Skip to content
2000
image of Siglecs: From Biomodulation to Immunotherapy

Abstract

Background

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are cell-surface immunological receptors predominantly expressed on immune cells such as monocytes, macrophages, and dendritic cells. They play a crucial role in regulating inflammatory processes in various diseases and serve as immunological checkpoints in cancer. Despite several immune checkpoint inhibitors targeting Siglecs having entered clinical trials, the number of Siglec-targeted immunotherapies remains limited.

Objective

This review aims to investigate the contributions of Siglecs in human diseases and explore novel therapeutic strategies targeting the Siglec-sialic acid immunological axis.

Methods

The authors systematically searched PubMed, Web of Science, and Google Scholar for publications mainly from 2015-2025, using search terms related to Siglecs, tumors, autoimmune diseases, and specific Siglec subtypes (CD169, Siglec2). Studies were included if they examined Siglecs biology, immunomodulation, or immunotherapeutic potential. Studies not directly relevant to Siglecs function/therapeutics and non-peer-reviewed materials (conference abstracts, editorials) were excluded. Screening was done titles and abstracts with data referenced from research article results, and eligible articles underwent full-text review for final inclusion.

Results

The analysis reveals that Siglecs exhibit dual functions, acting as both activators and inhibitors of immune responses. They are implicated in the pathogenesis of various diseases, including cancer, autoimmune disorders, and viral infections. Several Siglec-targeted immunotherapies are currently in clinical trials, demonstrating their potential in disease management. For instance, Siglec15 and Siglec10 have been identified as potential immune checkpoints in cancer, while Siglec2 and Siglec10 play roles in autoimmune diseases like systemic lupus erythematosus (SLE).

Conclusion

Siglecs are key immunomodulators that mediate cell-cell and pathogen interactions, playing pivotal roles in human diseases. Further research into their mechanisms and clinical applications is essential to fully harness their therapeutic potential. Targeting Siglecs offers promising avenues for developing novel immunotherapies, particularly in cancer and autoimmune diseases.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037372672250605183318
2025-07-01
2025-09-08
Loading full text...

Full text loading...

References

  1. Kelm S. Pelz A. Schauer R. Filbin M.T. Tang S. Bellard M-E. Schnaar R.L. Mahoney J.A. Hartnell A. Bradfield P. Crocker P.R. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 1994 4 11 965 972 10.1016/S0960‑9822(00)00220‑7 7533044
    [Google Scholar]
  2. Crocker P.R. Clark E.A. Filbin M. Gordon S. Jones Y. Kehrl J.H. Kelm S. Douarin L.N. Powell L. Roder J. Schnaar R.L. Sgroi D.C. Stamenkovic K. Schauer R. Schachner M. Berg D.V.T.K. Merwe D.V.P.A. Watt S.M. Varki A. Siglecs: A family of sialic-acid binding lectins. Glycobiology 1998 8 2 v 10.1093/oxfordjournals.glycob.a018832 9498912
    [Google Scholar]
  3. Gonzalez-Gil A. Schnaar R.L. Siglec ligands. Cells 2021 10 5 1260 10.3390/cells10051260 34065256
    [Google Scholar]
  4. Feng H. Feng J. Han X. Ying Y. Lou W. Liu L. The potential of siglecs and sialic acids as biomarkers and therapeutic targets in tumor immunotherapy. Cancers 2024 16 2 289 10.3390/cancers16020289
    [Google Scholar]
  5. Jame-Chenarboo Z. Gray T.E. Macauley M.S. Advances in understanding and exploiting Siglec–glycan interactions. Curr. Opin. Chem. Biol. 2024 80 102454 10.1016/j.cbpa.2024.102454 38631213
    [Google Scholar]
  6. Brzezicka K.A. Paulson J.C. Impact of Siglecs on autoimmune diseases. Mol. Aspects Med. 2023 90 101140 10.1016/j.mam.2022.101140 36055802
    [Google Scholar]
  7. Lin C.H. Yeh Y.C. Yang K.D. Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J. Formos. Med. Assoc. 2021 120 1 5 24 10.1016/j.jfma.2019.10.019 31882261
    [Google Scholar]
  8. Angata T. Varki A. Discovery, classification, evolution and diversity of Siglecs. Mol. Aspects Med. 2023 90 101117 10.1016/j.mam.2022.101117 35989204
    [Google Scholar]
  9. Siew J.J. Chern Y. Khoo K.H. Angata T. Roles of Siglecs in neurodegenerative diseases. Mol. Aspects Med. 2023 90 101141 10.1016/j.mam.2022.101141 36089405
    [Google Scholar]
  10. Raïch-Regué D. Resa-Infante P. Gallemí M. Laguia F. Muñiz-Trabudua X. Muñoz-Basagoiti J. Perez-Zsolt D. Chojnacki J. Benet S. Clotet B. Martinez-Picado J. Izquierdo-Useros N. Role of Siglecs in viral infections: A double-edged sword interaction. Mol. Aspects Med. 2023 90 101113 10.1016/j.mam.2022.101113 35981912
    [Google Scholar]
  11. Siddiqui S.S. Vaill M. Do R. Khan N. Verhagen A.L. Zhang W. Lenz H.J. Johnson-Pais T.L. Leach R.J. Fraser G. Wang C. Feng G.S. Varki N. Varki A. Human-specific polymorphic pseudogenization of SIGLEC12 protects against advanced cancer progression. FASEB Bioadv. 2021 3 2 69 82 10.1096/fba.2020‑00092 33615152
    [Google Scholar]
  12. Klaas M. Dubock S. Ferguson D.J.P. Crocker P.R. Sialoadhesin (CD169/Siglec-1) is an extended molecule that escapes inhibitory cis-interactions and synergizes with other macrophage receptors to promote phagocytosis. Glycoconj. J. 2023 40 2 213 223 10.1007/s10719‑022‑10097‑1 36738392
    [Google Scholar]
  13. Tanno A. Fujino N. Yamada M. Sugiura H. Hirano T. Tanaka R. Sano H. Suzuki S. Okada Y. Ichinose M. Decreased expression of a phagocytic receptor Siglec-1 on alveolar macrophages in chronic obstructive pulmonary disease. Respir. Res. 2020 21 1 30 10.1186/s12931‑020‑1297‑2 31992280
    [Google Scholar]
  14. Takeya H. Shiota T. Yagi T. Ohnishi K. Baba Y. Miyasato Y. Kiyozumi Y. Yoshida N. Takeya M. Baba H. Komohara Y. High CD169 expression in lymph node macrophages predicts a favorable clinical course in patients with esophageal cancer. Pathol. Int. 2018 68 12 685 693 10.1111/pin.12736 30516869
    [Google Scholar]
  15. Prenzler S. Rudrawar S. Waespy M. Kelm S. Anoopkumar-Dukie S. Haselhorst T. The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease. Int. Rev. Immunol. 2023 42 2 113 138 10.1080/08830185.2021.1931171 34494938
    [Google Scholar]
  16. Benet S. Gálvez C. Drobniewski F. Kontsevaya I. Arias L. Monguió-Tortajada M. Erkizia I. Urrea V. Ong R.Y. Luquin M. Dupont M. Chojnacki J. Dalmau J. Cardona P. Neyrolles O. Lugo-Villarino G. Vérollet C. Julián E. Furrer H. Günthard H.F. Crocker P.R. Tapia G. Borràs F.E. Fellay J. McLaren P.J. Telenti A. Cardona P.J. Clotet B. Vilaplana C. Martinez-Picado J. Izquierdo-Useros N. Dissemination of Mycobacterium tuberculosis is associated to a SIGLEC1 null variant that limits antigen exchange via trafficking extracellular vesicles. J. Extracell. Vesicles 2021 10 3 e12046 10.1002/jev2.12046 33489013
    [Google Scholar]
  17. Jalloh S. Olejnik J. Berrigan J. Nisa A. Suder E.L. Akiyama H. Lei M. Ramaswamy S. Tyagi S. Bushkin Y. Mühlberger E. Gummuluru S. CD169-mediated restrictive SARS- CoV-2 infection of macrophages induces pro-inflammatory responses. PLoS Pathog. 2022 18 10 e1010479 10.1371/journal.ppat.1010479 36279285
    [Google Scholar]
  18. Wang Y. Jin Z. Sun J. Chen X. Xie P. Zhou Y. Wang S. The role of activated monocyte IFN/SIGLEC1 signalling in Graves’ disease. J. Endocrinol. 2022 255 1 1 9 10.1530/JOE‑21‑0453 35695299
    [Google Scholar]
  19. Xiong Y.S. Cheng Y. Lin Q.S. Wu A.L. Yu J. Li C. Sun Y. Zhong R.Q. Wu L.J. Increased expression of Siglec-1 on peripheral blood monocytes and its role in mononuclear cell reactivity to autoantigen in rheumatoid arthritis. Rheumatology 2014 53 2 250 259 10.1093/rheumatology/ket342 24196391
    [Google Scholar]
  20. Zhang Y. Li J.Q. Jiang Z.Z. Li L. Wu Y. Zheng L. CD169 identifies an anti-tumour macrophage subpopulation in human hepatocellular carcinoma. J. Pathol. 2016 239 2 231 241 10.1002/path.4720 27174787
    [Google Scholar]
  21. Batoon L. Millard S.M. Wullschleger M.E. Preda C. Wu A.C.K. Kaur S. Tseng H.W. Hume D.A. Levesque J.P. Raggatt L.J. Pettit A.R. CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials 2019 196 51 66 10.1016/j.biomaterials.2017.10.033 29107337
    [Google Scholar]
  22. Wu A.C. He Y. Broomfield A. Paatan N.J. Harrington B.S. Tseng H.W. Beaven E.A. Kiernan D.M. Swindle P. Clubb A.B. Levesque J.P. Winkler I.G. Ling M.T. Srinivasan B. Hooper J.D. Pettit A.R. CD169+ macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer. J. Pathol. 2016 239 2 218 230 10.1002/path.4718 27174786
    [Google Scholar]
  23. Weivoda M.M. Bradley E.W. Macrophages and bone remodeling. J. Bone Miner. Res. 2023 38 3 359 369 10.1002/jbmr.4773 36651575
    [Google Scholar]
  24. Bourgoin P. Soliveres T. Barbaresi A. Loundou A. Belkacem I.A. Arnoux I. Bernot D. Loosveld M. Morange P.E. Michelet P. Malergue F. Markarian T. CD169 and CD64 could help differentiate bacterial from CoVID-19 or other viral infections in the Emergency Department. Cytometry A 2021 99 5 435 445 10.1002/cyto.a.24314 33491921
    [Google Scholar]
  25. Bedin A.S. Makinson A. Picot M.C. Mennechet F. Malergue F. Pisoni A. Nyiramigisha E. Montagnier L. Bollore K. Debiesse S. Morquin D. Bourgoin P. Veyrenche N. Renault C. Foulongne V. Bret C. Bourdin A. Moing L.V. Perre D.V.P. Tuaillon E. Monocyte CD169 expression as a biomarker in the early diagnosis of coronavirus disease 2019. J. Infect. Dis. 2021 223 4 562 567 10.1093/infdis/jiaa724 33206973
    [Google Scholar]
  26. Ruffin N. Gea-Mallorquí E. Brouiller F. Jouve M. Silvin A. See P. Dutertre C.A. Ginhoux F. Benaroch P. Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. Proc. Natl. Acad. Sci. USA 2019 116 43 21685 21693 10.1073/pnas.1911007116 31591213
    [Google Scholar]
  27. Höppner J. Casteleyn V. Biesen R. Rose T. Windisch W. Burmester G.R. Siegert E. SIGLEC-1 in systemic sclerosis: A useful biomarker for differential diagnosis. Pharmaceuticals 2022 15 10 1198 10.3390/ph15101198 36297311
    [Google Scholar]
  28. Sakumura N. Yokoyama T. Usami M. Hosono Y. Inoue N. Matsuda Y. Tasaki Y. Wada T. CD169 expression on monocytes as a marker for assessing type I interferon status in pediatric inflammatory diseases. Clin. Immunol. 2023 250 109329 10.1016/j.clim.2023.109329 37061149
    [Google Scholar]
  29. Zorn-Pauly L. Stuckrad V.A.S.L. Klotsche J. Rose T. Kallinich T. Enghard P. Ostendorf L. Burns M. Doerner T. Meisel C. Schneider U. Unterwalder N. Burmester G. Hiepe F. Alexander T. Biesen R. Evaluation of SIGLEC1 in the diagnosis of suspected systemic lupus erythematosus. Rheumatology 2022 61 8 3396 3400 10.1093/rheumatology/keab875 34849605
    [Google Scholar]
  30. Lerkvaleekul B. Veldkamp S.R. Wal D.V.M.M. Schatorjé E.J.H. Kamphuis S.S.M. Berg D.V.J.M. Muller H.P.C.E. Armbrust W. Vastert S.J. Wienke J. Jansen M.H.A. Royen-Kerkhof V.A. Wijk V.F. Siglec-1 expression on monocytes is associated with the interferon signature in juvenile dermatomyositis and can predict treatment response. Rheumatology 2022 61 5 2144 2155 10.1093/rheumatology/keab601 34387304
    [Google Scholar]
  31. Kong W. Wei M. Liu R. Zhang J. Wang X. Prognostic value of CD169-positive macrophages in various tumors: A meta-analysis. Bioengineered 2021 12 1 8505 8514 10.1080/21655979.2021.1985857 34607536
    [Google Scholar]
  32. Ohnishi K. Komohara Y. Saito Y. Miyamoto Y. Watanabe M. Baba H. Takeya M. CD 169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci. 2013 104 9 1237 1244 10.1111/cas.12212 23734742
    [Google Scholar]
  33. Komohara Y. Ohnishi K. Takeya M. Possible functions of CD 169-positive sinus macrophages in lymph nodes in anti-tumor immune responses. Cancer Sci. 2017 108 3 290 295 10.1111/cas.13137 28002629
    [Google Scholar]
  34. Shiota T. Miyasato Y. Ohnishi K. Yamamoto-Ibusuki M. Yamamoto Y. Iwase H. Takeya M. Komohara Y. The clinical significance of CD169-positive lymph node macrophage in patients with breast cancer. PLoS One 2016 11 11 e0166680 10.1371/journal.pone.0166680 27861544
    [Google Scholar]
  35. Cassetta L. Fragkogianni S. Sims A.H. Swierczak A. Forrester L.M. Zhang H. Soong D.Y.H. Cotechini T. Anur P. Lin E.Y. Fidanza A. Lopez-Yrigoyen M. Millar M.R. Urman A. Ai Z. Spellman P.T. Hwang E.S. Dixon J.M. Wiechmann L. Coussens L.M. Smith H.O. Pollard J.W. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 2019 35 4 588 602.e10 10.1016/j.ccell.2019.02.009 30930117
    [Google Scholar]
  36. Meyer S.J. Steffensen M. Acs A. Weisenburger T. Wadewitz C. Winkler T.H. Nitschke L. CD22 controls germinal center B cell receptor signaling, which influences plasma cell and memory B cell output. J. Immunol. 2021 207 4 1018 1032 10.4049/jimmunol.2100132 34330755
    [Google Scholar]
  37. Drgona L. Gudiol C. Lanini S. Salzberger B. Ippolito G. Mikulska M. ESCMID study group for infections in compromised hosts (ESGICH) consensus document on the safety of targeted and biological therapies: An infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4). Clin. Microbiol. Infect. 2018 24 Suppl. 2 S83 S94 10.1016/j.cmi.2018.03.022 29572070
    [Google Scholar]
  38. Fry T.J. Shah N.N. Orentas R.J. Stetler-Stevenson M. Yuan C.M. Ramakrishna S. Wolters P. Martin S. Delbrook C. Yates B. Shalabi H. Fountaine T.J. Shern J.F. Majzner R.G. Stroncek D.F. Sabatino M. Feng Y. Dimitrov D.S. Zhang L. Nguyen S. Qin H. Dropulic B. Lee D.W. Mackall C.L. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018 24 1 20 28 10.1038/nm.4441 29155426
    [Google Scholar]
  39. Liu Y. Li H. Yu H. Wang F. Cao H. Jia J. Yan T. Deciphering prognostic value of CD22 and its contribution to suppression of proinflammatory cytokines production in patients with IgA nephropathy. Immunol. Lett. 2023 255 40 46 10.1016/j.imlet.2023.02.007 36848961
    [Google Scholar]
  40. Bu X.L. Sun P.Y. Fan D.Y. Wang J. Sun H.L. Cheng Y. Zeng G.H. Chen D.W. Li H.Y. Yi X. Shen Y.Y. Miles L.A. Maruff P. Gu B.J. Fowler C.J. Masters C.L. Wang Y.J. Associations of plasma soluble CD22 levels with brain amyloid burden and cognitive decline in Alzheimer’s disease. Sci. Adv. 2022 8 13 eabm5667 10.1126/sciadv.abm5667 35363517
    [Google Scholar]
  41. McKerracher L. Rosen K.M. MAG, myelin and overcoming growth inhibition in the CNS. Front. Mol. Neurosci. 2015 8 51 10.3389/fnmol.2015.00051 26441514
    [Google Scholar]
  42. Fernández-Suárez D. Krapacher F.A. Andersson A. Ibáñez C.F. Kisiswa L. MAG induces apoptosis in cerebellar granule neurons through p75NTR demarcating granule layer/white matter boundary. Cell Death Dis. 2019 10 10 732 10.1038/s41419‑019‑1970‑x 31570696
    [Google Scholar]
  43. Koper-Lenkiewicz O.M. Milewska A.J. Kamińska J. Sawicki K. Chrzanowski R. Zińczuk J. Reszeć J. Tylicka M. Matuszczak E. Matowicka-Karna J. Mariak Z. Mucha M.W. Pawlak R. Dymicka-Piekarska V. Myelin-associated proteins are potential diagnostic markers in patients with primary brain tumour. Ann. Med. 2021 53 1 1710 1721 10.1080/07853890.2021.1983205 34601991
    [Google Scholar]
  44. Wang J. Sun J. Liu L.N. Flies D.B. Nie X. Toki M. Zhang J. Song C. Zarr M. Zhou X. Han X. Archer K.A. O’Neill T. Herbst R.S. Boto A.N. Sanmamed M.F. Langermann S. Rimm D.L. Chen L. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 2019 25 4 656 666 10.1038/s41591‑019‑0374‑x 30833750
    [Google Scholar]
  45. Angata T. Siglec-15: A potential regulator of osteoporosis, cancer, and infectious diseases. J. Biomed. Sci. 2020 27 1 10 10.1186/s12929‑019‑0610‑1 31900164
    [Google Scholar]
  46. Wang J. Xu L. Ding Q. Li X. Wang K. Xu S. Liu B. Siglec15 is a prognostic indicator and a potential tumor-related macrophage regulator that is involved in the suppressive immunomicroenvironment in gliomas. Front. Immunol. 2023 14 1065062 10.3389/fimmu.2023.1065062 37325664
    [Google Scholar]
  47. Huang S. Ji Z. Xu J. Yang Y. Wu B. Chen Q. Geng S. Si Y. Chen J. Wei Y. Wang C. Ai Z. Jiang J. Siglec15 promotes the migration of thyroid carcinoma cells by enhancing the EGFR protein stability. Glycobiology 2023 33 6 cwad037 10.1093/glycob/cwad037 37129515
    [Google Scholar]
  48. Duran-Castells C. Prats A. Oriol-Tordera B. Llano A. Galvez C. Martinez-Picado J. Ballana E. Garcia-Vidal E. Clotet B. Muñoz-Moreno J.A. Hanke T. Moltó J. Mothe B. Brander C. Ruiz-Riol M. Plasma proteomic profiling identifies CD33 as a marker of HIV control in natural infection and after therapeutic vaccination. EBioMedicine 2023 95 104732 10.1016/j.ebiom.2023.104732 37506557
    [Google Scholar]
  49. Haubner S. Perna F. Köhnke T. Schmidt C. Berman S. Augsberger C. Schnorfeil F.M. Krupka C. Lichtenegger F.S. Liu X. Kerbs P. Schneider S. Metzeler K.H. Spiekermann K. Hiddemann W. Greif P.A. Herold T. Sadelain M. Subklewe M. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia 2019 33 1 64 74 10.1038/s41375‑018‑0180‑3 29946192
    [Google Scholar]
  50. Albinger N. Pfeifer R. Nitsche M. Mertlitz S. Campe J. Stein K. Kreyenberg H. Schubert R. Quadflieg M. Schneider D. Kühn M.W.M. Penack O. Zhang C. Möker N. Ullrich E. Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia. Blood Cancer J. 2022 12 4 61 10.1038/s41408‑022‑00660‑2 35418180
    [Google Scholar]
  51. Illan-Gala I. Lleo A. Karydas A. Staffaroni A.M. Zetterberg H. Sivasankaran R. Plasma tau and neurofilament light in frontotemporal lobar degeneration and Alzheimer disease. Neurology 2021 96 5 e671 e683 10.1212/WNL.0000000000011226
    [Google Scholar]
  52. Huang Y.J. Lee J.J. Fan W.L. Hsu C.W. Tsai N.W. Lu C.H. Chang W.N. Tsai M.H. A CD33 frameshift variant is associated with neuromyelitis optica spectrum disorders. Biomed. J. 2021 44 6 S93 S100 10.1016/j.bj.2020.07.007 35735085
    [Google Scholar]
  53. Liu Y.C. Yu M.M. Chai Y.F. Shou S.T. Sialic acids in the immune response during sepsis. Front. Immunol. 2017 8 1601 10.3389/fimmu.2017.01601 29209331
    [Google Scholar]
  54. Lozano-Rodríguez R. Avendaño-Ortíz J. Montalbán-Hernández K. Ruiz-Rodríguez J.C. Ferrer R. Martín-Quirós A. Maroun-Eid C. González-López J.J. Fàbrega A. Terrón-Arcos V. Gutiérrez-Fernández M. Alonso-López E. Cubillos-Zapata C. Fernández-Velasco M. Pérez de Diego R. Pelegrin P. García-Palenciano C. Cueto F.J. Fresno D.C. López-Collazo E. The prognostic impact of SIGLEC5-induced impairment of CD8+ T cell activation in sepsis. EBioMedicine 2023 97 104841 10.1016/j.ebiom.2023.104841 37890368
    [Google Scholar]
  55. Pacheva I.H. Todorov T. Ivanov I. Tartova D. Gaberova K. Todorova A. Dimitrova D. TSEN54 gene-related pontocerebellar hypoplasia type 2 could mimic dyskinetic cerebral palsy with severe psychomotor retardation. Front Pediatr. 2018 6 1 10.3389/fped.2018.00001 29410950
    [Google Scholar]
  56. Vuchkovska A. Glanville D.G. Scurti G.M. Nishimura M.I. White P. Ulijasz A.T. Iwashima M. Siglec-5 is an inhibitory immune checkpoint molecule for human T cells. Immunology 2022 166 2 238 248 10.1111/imm.13470 35290663
    [Google Scholar]
  57. Lee J. Lee J. Baek S. Koh J.H. Kim J.W. Kim S.Y. Chung S.H. Choi S.S. Cho M.L. Kwok S.K. Ju J.H. Park S.H. Soluble siglec-5 is a novel salivary biomarker for primary Sjogren’s syndrome. J. Autoimmun. 2019 100 114 119 10.1016/j.jaut.2019.03.008 30922727
    [Google Scholar]
  58. Jetani H. Navarro-Bailón A. Maucher M. Frenz S. Verbruggen C. Yeguas A. Vidriales M.B. González M. Saborido R.J. Kraus S. Mestermann K. Thomas S. Bonig H. Luu M. Monjezi R. Mougiakakos D. Sauer M. Einsele H. Hudecek M. Siglec-6 is a novel target for CAR T-cell therapy in acute myeloid leukemia. Blood 2021 138 19 1830 1842 10.1182/blood.2020009192 34289026
    [Google Scholar]
  59. Schmidt E.N. Lamprinaki D. McCord K.A. Joe M. Sojitra M. Waldow A. Nguyen J. Monyror J. Kitova E.N. Mozaneh F. Guo X.Y. Jung J. Enterina J.R. Daskhan G.C. Han L. Krysler A.R. Cromwell C.R. Hubbard B.P. West L.J. Kulka M. Sipione S. Klassen J.S. Derda R. Lowary T.L. Mahal L.K. Riddell M.R. Macauley M.S. Siglec-6 mediates the uptake of extracellular vesicles through a noncanonical glycolipid binding pocket. Nat. Commun. 2023 14 1 2327 10.1038/s41467‑023‑38030‑6 37087495
    [Google Scholar]
  60. Guan X. Yu M. Wu L. Chen J. Tong J. Wu X. Yin A. Xiao T. Wang B. Zhang J.V. Niu J. Elevated trophoblastic Siglec6 contributes to the impairment of vascular endothelial cell functions by downregulating Wnt6/β-catenin signaling in preeclampsia. Arch. Biochem. Biophys. 2022 730 109396 10.1016/j.abb.2022.109396 36113626
    [Google Scholar]
  61. Haas Q. Markov N. Muerner L. Rubino V. Benjak A. Haubitz M. Baerlocher G.M. Ng C.K.Y. Münz C. Riether C. Ochsenbein A.F. Simon H.U. Gunten V.S. Siglec-7 represents a glyco-immune checkpoint for non-exhausted effector memory CD8+ T cells with high functional and metabolic capacities. Front. Immunol. 2022 13 996746 10.3389/fimmu.2022.996746 36211376
    [Google Scholar]
  62. Yang L. Feng Y. Wang S. Jiang S. Tao L. Li J. Wang X. Siglec-7 is an indicator of natural killer cell function in acute myeloid leukemia. Int. Immunopharmacol. 2021 99 107965 10.1016/j.intimp.2021.107965 34273636
    [Google Scholar]
  63. Suenaga T. Mori Y. Suzutani T. Arase H. Regulation of Siglec-7-mediated varicella-zoster virus infection of primary monocytes by cis-ligands. Biochem. Biophys. Res. Commun. 2022 613 41 46 10.1016/j.bbrc.2022.04.111 35526487
    [Google Scholar]
  64. Huang Y.F. Su S.C. Chuang H.Y. Chen H.H. Twu Y.C. Histone deacetylation-regulated cell surface Siglec-7 expression promoted megakaryocytic maturation and enhanced platelet-like particle release. J. Thromb. Haemost. 2023 21 2 329 343 10.1016/j.jtha.2022.11.007 36700509
    [Google Scholar]
  65. Sajay-asbaghi M. Sadeghi-shabestrai M. Monfaredan A. Seyfizadeh N. Razavi A. Kazemi T. Promoter region single nucleotide polymorphism of siglec-8 gene associates with susceptibility to allergic asthma. Per. Med. 2020 17 3 195 201 10.2217/pme‑2018‑0080 32077788
    [Google Scholar]
  66. O’Sullivan J.A. Youngblood B.A. Schleimer R.P. Bochner B.S. Siglecs as potential targets of therapy in human mast cell- and/or eosinophil-associated diseases. Semin. Immunol. 2023 69 101799 10.1016/j.smim.2023.101799 37413923
    [Google Scholar]
  67. Cao Y. Rische C.H. Bochner B.S. O’Sullivan J.A. Interactions between Siglec-8 and endogenous sialylated cis ligands restrain cell death induction in human eosinophils and mast cells. Front. Immunol. 2023 14 1283370 10.3389/fimmu.2023.1283370 37928558
    [Google Scholar]
  68. Dellon E.S. Peterson K.A. Murray J.A. Falk G.W. Gonsalves N. Chehade M. Genta R.M. Leung J. Khoury P. Klion A.D. Hazan S. Vaezi M. Bledsoe A.C. Durrani S.R. Wang C. Shaw C. Chang A.T. Singh B. Kamboj A.P. Rasmussen H.S. Rothenberg M.E. Hirano I. Anti–siglec-8 antibody for eosinophilic gastritis and duodenitis. N. Engl. J. Med. 2020 383 17 1624 1634 10.1056/NEJMoa2012047 33085861
    [Google Scholar]
  69. Schmassmann P. Roux J. Buck A. Tatari N. Hogan S. Wang J. Mantuano R.N. Wieboldt R. Lee S. Snijder B. Kaymak D. Martins T.A. Ritz M.F. Shekarian T. McDaid M. Weller M. Weiss T. Läubli H. Hutter G. Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma. Sci. Transl. Med. 2023 15 705 eadf5302 10.1126/scitranslmed.adf5302 37467314
    [Google Scholar]
  70. Mei Y. Wang X. Zhang J. Liu D. He J. Huang C. Liao J. Wang Y. Feng Y. Li H. Liu X. Chen L. Yi W. Chen X. Bai H.M. Wang X. Li Y. Wang L. Liang Z. Ren X. Qiu L. Hui Y. Zhang Q. Leng Q. Chen J. Jia G. Siglec-9 acts as an immune-checkpoint molecule on macrophages in glioblastoma, restricting T-cell priming and immunotherapy response. Nat. Cancer 2023 4 9 1273 1291 10.1038/s43018‑023‑00598‑9 37460871
    [Google Scholar]
  71. Wang Y. He M. Zhang C. Cao K. Zhang G. Yang M. Huang Y. Jiang W. Liu H. Siglec-9 + tumor-associated macrophages delineate an immunosuppressive subset with therapeutic vulnerability in patients with high-grade serous ovarian cancer. J. Immunother. Cancer 2023 11 9 e007099 10.1136/jitc‑2023‑007099 37709296
    [Google Scholar]
  72. Zhang Y. Jin K. Dai Y. Hu N. Zhou T. Yang Z. Ding N. Zhang R. Xu R. Zhao J. Han Y. Zhu C. Zhu J. Li J. The change of Siglec-9 expression in peripheral blood NK cells of SFTS patients can affect the function of NK cells. Immunol. Lett. 2023 263 97 104 10.1016/j.imlet.2023.10.004 37865296
    [Google Scholar]
  73. Li W. Wang F. Guo R. Bian Z. Song Y. Targeting macrophages in hematological malignancies: Recent advances and future directions. J. Hematol. Oncol. 2022 15 1 110 10.1186/s13045‑022‑01328‑x 35978372
    [Google Scholar]
  74. Yin S.S. Gao F.H. Molecular mechanism of tumor cell immune escape mediated by CD24/Siglec-10. Front. Immunol. 2020 11 1324 10.3389/fimmu.2020.01324 32765491
    [Google Scholar]
  75. Zhang C. Zhang J. Liang F. Guo H. Gao S. Yang F. Guo H. Wang G. Wang W. Zhou G. Innate immune checkpoint Siglec10 in cancers: Mining of comprehensive omics data and validation in patient samples. Front. Med. 2022 16 4 596 609 10.1007/s11684‑021‑0868‑z 35075579
    [Google Scholar]
  76. Guo Y. Ke S. Xie F. Chen J. Liu X. Wang Z. Xu D. Shen Y. Zhao G. Zhao W. Lu H. SIGLEC10+ macrophages drive gastric cancer progression by suppressing CD8+ T cell function. Cancer Immunol. Immunother. 2023 72 10 3229 3242 10.1007/s00262‑023‑03488‑2 37432407
    [Google Scholar]
  77. Schwarz F. Landig C.S. Siddiqui S. Secundino I. Olson J. Varki N. Nizet V. Varki A. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017 36 6 751 760 10.15252/embj.201695581 28100677
    [Google Scholar]
  78. Thiesler H. Gretenkort L. Hoffmeister L. Albers I. Ohlmeier L. Röckle I. Verhagen A. Banan R. Köpcke N. Krönke N. Feuerhake F. Behling F. Barrantes-Freer A. Mielke D. Rohde V. Hong B. Varki A. Schwabe K. Krauss J.K. Stadelmann C. Hartmann C. Hildebrandt H. Proinflammatory macrophage activation by the polysialic acid-siglec-16 axis is linked to increased survival of patients with glioblastoma. Clin. Cancer Res. 2023 29 12 2266 2279 10.1158/1078‑0432.CCR‑22‑1488 37058255
    [Google Scholar]
  79. Hane M. Chen D.Y. Varki A. Human-specific microglial Siglec-11 transcript variant has the potential to affect polysialic acid-mediated brain functions at a distance. Glycobiology 2021 31 3 231 242 10.1093/glycob/cwaa082 32845322
    [Google Scholar]
  80. Tsai C.M. Riestra A.M. Ali S.R. Fong J.J. Liu J.Z. Hughes G. Varki A. Nizet V. Siglec-14 enhances NLRP3-inflammasome activation in macrophages. J. Innate Immun. 2020 12 4 333 343 10.1159/000504323 31805552
    [Google Scholar]
  81. Yamaguchi S.I. Xie Q. Ito F. Terao K. Kato Y. Kuroiwa M. Omori S. Taniura H. Kinoshita K. Takahashi T. Toyokuni S. Kasahara K. Nakayama M. Carbon nanotube recognition by human Siglec-14 provokes inflammation. Nat. Nanotechnol. 2023 18 6 628 636 10.1038/s41565‑023‑01363‑w 37024598
    [Google Scholar]
  82. Shaw B.C. Katsumata Y. Simpson J.F. Fardo D.W. Estus S. Analysis of genetic variants associated with levels of immune modulating proteins for impact on Alzheimer's disease risk reveal a potential role for siglec14. Genes 2021 12 7 1008 10.3390/genes12071008
    [Google Scholar]
  83. Xiubao R. Immunosuppressive checkpoint Siglec-15: A vital new piece of the cancer immunotherapy jigsaw puzzle. Cancer Biol. Med. 2019 16 2 205 210 10.20892/j.issn.2095‑3941.2018.0141 31516742
    [Google Scholar]
  84. Du F. Rische C.H. Li Y. Vincent M.P. Krier-Burris R.A. Qian Y. Yuk S.A. Almunif S. Bochner B.S. Qiao B. Scott E.A. Controlled adsorption of multiple bioactive proteins enables targeted mast cell nanotherapy. Nat. Nanotechnol. 2024 19 5 698 704 10.1038/s41565‑023‑01584‑z 38228804
    [Google Scholar]
  85. Filipsky F. Läubli H. Regulation of sialic acid metabolism in cancer. Carbohydr. Res. 2024 539 109123 10.1016/j.carres.2024.109123 38669826
    [Google Scholar]
  86. Wu J. Wang X. Huang Y. Zhang Y. Su S. Shou H. Wang H. Zhang J. Wang B. Targeted glycan degradation potentiates cellular immunotherapy for solid tumors. Proc. Natl. Acad. Sci. USA 2023 120 38 e2300366120 10.1073/pnas.2300366120 37695897
    [Google Scholar]
  87. Ayyalasomayajula R. Cudic M. Targeting siglec–sialylated MUC1 immune axis in cancer. Cancers 2024 16 7 1334 10.3390/cancers16071334 38611013
    [Google Scholar]
  88. Korman A.J. Garrett-Thomson S.C. Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 2022 21 7 509 528 10.1038/s41573‑021‑00345‑8 34937915
    [Google Scholar]
  89. Dinse G.E. Parks C.G. Weinberg C.R. Co C.A. Wilkerson J. Zeldin D.C. Increasing prevalence of antinuclear antibodies in the united states. Arthritis Rheumatol. 2022 74 12 2032 2041 10.1002/art.42330
    [Google Scholar]
  90. Shah N.N. Sokol L. Targeting CD22 for the treatment of b-cell malignancies. ImmunoTargets Ther. 2021 10 225 236 10.2147/ITT.S288546 34262884
    [Google Scholar]
  91. Dinther V.D. Veninga H. Iborra S. Borg E.G.F. Hoogterp L. Olesek K. Beijer M.R. Schetters S.T.T. Kalay H. Garcia- Vallejo J.J. Franken K.L. Cham L.B. Lang K.S. Kooyk V.Y. Sancho D. Crocker P.R. Haan D.J.M.M. Functional CD169 on macrophages mediates interaction with dendritic cells for CD8+ T cell cross-priming. Cell Rep. 2018 22 6 1484 1495 10.1016/j.celrep.2018.01.021 29425504
    [Google Scholar]
  92. Perez-Zsolt D. Erkizia I. Pino M. García-Gallo M. Martin M.T. Benet S. Chojnacki J. Fernández-Figueras M.T. Guerrero D. Urrea V. Muñiz-Trabudua X. Kremer L. Martinez-Picado J. Izquierdo-Useros N. Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry. Nat. Microbiol. 2019 4 9 1558 1570 10.1038/s41564‑019‑0453‑2 31160823
    [Google Scholar]
  93. Mariotto S. Ferrari S. Monaco S. HCV-related central and peripheral nervous system demyelinating disorders. Inflamm. Allergy Drug Targets 2015 13 5 299 304 10.2174/1871528113666140908113841 25198705
    [Google Scholar]
  94. Griciuc A. Serrano-Pozo A. Parrado A.R. Lesinski A.N. Asselin C.N. Mullin K. Hooli B. Choi S.H. Hyman B.T. Tanzi R.E. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013 78 4 631 643 10.1016/j.neuron.2013.04.014 23623698
    [Google Scholar]
  95. Bellenguez C. Küçükali F. Jansen I.E. Kleineidam L. Moreno-Grau S. Amin N. Naj A.C. Campos-Martin R. Grenier-Boley B. Andrade V. Holmans P.A. Boland A. Damotte V. Lee D.V.S.J. Costa M.R. Kuulasmaa T. Yang Q. Rojas D.I. Bis J.C. Yaqub A. Prokic I. Chapuis J. Ahmad S. Giedraitis V. Aarsland D. Garcia-Gonzalez P. Abdelnour C. Alarcón-Martín E. Alcolea D. Alegret M. Alvarez I. Álvarez V. Armstrong N.J. Tsolaki A. Antúnez C. Appollonio I. Arcaro M. Archetti S. Pastor A.A. Arosio B. Athanasiu L. Bailly H. Banaj N. Baquero M. Barral S. Beiser A. Pastor A.B. Below J.E. Benchek P. Benussi L. Berr C. Besse C. Bessi V. Binetti G. Bizarro A. Blesa R. Boada M. Boerwinkle E. Borroni B. Boschi S. Bossù P. Bråthen G. Bressler J. Bresner C. Brodaty H. Brookes K.J. Brusco L.I. Buiza-Rueda D. Bûrger K. Burholt V. Bush W.S. Calero M. Cantwell L.B. Chene G. Chung J. Cuccaro M.L. Carracedo Á. Cecchetti R. Cervera-Carles L. Charbonnier C. Chen H.H. Chillotti C. Ciccone S. Claassen J.A.H.R. Clark C. Conti E. Corma-Gómez A. Costantini E. Custodero C. Daian D. Dalmasso M.C. Daniele A. Dardiotis E. Dartigues J.F. Deyn D.P.P. Lopes P.D.K. Witte D.L.D. Debette S. Deckert J. Ser D.T. Denning N. DeStefano A. Dichgans M. Diehl-Schmid J. Diez-Fairen M. Rossi P.D. Djurovic S. Duron E. Düzel E. Dufouil C. Eiriksdottir G. Engelborghs S. Escott-Price V. Espinosa A. Ewers M. Faber K.M. Fabrizio T. Nielsen S.F. Fardo D.W. Farotti L. Fenoglio C. Fernández-Fuertes M. Ferrari R. Ferreira C.B. Ferri E. Fin B. Fischer P. Fladby T. Fließbach K. Fongang B. Fornage M. Fortea J. Foroud T.M. Fostinelli S. Fox N.C. Franco-Macías E. Bullido M.J. Frank-García A. Froelich L. Fulton-Howard B. Galimberti D. García-Alberca J.M. García-González P. Garcia-Madrona S. Garcia-Ribas G. Ghidoni R. Giegling I. Giorgio G. Goate A.M. Goldhardt O. Gomez-Fonseca D. González-Pérez A. Graff C. Grande G. Green E. Grimmer T. Grünblatt E. Grunin M. Gudnason V. Guetta-Baranes T. Haapasalo A. Hadjigeorgiou G. Haines J.L. Hamilton-Nelson K.L. Hampel H. Hanon O. Hardy J. Hartmann A.M. Hausner L. Harwood J. Heilmann-Heimbach S. Helisalmi S. Heneka M.T. Hernández I. Herrmann M.J. Hoffmann P. Holmes C. Holstege H. Vilas R.H. Hulsman M. Humphrey J. Biessels G.J. Jian X. Johansson C. Jun G.R. Kastumata Y. Kauwe J. Kehoe P.G. Kilander L. Ståhlbom A.K. Kivipelto M. Koivisto A. Kornhuber J. Kosmidis M.H. Kukull W.A. Kuksa P.P. Kunkle B.W. Kuzma A.B. Lage C. Laukka E.J. Launer L. Lauria A. Lee C.Y. Lehtisalo J. Lerch O. Lleó A. Longstreth W. Jr Lopez O. Munain D.A.L. Love S. Löwemark M. Luckcuck L. Lunetta K.L. Ma Y. Macías J. MacLeod C.A. Maier W. Mangialasche F. Spallazzi M. Marquié M. Marshall R. Martin E.R. Montes A.M. Rodríguez C.M. Masullo C. Mayeux R. Mead S. Mecocci P. Medina M. Meggy A. Mehrabian S. Mendoza S. Menéndez-González M. Mir P. Moebus S. Mol M. Molina-Porcel L. Montrreal L. Morelli L. Moreno F. Morgan K. Mosley T. Nöthen M.M. Muchnik C. Mukherjee S. Nacmias B. Ngandu T. Nicolas G. Nordestgaard B.G. Olaso R. Orellana A. Orsini M. Ortega G. Padovani A. Paolo C. Papenberg G. Parnetti L. Pasquier F. Pastor P. Peloso G. Pérez-Cordón A. Pérez-Tur J. Pericard P. Peters O. Pijnenburg Y.A.L. Pineda J.A. Piñol-Ripoll G. Pisanu C. Polak T. Popp J. Posthuma D. Priller J. Puerta R. Quenez O. Quintela I. Thomassen J.Q. Rábano A. Rainero I. Rajabli F. Ramakers I. Real L.M. Reinders M.J.T. Reitz C. Reyes-Dumeyer D. Ridge P. Riedel-Heller S. Riederer P. Roberto N. Rodriguez-Rodriguez E. Rongve A. Allende I.R. Rosende-Roca M. Royo J.L. Rubino E. Rujescu D. Sáez M.E. Sakka P. Saltvedt I. Sanabria Á. Sánchez-Arjona M.B. Sanchez-Garcia F. Juan P.S. Sánchez-Valle R. Sando S.B. Sarnowski C. Satizabal C.L. Scamosci M. Scarmeas N. Scarpini E. Scheltens P. Scherbaum N. Scherer M. Schmid M. Schneider A. Schott J.M. Selbæk G. Seripa D. Serrano M. Sha J. Shadrin A.A. Skrobot O. Slifer S. Snijders G.J.L. Soininen H. Solfrizzi V. Solomon A. Song Y. Sorbi S. Sotolongo-Grau O. Spalletta G. Spottke A. Squassina A. Stordal E. Tartan J.P. Tárraga L. Tesí N. Thalamuthu A. Thomas T. Tosto G. Traykov L. Tremolizzo L. Tybjærg-Hansen A. Uitterlinden A. Ullgren A. Ulstein I. Valero S. Valladares O. Broeckhoven C.V. Vance J. Vardarajan B.N. Lugt D.V.A. Dongen J.V. Rooij V.J. Swieten V.J. Vandenberghe R. Verhey F. Vidal J.S. Vogelgsang J. Vyhnalek M. Wagner M. Wallon D. Wang L.S. Wang R. Weinhold L. Wiltfang J. Windle G. Woods B. Yannakoulia M. Zare H. Zhao Y. Zhang X. Zhu C. Zulaica M. Laczo J. Matoska V. Serpente M. Assogna F. Piras F. Piras F. Ciullo V. Shofany J. Ferrarese C. Andreoni S. Sala G. Zoia C.P. Zompo M.D. Benussi A. Bastiani P. Takalo M. Natunen T. Laatikainen T. Tuomilehto J. Antikainen R. Strandberg T. Lindström J. Peltonen M. Abraham R. Al-Chalabi A. Bass N.J. Brayne C. Brown K.S. Collinge J. Craig D. Deloukas P. Fox N. Gerrish A. Gill M. Gwilliam R. Harold D. Hollingworth P. Johnston J.A. Jones L. Lawlor B. Livingston G. Lovestone S. Lupton M. Lynch A. Mann D. McGuinness B. McQuillin A. O’Donovan M.C. Owen M.J. Passmore P. Powell J.F. Proitsi P. Rossor M. Shaw C.E. Smith A.D. Gurling H. Todd S. Mummery C. Ryan N. Lacidogna G. Adarmes-Gómez A. Mauleón A. Pancho A. Gailhajenet A. Lafuente A. Macias-García D. Martín E. Pelejà E. Carrillo F. Merlín I.S. Garrote-Espina L. Vargas L. Carrion-Claro M. Marín M. Labrador M. Buendia M. Alonso M.D. Guitart M. Moreno M. Ibarria M. Periñán M. Aguilera N. Gómez-Garre P. Cañabate P. Escuela R. Pineda-Sánchez R. Vigo-Ortega R. Jesús S. Preckler S. Rodrigo-Herrero S. Diego S. Vacca A. Roveta F. Salvadori N. Chipi E. Boecker H. Laske C. Perneczky R. Anastasiou C. Janowitz D. Malik R. Anastasiou A. Parveen K. Lage C. López-García S. Antonell A. Mihova K.Y. Belezhanska D. Weber H. Kochen S. Solis P. Medel N. Lisso J. Sevillano Z. Politis D.G. Cores V. Cuesta C. Ortiz C. Bacha J.I. Rios M. Saenz A. Abalos M.S. Kohler E. Palacio D.L. Etchepareborda I. Kohler M. Novack G. Prestia F.A. Galeano P. Castaño E.M. Germani S. Toso C.R. Rojo M. Ingino C. Mangone C. Rubinsztein D.C. Teipel S. Fievet N. Deramerourt V. Forsell C. Thonberg H. Bjerke M. Roeck E.D. Martínez-Larrad M.T. Olivar N. Aguilera N. Cano A. Cañabate P. Macias J. Maroñas O. Nuñez-Llaves R. Olivé C. Pelejá E. Adarmes-Gómez A.D. Alonso M.D. Amer-Ferrer G. Antequera M. Burguera J.A. Carrillo F. Carrión-Claro M. Casajeros M.J. Martinez de Pancorbo M. Escuela R. Garrote-Espina L. Gómez-Garre P. Hevilla S. Jesús S. Espinosa M.A.L. Legaz A. López-García S. Macias-García D. Manzanares S. Marín M. Marín-Muñoz J. Marín T. Martínez B. Martínez V. Martínez-Lage Álvarez P. Iriarte M.M. Periñán-Tocino M.T. Pineda-Sánchez R. Real de Asúa D. Rodrigo S. Sastre I. Vicente M.P. Vigo-Ortega R. Vivancos L. Epelbaum J. Hannequin D. campion D. Deramecourt V. Tzourio C. Brice A. Dubois B. Williams A. Thomas C. Davies C. Nash W. Dowzell K. Morales A.C. Bernardo-Harrington M. Turton J. Lord J. Brown K. Vardy E. Fisher E. Warren J.D. Rossor M. Ryan N.S. Guerreiro R. Uphill J. Bass N. Heun R. Kölsch H. Schürmann B. Lacour A. Herold C. Johnston J.A. Passmore P. Powell J. Patel Y. Hodges A. Becker T. Warden D. Wilcock G. Clarke R. Deloukas P. Ben-Shlomo Y. Hooper N.M. Pickering-Brown S. Sussams R. Warner N. Bayer A. Heuser I. Drichel D. Klopp N. Mayhaus M. Riemenschneider M. Pinchler S. Feulner T. Gu W. Bussche D.V.H. Hüll M. Frölich L. Wichmann H-E. Jöckel K-H. O’Donovan M. Owen M. Bahrami S. Bosnes I. Selnes P. Bergh S. Palotie A. Daly M. Jacob H. Matakidou A. Runz H. John S. Plenge R. McCarthy M. Hunkapiller J. Ehm M. Waterworth D. Fox C. Malarstig A. Klinger K. Call K. Behrens T. Loerch P. Mäkelä T. Kaprio J. Virolainen P. Pulkki K. Kilpi T. Perola M. Partanen J. Pitkäranta A. Kaarteenaho R. Vainio S. Turpeinen M. Serpi R. Laitinen T. Mäkelä J. Kosma V-M. Kujala U. Tuovila O. Hendolin M. Pakkanen R. Waring J. Riley-Gillis B. Liu J. Biswas S. Diogo D. Marshall C. Hu X. Gossel M. Graham R. Cummings B. Ripatti S. Schleutker J. Arvas M. Carpén O. Hinttala R. Kettunen J. Mannermaa A. Laukkanen J. Julkunen V. Remes A. Kälviäinen R. Peltola J. Tienari P. Rinne J. Ziemann A. Waring J. Esmaeeli S. Smaoui N. Lehtonen A. Eaton S. Lahdenperä S. Adelsberg V.J. Michon J. Kerchner G. Bowers N. Teng E. Eicher J. Mehta V. Gormley P. Linden K. Whelan C. Xu F. Pulford D. Färkkilä M. Pikkarainen S. Jussila A. Blomster T. Kiviniemi M. Voutilainen M. Georgantas B. Heap G. Rahimov F. Usiskin K. Lu T. Oh D. Kalpala K. Miller M. McCarthy L. Eklund K. Palomäki A. Isomäki P. Pirilä L. Kaipiainen-Seppänen O. Huhtakangas J. Lertratanakul A. Hochfeld M. Bing N. Gordillo J.E. Mars N. Pelkonen M. Kauppi P. Kankaanranta H. Harju T. Close D. Greenberg S. Chen H. Betts J. Ghosh S. Salomaa V. Niiranen T. Juonala M. Metsärinne K. Kähönen M. Junttila J. Laakso M. Pihlajamäki J. Sinisalo J. Taskinen M-R. Tuomi T. Challis B. Peterson A. Chu A. Parkkinen J. Muslin A. Joensuu H. Meretoja T. Aaltonen L. Mattson J. Auranen A. Karihtala P. Kauppila S. Auvinen P. Elenius K. Popovic R. Schutzman J. Loboda A. Chhibber A. Lehtonen H. McDonough S. Crohns M. Kulkarni D. Kaarniranta K. Turunen J.A. Ollila T. Seitsonen S. Uusitalo H. Aaltonen V. Uusitalo-Järvinen H. Luodonpää M. Hautala N. Loomis S. Strauss E. Chen H. Podgornaia A. Hoffman J. Tasanen K. Huilaja L. Hannula-Jouppi K. Salmi T. Peltonen S. Koulu L. Harvima I. Wu Y. Choy D. Pussinen P. Salminen A. Salo T. Rice D. Nieminen P. Palotie U. Siponen M. Suominen L. Mäntylä P. Gursoy U. Anttonen V. Sipilä K. Davis J.W. Quarless D. Petrovski S. Wigmore E. Chen C-Y. Bronson P. Tsai E. Huang Y. Maranville J. Shaikho E. Mohammed E. Wadhawan S. Kvikstad E. Caliskan M. Chang D. Bhangale T. Pendergrass S. Holzinger E. Chen X. Hedman Å. King K.S. Wang C. Xu E. Auge F. Chatelain C. Rajpal D. Liu D. Call K. Xia T. Brauer M. Kurki M. Karjalainen J. Havulinna A. Jalanko A. Palta P. Parolo D.B.P. Zhou W. Lemmelä S. Rivas M. Harju J. Lehisto A. Ganna A. Llorens V. Laivuori H. Rüeger S. Niemi M.E. Tukiainen T. Reeve M.P. Heyne H. Palin K. Garcia-Tabuenca J. Siirtola H. Kiiskinen T. Lee J. Tsuo K. Elliott A. Kristiansson K. Hyvärinen K. Ritari J. Koskinen M. Pylkäs K. Kalaoja M. Karjalainen M. Mantere T. Kangasniemi E. Heikkinen S. Laakkonen E. Sipeky C. Heron S. Karlsson A. Jambulingam D. Rathinakannan V.S. Kajanne R. Aavikko M. Jiménez M.G. della Briotta Parola P. Lehistö A. Kanai M. Kaunisto M. Kilpeläinen E. Sipilä T.P. Brein G. Awaisa G. Shcherban A. Donner K. Loukola A. Laiho P. Sistonen T. Kaiharju E. Laukkanen M. Järvensivu E. Lähteenmäki S. Männikkö L. Wong R. Mattsson H. Hiekkalinna T. Paajanen T. Pärn K. Gracia-Tabuenca J. Abner E. Adams P.M. Aguirre A. Albert M.S. Albin R.L. Allen M. Alvarez L. Apostolova L.G. Arnold S.E. Asthana S. Atwood C.S. Ayres G. Baldwin C.T. Barber R.C. Barnes L.L. Barral S. Beach T.G. Becker J.T. Beecham G.W. Beekly D. Below J.E. Benchek P. Benitez B.A. Bennett D. Bertelson J. Margaret F.E. Bird T.D. Blacker D. Boeve B.F. Bowen J.D. Boxer A. Brewer J. Burke J.R. Burns J.M. Bush W.S. Buxbaum J.D. Cairns N.J. Cao C. Carlson C.S. Carlsson C.M. Carney R.M. Carrasquillo M.M. Chasse S. Chesselet M-F. Chesi A. Chin N.A. Chui H.C. Chung J. Craft S. Crane P.K. Cribbs D.H. Crocco E.A. Cruchaga C. Cuccaro M.L. Cullum M. Darby E. Davis B. Jager D.P.L. DeCarli C. DeToledo J. Dick M. Dickson D.W. Dombroski B.A. Doody R.S. Duara R. Ertekin-Taner N. Evans D.A. Fairchild T.J. Fallon K.B. Farlow M.R. Farrell J.J. Fernandez-Hernandez V. Ferris S. Frosch M.P. Fulton-Howard B. Galasko D.R. Gamboa A. Gearing M. Geschwind D.H. Ghetti B. Gilbert J.R. Grabowski T.J. Graff-Radford N.R. Grant S.F.A. Green R.C. Growdon J.H. Haines J.L. Hakonarson H. Hall J. Hamilton R.L. Harari O. Harrell L.E. Haut J. Head E. Henderson V.W. Hernandez M. Hohman T. Honig L.S. Huebinger R.M. Huentelman M.J. Hulette C.M. Hyman B.T. Hynan L.S. Ibanez L. Jarvik G.P. Jayadev S. Jin L-W. Johnson K. Johnson L. Kamboh M.I. Karydas A.M. Katz M.J. Kaye J.A. Keene C.D. Khaleeq A. Kim R. Knebl J. Kowall N.W. Kramer J.H. Kuksa P.P. LaFerla F.M. Lah J.J. Larson E.B. Lee C-Y. Lee E.B. Lerner A. Leung Y.Y. Leverenz J.B. Levey A.I. Li M. Lieberman A.P. Lipton R.B. Logue M. Lyketsos C.G. Malamon J. Mains D. Marson D.C. Martiniuk F. Mash D.C. Masliah E. Massman P. Masurkar A. McCormick W.C. McCurry S.M. McDavid A.N. McDonough S. McKee A.C. Mesulam M. Mez J. Miller B.L. Miller C.A. Miller J.W. Montine T.J. Monuki E.S. Morris J.C. Myers A.J. Nguyen T. O’Bryant S. Olichney J.M. Ory M. Palmer R. Parisi J.E. Paulson H.L. Pavlik V. Paydarfar D. Perez V. Peskind E. Petersen R.C. Phillips-Cremins J.E. Pierce A. Polk M. Poon W.W. Potter H. Qu L. Quiceno M. Quinn J.F. Raj A. Raskind M. Reiman E.M. Reisberg B. Reisch J.S. Ringman J.M. Roberson E.D. Rodriguear M. Rogaeva E. Rosen H.J. Rosenberg R.N. Royall D.R. Sager M.A. Sano M. Saykin A.J. Schneider J.A. Schneider L.S. Seeley W.W. Slifer S.H. Small S. Smith A.G. Smith J.P. Song Y.E. Sonnen J.A. Spina S. George-Hyslop P.S. Stern R.A. Stevens A.B. Strittmatter S.M. Sultzer D. Swerdlow R.H. Tanzi R.E. Tilson J.L. Trojanowski J.Q. Troncoso J.C. Tsuang D.W. Valladares O. Deerlin V.V.M. Eldik V.L.J. Vassar R. Vinters H.V. Vonsattel J-P. Weintraub S. Welsh-Bohmer K.A. Whitehead P.L. Wijsman E.M. Wilhelmsen K.C. Williams B. Williamson J. Wilms H. Wingo T.S. Wisniewski T. Woltjer R.L. Woon M. Wright C.B. Wu C-K. Younkin S.G. Yu C-E. Yu L. Zhang Y. Zhao Y. Zhu X. Adams H. Akinyemi R.O. Ali M. Armstrong N. Aparicio H.J. Bahadori M. Becker J.T. Breteler M. Chasman D. Chauhan G. Comic H. Cox S. Cupples A.L. Davies G. DeCarli C.S. Duperron M-G. Dupuis J. Evans T. Fan F. Fitzpatrick A. Fohner A.E. Ganguli M. Geerlings M. Glatt S.J. Gonzalez H.M. Goss M. Grabe H. Habes M. Heckbert S.R. Hofer E. Hong E. Hughes T. Kautz T.F. Knol M. Kremen W. Lacaze P. Lahti J. Grand Q.L. Litkowski E. Li S. Liu D. Liu X. Loitfelder M. Manning A. Maillard P. Marioni R. Mazoyer B. Lent V.D.M. Mei H. Mishra A. Nyquist P. O’Connell J. Patel Y. Paus T. Pausova Z. Raikkonen-Talvitie K. Riaz M. Rich S. Rotter J. Romero J. Roshchupkin G. Saba Y. Sargurupremraj M. Schmidt H. Schmidt R. Shulman J.M. Smith J. Sekhar H. Rajula R. Shin J. Simino J. Sliz E. Teumer A. Thomas A. Tin A. Tucker-Drob E. Vojinovic D. Wang Y. Weinstein G. Williams D. Wittfeld K. Yanek L. Yang Y. Farrer L.A. Psaty B.M. Ghanbari M. Raj T. Sachdev P. Mather K. Jessen F. Ikram M.A. Mendonça D.A. Hort J. Tsolaki M. Pericak-Vance M.A. Amouyel P. Williams J. Frikke-Schmidt R. Clarimon J. Deleuze J-F. Rossi G. Seshadri S. Andreassen O.A. Ingelsson M. Hiltunen M. Sleegers K. Schellenberg G.D. Duijn V.C.M. Sims R. Flier D.V.W.M. Ruiz A. Ramirez A. Lambert J-C. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 2022 54 4 412 436 10.1038/s41588‑022‑01024‑z 35379992
    [Google Scholar]
  96. Wang L. Hong W. Zhu H. He Q. Yang B. Wang J. Weng Q. Macrophage senescence in health and diseases. Acta Pharm. Sin. B 2024 14 4 1508 1524 10.1016/j.apsb.2024.01.008 38572110
    [Google Scholar]
  97. Guder C. Gravius S. Burger C. Wirtz D.C. Schildberg F.A. Osteoimmunology: A current update of the interplay between bone and the immune system. Front. Immunol. 2020 11 58 10.3389/fimmu.2020.00058 32082321
    [Google Scholar]
  98. Korn M.A. Schmitt H. Angermüller S. Chambers D. Seeling M. Lux U.T. Brey S. Royzman D. Brückner C. Popp V. Percivalle E. Bäuerle T. Zinser E. Winkler T.H. Steinkasserer A. Nimmerjahn F. Nitschke L. Siglec-15 on osteoclasts is crucial for bone erosion in serum-transfer arthritis. J. Immunol. 2020 205 10 2595 2605 10.4049/jimmunol.2000472 33020147
    [Google Scholar]
  99. Kameda Y. Takahata M. Mikuni S. Shimizu T. Hamano H. Angata T. Hatakeyama S. Kinjo M. Iwasaki N. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis. Bone 2015 71 217 226 10.1016/j.bone.2014.10.027 25460183
    [Google Scholar]
  100. Alexander K.A. Raggatt L.J. Millard S. Batoon L. Chiu-Ku Wu A. Chang M.K. Hume D.A. Pettit A.R. Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration. Immunol. Cell Biol. 2017 95 1 7 16 10.1038/icb.2016.74 27553584
    [Google Scholar]
  101. Matsumoto T. Takahashi N. Kojima T. Yoshioka Y. Ishikawa J. Furukawa K. Ono K. Sawada M. Ishiguro N. Yamamoto A. Soluble Siglec-9 suppresses arthritis in a collagen-induced arthritis mouse model and inhibits M1 activation of RAW264.7 macrophages. Arthritis Res. Ther. 2016 18 1 133 10.1186/s13075‑016‑1035‑9 27267914
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037372672250605183318
Loading
/content/journals/cpps/10.2174/0113892037372672250605183318
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: sialic acid ; Siglecs ; immunotherapy ; immune checkpoint ; immunomodulation ; autoimmune diseases
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test