Current Protein and Peptide Science - Volume 2, Issue 4, 2001
Volume 2, Issue 4, 2001
-
-
Homotrimeric dUTPases; Structural Solutions for Specific Recognition and Hydrolysis of dUTP
More LessAuthors: R. Persson, E.S. Cedergren-zeppezauer and K.S. WilsonPrevention of incorporation of dUTP into DNA is essential for maintenance of the genetic information. Prompt and specific removal of dUTP from the nucleotide pool, as expedited by the ubiquitous enzyme dUTPase, is therefore required for full viability in most biological systems. Conserved structural features perpetuate specificity in choice of substrate, which is crucial as hydrolysis of the structurally closely related nucleotides dTTP, dCTP and UTP would debilitate DNA and RNA synthesis. The most common family of dUTPases is the homotrimeric variety where X-ray structures are available for one bacterial, one mammalian and two retroviral dUTPases. These four enzymes have similar overall structural layouts, but the interactions that stabilise the trimer vary markedly, ranging from exclusively hydrophobic to water-mediated interactions. Trimeric dUTPases contain five conserved sequence motifs, positioned at the subunit interfaces where they contribute to the formation of the active sites. Each of the three identical active sites per trimer is built of residues contributed by all three subunits. One subunit provides residues involved in base and sugar recognition, where a b-hairpin acts to maintain exquisite selectivity, while a second subunit contributes residues for phosphate interactions. The third subunit supplies a glycine-rich consensus motif located in the flexible C-terminal part of the subunit, known from crystallographic studies to cover the active site in the presence of substrate and certain substrate analogues. All dUTPases studied require the presence of a divalent metal ion, preferably Mg2+, for optimal activity. The putative position of the essential metal ion has been identified in the structure of one retroviral dUTPase. Structure-function studies are essential if the properties of dUTPases are to be understood fully in relation to their biological role. In this review the structural arrangement of the homotrimeric dUTPases is discussed in the context of active site geometry, achievement of specificity and subunit interactions.
-
-
-
Glycine Rich P-loop Motif in Deoxyuridine Pyrophosphatase
More LessBy G. PrasadDeoxyuridine pyrophosphatase (dUTPase) cleaves the α-β phosphodiester bond of dUTP to form pyrophosphate and dUMP, preventing incorporation of uracil into DNA and providing the substrate for dTTP synthesis. Similar to other nucleotide binding proteins, dUTPase also consists of a sequence motif rich in glycine residues known as P-loop motif. The P-loop motif of the nucleotide binding proteins are involved in substrate binding, catalysis, recognition and regulation of activity. In dUTPase the function of the P-loop motif is not well understood. One of the main reasons for this limited information is the lack of the three-dimensional structure of a dUTPase enzyme with an ordered Gly-rich P-loop motif with a bound substrate and Mg2+ ion. This review presents an insight into the role of Gly-rich P-loop motif in the function of dUTPase as revealed from the crystal structure. The analysis reveals the Gly-rich P-loop motif of dUTPase to be the longest in terms of its amino-acid composition as compared to other nucleotide binding proteins and exhibit a high-degree of sequence conservation among spectrum of species. The enzyme utilizes adaptive recognition to bind to the phosphate groups of the nucleotide. In particular, the α-β phosphodiester bond adopts an unfavorable eclipsed conformation in the presence of the Gly-rich P-loop motif. This conformation may be relevant to the mechanism of α-β phosphodiester bond cleavage.
-
-
-
Evolution of the DUT Gene: Horizontal Transfer between Host and Pathogen in all Three Domains of Life
More LessBy M.A. McClureThe ubiquity of the dut gene in Eukarya, Eubacteria, and Archaea implies its existence in the last common ancestor of the three domains of life. The dut gene exists as single, tandemly duplicated, and tandemly triplicated copies. The dUTPase is encoded as an auxiliary gene in the genomes of several DNA viruses and two distinct lineages of retroviruses. A comprehensive analysis of dUTPase amino acid sequence relationships explores the evolutionary dynamics of dut genes in viruses and their hosts. The data set was comprised of representative sequences from available Eukaryotes, Archaea, Eubacteria cells and viruses. A multiple alignment of these protein sequences was generated using a hidden Markov model (HMM) approach developed to align divergent data. Phylogenetic analysis revealed that horizontal transfer from hosts to virus genomes has occurred in all three domains of life. The evidence for horizontal transfers is particularly interesting in Eukaryotes as these dut genes have introns, while DNA virus dut genes do not. This implies an intermediary Retroid Agent facilitated the horizontal transfer process, via reverse transcription, between host mRNA and DNA viruses. The horizontal transfer of the dut gene from Eukaryotic, Eubacterial, and Archaeal organisms to both DNA and RNA viruses is the first documented case of host to pathogen transfer that has occurred in all three domains of life.
-
-
-
Evolution of the dUTPase Gene of Mammalian and Avian Herpesviruses
More LessAuthors: J.E. McGeehan, N.W. Depledge and D.J. McGeochSequences of dUTPases encoded by Alpha- and Gamma herpesviruses resemble other dUTPases in their possession of five conserved motifs, but differ in having greater chain lengths (about twice as long) and in the location of Motif 3 at an N-terminal location relative to the other motifs. It was proposed that the herpesvirus gene arose by intragenic duplication of a standard dUTPase coding sequence and subsequent loss of one copy of each motif from the double-length chain, and that the resulting enzyme was active as a monomer. With knowledge of the trimeric 3D structure of standard dUTPases, it is possible to suggest transformations that occurred in evolutionary development of the herpesvirus dUTPase. The distinct location of Motif 3 can indeed be seen to be consistent with it contributing to a single intramolecular active site with the other motifs. Separately, the occurrence in herpesvirus dUTPases of around 20 to 40 additional residues between Motifs 4 and 5 allows the C-terminal Motif 5 to reach the active site intramolecularly. The driving force behind these evolutionary changes remains obscure. We speculate that they may have allowed acquisition of a novel, presently unknown function by the protein. Consistent with this idea is the observation that in Alpha - and Gamma herpesvirus dUTPases the original locus of Motif 3 is occupied by a distinct conserved sequence (Motif 6) perhaps this element constitutes part of a separate functional capability. Notably, the apparently orthologous protein in Betaherpesviruses lacks the standard motifs while Motif 6 is still present.
-
-
-
The Nature of Enzymes Involved in Uracil-DNA Repair: Isoform Charac-teristics of Proteins Responsible for Nuclear and Mitochondrial Genomic Integrity 1
More LessAuthors: S. Caradonna and S. Muller-weeksThe absence of uracil from DNA genomes is a consequence of enzyme functions that eliminate intracellular dUTP pools and that purposefully recognize and remove uracil moieties from DNA. These enzymatic functions are dUTP nucleotidohydrolase (dUTPase) and uracil-DNA glycosylase (UDG), respectively. There are distinct nuclear and mitochondrial isoforms of each of these enzymes in human cells. The mitochondrial isoform of dUTPase (DUT-M) begins as a 31 kilodalton precursor protein containing an arginine-rich, amino-terminal presequence required for targeting to the mitochondria. This precursor is processed into a 23 kilodalton protein that resides, in mature form, in the mitochondria. The nuclear isoform of dUTPase (DUT-N) is an 18 kilodalton protein. Both species of dUTPase are nearly identical except for their amino-termini. Analysis of protein expression reveals that DUT-M is constitutive and independent of cell cycle phase or proliferation status of the cell. In contrast, DUT-N protein and mRNA levels are tightly regulated to coincide with nuclear DNA replication. The common sequence for both nuclear and mitochondrial isoforms includes a cyclin-dependent kinase consensus site. However, only the nuclear form appears to be phosphorylated at this site in vivo. Studies on dUTPase genomic organization reveal that both isoforms are encoded by the same gene. Isoform specific transcripts arise through the use of alternate 5' exons. Uracil-DNA glycosylase (UDG1) is but one of a growing family of enzymes that repairs potentially mutagenic events caused by uracil in DNA. Human cells contain two isoforms of UDG1 which are also nearly identical except for their amino termini. One isoform (UDG1-M), which is constitutively expressed, is targeted to the mitochondria. This form originates as a 35,000 dalton precursor and is N-terminally processed to a mature 29,000 dalton protein as it transits into the mitochondria. The other isoform is targeted to the nucleus and its expression is a function of cellular proliferation status. As with dUTPase, UDG1 isoform specific transcripts arise through the use of alternate 5' exons. Both of these enzymatic functions are a unique illustration, in humans, of the use of alternate exons to generate differentially expressed proteins targeted to different organelles. There are questions as to whether the nuclear isoform of UDG (UDG1-N) is also processed (at the N-terminus) to a lower molecular weight form. Polyclonal antisera generated to the unique N-terminal region of this isoform, reveals that UDG1-N exists as a 36,000 dalton protein in human cell nuclei. Since the epitope for this antibody resides in the first 24 amino acids of UDG1-N, it is apparent that the majority of this isoform is not processed and retains its amino terminus. Evidence also indicates that UDG1-N exists as a serine / threonine phosphoprotein and that phosphorylation occurs in the unique N-terminal region. This was initially deduced from the observation that nuclear UDG1-N migrates as multiple bands on SDS-PAGE and as a single band subsequent to phosphatase treatment. Cdc2 kinase is at least one of the enzymes that can phosphorylate UDG1-N. This review will summarize the current information on isoform characteristics of both dUTPase and uracil-DNA glycosylase. It will also focus on evidence for phosphorylation and speculate as to the purpose of these post-translational events.
-
-
-
dUTPase in Human Neoplastic Cells as a Potential Target for Therapeutic Intervention
More LessAuthors: F.A. Grasser, B.F.M. Romeike, G. Niedobitek, J. Nicholls and E. KremmerWith the exception of brain, most human tissues analysed contain dUTPase protein detectable by immunohistochemistry. Non-dividing tissues like untreated peripheral blood lymphocytes (PBL's) contain basal levels of cytoplasmic dUTPase and express additional, nuclear dUTPase upon mitogenic stimulation. Normal, proliferating tissues like intestinal mucosa or germinal centres within tonsils contain cytoplasmic as well as nuclear dUTPase in accordance with a proposed role for dUTPase during cell division. Notably, no dUTPase is detectable during mitosis. The failure to stain dUTPase in normal brain tissue by immunohistochemistry while mRNA is readily detectable by Northern blotting cannot be explained at this moment. Epithelial tumours, such as adenocarcinoma of the lung, breast, colon, vulva or nasopharynx contain cells which are either positive for both or only one of the subcellular forms of the dUTPase and show variable numbers of dUTPase-positive cells. High levels of dUTPase correlate with a poor prognosis regarding the progression of colorectal carcinoma. Of the intracranial tumours tested, neuroepithelial tumours show almost exclusively nuclear expression whereas meningiomas of higher grades of malignancy (WHO grade II and III) also contain cells with additional cytoplasmic dUTPase. The dUTPase is detectable in other malignancies including tumours derived from lymphatic tissues like Burkitt's lymphoma or non-Hodgkin's-lymphoma. The downregulation of dUTPase protein during apoptosis or the inhibition of dUTPase during nerve cell development in Drosophila melanogaster suggests a possible role of the enzyme during apoptosis. In line with these observations, inhibition of dUTPase by antisense in p53-deficient tumour cells hints at a possible route of treatment of p53-deficient tumours which are otherwise resistant to therapies like irradiation. The expression of the enzyme in normal tissues indicates that sublethal levels of dUTPase inhibitors may also exert an unwanted mutagenic effect.
-
-
-
The Role of dUTPase and Uracil-DNA Repair in Cancer Chemotherapy
More LessBy R.D. LadnerThymidylate metabolism is an important target for chemotherapeutic agents that combat a variety of neoplastic diseases including head and neck, breast and gastrointestinal cancers. Therapeutic strategies applied to this pathway target the thymidylate synthase (TS) reaction that catalyzes the reductive methylation of deoxyuridylate (dUMP) to form thymidylate (TMP). This reaction represents the sole de novo source of TMP required for DNA replication and repair. Inhibitors of this pathway include the widely utilized fluoropyrimide and antifolate classes of anti-cancer agents. Studies attempting to elucidate the molecular mechanisms of cell killing mediated by inhibitors of the TS reaction suggest that cytotoxicity results from a process known as “thymineless death”. This term describes the extreme TTP pool depletion observed following TS inhibition. Although depletion of TTP pools is clearly involved in this process, there is now considerable evidence implicating aberrant uracil-DNA metabolism as an important mechanism of toxicity. Upon TS inhibition, dUTP pools may accumulate, inducing repeated cycles of uracil misincorporation into DNA and repair-mediated DNA damage. Central to the uracil-misincorporation pathway are the enzymes deoxyuridine nucleotidohydrolase (dUTPase) (EC 3.6.1.23) and uracil-DNA glycoslyase (UDG) (EC 3.2.2.3). dUTPase catalyzes the hydrolysis of dUTP to form dUMP and pyrophosphate thereby eliminating dUTP and preventing its utilization by DNA polymerases during replication and repair. UDG initiates the base excision repair pathway effectively removing any uracil residues that may arise in DNA. Under normal conditions, uracil is precluded from DNA by the combined actions of dUTPase and UDG. However, during TS inhibition, dUTP pools may accumulate and overwhelm dUTPase, resulting in repeated cycles of uracil misincorporation and detrimental repair leading to strand breaks and cell death. Because dUTPase plays a pivotal role in regulating cellular dUTP pools, this enzyme could have profound effects on the efficacy of agents that target thymidylate biosynthesis. This article reviews our current understanding of the role of aberrant uracil-DNA metabolism as a contributing mechanism of cytotoxicity initiated by chemotherapeutic agents that target de novo thymidylate metabolism. The role of dUTPase expression in modulating therapeutic response is presented including evidence from yeast and mammalian cell culture models and clinical studies. The regulation of human dUTPase isoforms in normal and neoplastic tissues will be reviewed as well as the role of dUTPase expression as a prognostic marker for overall survival and response to therapy in colon cancer.
-
-
-
The Herpesvirus Encoded dUTPase as a Potential Chemotherapeutic Target
More LessAuthors: A.W. Studebaker, G.K. Balendiran and M.V. WilliamsThe human herpesviruses are a well characterized group of viruses that are responsible for a wide spectrum of human diseases. Included in this group of pathogens are the alphaherpesviruses (herpes simplex types 1 and 2 and varicella-zoster virus), the betaherpesviruses (cytomegalovirus, human herpesvirus types 6 and 7) and the gammaherpesviruses (Epstein -Barr virus and human herpesvirus 8). An important feature of these viruses is that they cause latent infections that can be reactivated to cause disease. The herpesviruses encode for a large number of structural and non-structural proteins, and several of the non-structural proteins, such as thymidine kinase, DNA polymerase, and ribonucleotide reductase, have been utilized as targets for the development of anti-herpesvirus agents. Another herpesvirus encoded enzyme that has received little attention as a potential target for the development of specific anti-herpesvirus agents is deoxyuridine triphosphate nucleotidohydrolase (dUTPase). Furthermore, little is known concerning the role of the herpesviruses' encoded dUTPases in virus replication and in modulating the chemotherapeutic efficiency of other anti-herpes agents. Because of recent advances in molecular virology and biochemistry, it is now possible to rationally develop “designer” drugs based upon the structural / functional interaction of the drug with a specific viral protein. The purpose of this review is to describe previous studies demonstrating the potential use of the herpesvirus encoded dUTPase as a drug target, to describe problems associated with using the dUTPase as a target and to discuss new approaches that can be used.
-
-
-
The Role of Retroviral dUTPases in Replication and Virulence
More LessAuthors: S.L. Payne and J.H. ElderSeveral retroviruses, including equine infectious anemia virus (EIAV), visna virus, caprine arthritis-encephalitis virus (CAEV) and feline immunodeficiency virus (FIV) encode dUTPase. The role of this enzyme in the replication of these viruses has been scrutinized, with particular emphasis on potential roles for dUTPase in virulence and viral mutation rate. Overall, the results of these studies have indicated a central role for dUTPase in facilitating productive viral replication in non-dividing cells. The requirement for dUTPase in EIAV, which replicates exclusively in macrophages, may be the most stringent. Studies of dUTPase mutants of virulent EIAV clones suggest that the enzyme is a major determinant of virulence. In contrast, FIV readily replicates in dividing cell populations such as CD4+ and CD8+ T cells, and B cells as well as in non-dividing macrophages. Thus, the virus burden and disease sequelae are lowered in cats infected with a dUTPase-minus FIV relative to cats infected with wild type FIV, but not totally abrogated. Growth in macrophages is attenuated with the DU-minus FIV with evidence of a 5 to 8-fold increase in G--A transition mutations in viral integrants present in macrophages. These findings are consistent with an increase in uracil misincorporation in the absence of dUTPase, resulting in transition mutations that cripple the virus. Effects on virus replication and disease production have also been noted for dUTPase-deleted CEAV and visna virus. While HIV and SIV do not encode dUTPase some reports suggest that other viral and host cell factors may substitute for its activity. Betaretroviruses also encode dUTPase and while several of these cause significant disease, the role of dUTPase in their replication and pathogenesis is currently unknown.
-
-
-
Trypanosomal dUTPases as Potential Targets for Drug Design
More LessAuthors: F. Hidalgo-zarco and D. Gonzalez-pacnowskaParasites of the Trypanosomatidae family are responsible for diseases that afflict several million people worldwide. Currently there is an urgent need for new drugs against these diseases and an approach to drug discovery is the study of biochemical and structural properties of a potential target and the subsequent design of specific compounds. Trypanosomatid genes coding for enzymes which distinctively hydrolyze dUTP have been isolated by genetic complementation in Escherichia coli mutants defective in dUTPase activity. An analysis of these sequences from Leishmania major and Trypanosoma cruzi showed that no significant similarity could be established with the family of known dUTPases and that the five consensus motifs were absent. However, limited similarity was identified for three motifs present in an enzyme related in function the dCTPase-dUTPase from T phages and 35percent identity with a putative dUTPase identified in the eubacteria Campylobacter jejuni. T. cruzi and L. major dUTPases were highly similar and catalyzed in a specific fashion the hydrolysis of dUTP. A detailed kinetic study of both enzymes revealed that dUDP is also an efficient substrate of the enzyme while other nucleotides are poorly hydrolyzed. The enzyme is essential for viability in Leishmania and is up-regulated by inhibitors of dTMP synthesis. Thus, a new family of dUTPases might exist in certain organisms that bear no sequence or structure similarity with eukaryotic enzymes accomplishing the same function and that may constitute potential drug targets for the development of specific inhibitors.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month