  65. OfokansiK.C. AdikwuM.U. OkoreV.C. Preparation and evaluation of mucin-gelatin mucoadhesive microspheres for rectal delivery of ceftriaxone sodium.Drug Dev. Ind. Pharm.200733669170010.1080/0363904070136087617613033
    [Google Scholar]
  66. PaliwalR. PaliwalS.R. KenwatR. KurmiB.D. SahuM.K. Solid lipid nanoparticles: A review on recent perspectives and patents.Expert Opin. Ther. Pat.202030317919410.1080/13543776.2020.172064932003260
    [Google Scholar]
  67. MehtaM. BuiT.A. YangX. AksoyY. GoldysE.M. DengW. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development.ACS Mater. Au20233660061910.1021/acsmaterialsau.3c0003238089666
    [Google Scholar]
  68. MishraV. BansalK.K. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics20181041010.3390/pharmaceutics1004019130340327
    [Google Scholar]
  69. PandeyS. ShaikhF. GuptaA. TripathiP. YadavJ.S. A recent update: Solid lipid nanoparticles for effective drug delivery.Adv. Pharm. Bull.2022121173310.34172/apb.2022.00735517874
    [Google Scholar]
  70. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.202075879973319543510.3389/fmolb.2020.587997
    [Google Scholar]
  71. HuangC.H. HuP.Y. WuQ.Y. XiaM.Y. ZhangW.L. LeiZ.Q. LiD.X. ZhangG.S. FengJ.F. Preparation, in vitro and in vivo evaluation of thermosensitive in situ gel loaded with ibuprofen-solid lipid nanoparticles for rectal delivery.Drug Des. Devel. Ther.2022161407143110.2147/DDDT.S35088635586185
    [Google Scholar]
  72. XingR. MustaphaO. AliT. RehmanM. ZaidiS.S. BaseerA. BatoolS. MukhtiarM. ShafiqueS. MalikM. SohailS. AliZ. ZahidF. ZebA. ShahF. YousafA. DinF. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery.BioMed Res. Int.20212021996860210.1155/2021/996860234285920
    [Google Scholar]
  73. DinF.U. MustaphaO. KimD.W. RashidR. ParkJ.H. ChoiJ.Y. KuS.K. YongC.S. KimJ.O. ChoiH.G. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect.Eur. J. Pharm. Biopharm.201594647210.1016/j.ejpb.2015.04.01925979136
    [Google Scholar]
  74. MeloM. NunesR. SarmentoB. NevesJ.D. Rectal administration of nanosystems: From drug delivery to diagnostics.Mater. Today Chem.20181012814110.1016/j.mtchem.2018.09.001
    [Google Scholar]
  75. LambertB.J. HansenJ.M. BryansT.D. LamS. Sterility assurance across-sectors-new paradigms and tools.Front. Med. Technol.2021362271010.3389/fmedt.2021.62271035047905
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031328871241023075235
Loading
/content/journals/ddl/10.2174/0122103031328871241023075235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test