Skip to content
2000
Volume 18, Issue 10
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Candida species are the major opportunistic human pathogens accounting for 70-90% of all invasive fungal infections. Candida spp, especially C. albicans, are able to produce and secrete hydrolytic enzymes, particularly aspartic proteases (Saps). These enzymes production is an evolutionary adaptation of pathogens to utilize nutrients and survive in host. Sap1-10 are believed to contribute to the adhesion and invasion of host tissues through the degradation of cell surface structures. Aspartic proteases control several steps in innate immune evasion and they degrade proteins related to immunological defense (antibodies, complement and cytokines), allowing the fungus to escape from the first line of host defense. The existing ways to identify potential drug targets rely on specific subset like virulence genes, transcriptional and stress response factors. Candida virulence factors like Sap isoenzymes can be pivotal targets for drug development. The identification of mechanism of a non-canonical inflammasome exerted by Saps could open novel therapeutic strategies to dampen hyperinflammatory response in candidiasis.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/1389203717666160809155749
2017-10-01
2025-12-14
Loading full text...

Full text loading...

/content/journals/cpps/10.2174/1389203717666160809155749
Loading

  • Article Type:
    Research Article
Keyword(s): Candida; enzymes; fungal infections; inhibitors; pathogenesis; Sap1-10
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test