Skip to content
2000
image of Molecular Degraders: A Comprehensive Review of Small Molecule Induced Protein Degradation Strategies

Abstract

Molecular degraders represent a ground-breaking class of small molecules revolutionizing drug discovery through the selective elimination of disease-causing proteins, including those previously deemed “undruggable.” This review provides a critical analysis of the design and mechanistic intricacies of molecular degraders, encompassing PROTACs, molecular glues, and SNIPERs, with a focus on their reliance on ubiquitin-mediated protein degradation pathways. Key themes include advancements in E3 ligase selection, the principles guiding ternary complex formation, and the role of structural dynamics in optimizing degrader activity and selectivity. The data for this review was collected from various databases such as Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsevier, Springer, and Bentham. Novel findings, such as the development of non-canonical degrader approaches and their preclinical successes, are examined alongside therapeutic applications in oncology, neurodegenerative diseases, and infectious disorders. Challenges, including resistance mechanisms, safety concerns, and pharmacokinetic limitations, are evaluated to provide a holistic perspective. This review not only highlights the transformative potential of molecular degraders but also identifies future directions and critical gaps that could drive innovation in targeted protein degradation and precision medicine.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037355750250526052851
2025-06-18
2025-11-17
Loading full text...

Full text loading...

References

  1. Schapira M. Calabrese M.F. Bullock A.N. Crews C.M. Targeted protein degradation: Expanding the toolbox. Nat. Rev. Drug Discov. 2019 18 12 949 963 10.1038/s41573‑019‑0047‑y 31666732
    [Google Scholar]
  2. Sincere N.I. Anand K. Ashique S. Yang J. You C. PROTACs: Emerging targeted protein degradation approaches for advanced druggable strategies. Molecules 2023 28 10 4014 10.3390/molecules28104014 37241755
    [Google Scholar]
  3. Han X. Wang C. Qin C. Xiang M. Zeng W. Yang C. Development of Proteolysis Targeting Chimeras (PROTACs): Challenges and opportunities. Curr. Med. Chem. 2020 27 22 3654 3686
    [Google Scholar]
  4. Bondeson D.P. Crews C.M. Targeted protein degradation by small molecules. Annu. Rev. Pharmacol. Toxicol. 2017 57 1 107 123 10.1146/annurev‑pharmtox‑010715‑103507 27732798
    [Google Scholar]
  5. Sakamoto K.M. Kim K.B. Kumagai A. Mercurio F. Crews C.M. Deshaies R.J. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 2001 98 15 8554 8559 10.1073/pnas.141230798 11438690
    [Google Scholar]
  6. Bondeson D.P. Smith B.E. Burslem G.M. Buhimschi A.D. Hines J. Jaime-Figueroa S. Wang J. Hamman B.D. Ishchenko A. Crews C.M. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 2018 25 1 78 87.e5 10.1016/j.chembiol.2017.09.010 29129718
    [Google Scholar]
  7. Winter G.E. Buckley D.L. Paulk J. Roberts J.M. Souza A. Dhe-Paganon S. Bradner J.E. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 2015 348 6241 1376 1381 10.1126/science.aab1433 25999370
    [Google Scholar]
  8. Fischer E.S. Böhm K. Lydeard J.R. Yang H. Stadler M.B. Cavadini S. Nagel J. Serluca F. Acker V. Lingaraju G.M. Tichkule R.B. Schebesta M. Forrester W.C. Schirle M. Hassiepen U. Ottl J. Hild M. Beckwith R.E.J. Harper J.W. Jenkins J.L. Thomä N.H. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 2014 512 7512 49 53 10.1038/nature13527 25043012
    [Google Scholar]
  9. Raina K. Lu J. Qian Y. Altieri M. Gordon D. Rossi A.M.K. Wang J. Chen X. Dong H. Siu K. Winkler J.D. Crew A.P. Crews C.M. Coleman K.G. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA 2016 113 26 7124 7129 10.1073/pnas.1521738113 27274052
    [Google Scholar]
  10. Ohoka N. Tsuji G. Shoda T. Fujisato T. Kurihara M. Demizu Y. Naito M. Development of small molecule chimeras that recruit AhR E3 Ligase to target proteins. ACS Chem. Biol. 2019 14 12 2822 2832 10.1021/acschembio.9b00704 31580635
    [Google Scholar]
  11. Schneekloth J.S. Jr Fonseca F.N. Koldobskiy M. Mandal A. Deshaies R. Sakamoto K. Crews C.M. Chemical genetic control of protein levels: Selective in vivo targeted degradation. J. Am. Chem. Soc. 2004 126 12 3748 3754 10.1021/ja039025z 15038727
    [Google Scholar]
  12. Nabet B. Roberts J.M. Buckley D.L. Paulk J. Dastjerdi S. Yang A. Leggett A.L. Erb M.A. Lawlor M.A. Souza A. Scott T.G. Vittori S. Perry J.A. Qi J. Winter G.E. Wong K.K. Gray N.S. Bradner J.E. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 2018 14 5 431 441 10.1038/s41589‑018‑0021‑8 29581585
    [Google Scholar]
  13. Schreiber S.L. The Rise of molecular glues. Cell 2021 184 1 3 9 10.1016/j.cell.2020.12.020 33417864
    [Google Scholar]
  14. Clift D. McEwan W.A. Labzin L.I. Konieczny V. Mogessie B. James L.C. Schuh M. A method for the acute and rapid degradation of endogenous proteins. Cell 2017 171 7 1692 1706.e18 10.1016/j.cell.2017.10.033 29153837
    [Google Scholar]
  15. Churcher I. Protac-induced protein degradation in drug discovery: Breaking the rules or just making new ones? J. Med. Chem. 2018 61 2 444 452 10.1021/acs.jmedchem.7b01272 29144739
    [Google Scholar]
  16. Zorba A. Nguyen C. Xu Y. Starr J. Borzilleri K. Smith J. Zhu H. Farley K.A. Ding W. Schiemer J. Feng X. Chang J.S. Uccello D.P. Young J.A. Garcia-Irrizary C.N. Czabaniuk L. Schuff B. Oliver R. Montgomery J. Hayward M.M. Coe J. Chen J. Niosi M. Luthra S. Shah J.C. El-Kattan A. Qiu X. West G.M. Noe M.C. Shanmugasundaram V. Gilbert A.M. Brown M.F. Calabrese M.F. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc. Natl. Acad. Sci. USA 2018 115 31 E7285 E7292 10.1073/pnas.1803662115 30012605
    [Google Scholar]
  17. Gadd M.S. Testa A. Lucas X. Chan K.H. Chen W. Lamont D.J. Zengerle M. Ciulli A. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 2017 13 5 514 521 10.1038/nchembio.2329 28288108
    [Google Scholar]
  18. Neklesa T.K. Winkler J.D. Crews C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther. 2017 174 138 144 10.1016/j.pharmthera.2017.02.027 28223226
    [Google Scholar]
  19. Li K. Crews C.M. PROTACs: Past, present and future. Chem. Soc. Rev. 2022 51 12 5214 5236 10.1039/D2CS00193D 35671157
    [Google Scholar]
  20. Li X. Pu W. Zheng Q. Ai M. Chen S. Peng Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol. Cancer 2022 21 1 99 10.1186/s12943‑021‑01434‑3 35410300
    [Google Scholar]
  21. Chamberlain P.P. Hamann L.G. Development of targeted protein degradation therapeutics. Nat. Chem. Biol. 2019 15 10 937 944 10.1038/s41589‑019‑0362‑y 31527835
    [Google Scholar]
  22. Sasso J.M. Tenchov R. Wang D. Johnson L.S. Wang X. Zhou Q.A. Molecular glues: The adhesive connecting targeted protein degradation to the clinic. Biochemistry 2023 62 3 601 623 10.1021/acs.biochem.2c00245 35856839
    [Google Scholar]
  23. Dong G. Ding Y. He S. Sheng C. Molecular glues for targeted protein degradation: From serendipity to rational discovery. J. Med. Chem. 2021 64 15 10606 10620 10.1021/acs.jmedchem.1c00895 34319094
    [Google Scholar]
  24. Wu H. Yao H. He C. Jia Y. Zhu Z. Xu S. Li D. Xu J. Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment. Acta Pharm. Sin. B 2022 12 9 3548 3566 10.1016/j.apsb.2022.03.019 36176907
    [Google Scholar]
  25. Lemaitre T. Cornu M. Schwalen F. Since M. Kieffer C. Voisin-Chiret A.S. Molecular glue degraders: Exciting opportunities for novel drug discovery. Expert Opin. Drug Discov. 2024 19 4 433 449 10.1080/17460441.2024.2306845 38240114
    [Google Scholar]
  26. Domostegui A. Nieto-Barrado L. Perez-Lopez C. Mayor-Ruiz C. Chasing molecular glue degraders: Screening approaches. Chem. Soc. Rev. 2022 51 13 5498 5517 10.1039/D2CS00197G 35723413
    [Google Scholar]
  27. Jiang W. Jiang Y. Luo Y. Qiao W. Yang T. Facilitating the development of molecular glues: Opportunities from serendipity and rational design. Eur. J. Med. Chem. 2024 263 115950 10.1016/j.ejmech.2023.115950 37984298
    [Google Scholar]
  28. Donovan K.A. Ferguson F.M. Bushman J.W. Eleuteri N.A. Bhunia D. Ryu S. Tan L. Shi K. Yue H. Liu X. Dobrovolsky D. Jiang B. Wang J. Hao M. You I. Teng M. Liang Y. Hatcher J. Li Z. Manz T.D. Groendyke B. Hu W. Nam Y. Sengupta S. Cho H. Shin I. Agius M.P. Ghobrial I.M. Ma M.W. Che J. Buhrlage S.J. Sim T. Gray N.S. Fischer E.S. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 2020 183 6 1714 1731.e10 10.1016/j.cell.2020.10.038 33275901
    [Google Scholar]
  29. Burslem G.M. Smith B.E. Lai A.C. Jaime-Figueroa S. McQuaid D.C. Bondeson D.P. Toure M. Dong H. Qian Y. Wang J. Crew A.P. Hines J. Crews C.M. The advantages of targeted protein degradation over inhibition: An RTK case study. Cell Chem. Biol. 2018 25 1 67 77.e3 10.1016/j.chembiol.2017.09.009 29129716
    [Google Scholar]
  30. Wang C. Zhang Y. Shi L. Yang S. Chang J. Zhong Y. Li Q. Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J. Enzyme Inhib. Med. Chem. 2022 37 1 1437 1453 10.1080/14756366.2022.2074414 35589670
    [Google Scholar]
  31. Ohoka N. PROTACs: Novel therapeutic modality by induced protein degradation. Yakugaku Zasshi 2018 138 9 1135 1143 10.1248/yakushi.18‑00113 30175757
    [Google Scholar]
  32. Ohoka N. Shibata N. Hattori T. Naito M. Protein knockdown technology: Application of ubiquitin ligase to cancer therapy. Curr. Cancer Drug Targets 2016 16 2 136 146 10.2174/1568009616666151112122502 26560118
    [Google Scholar]
  33. Lee J. Jung M. H. Jeong E. Lee J. K. Using sniper-Cas9 to minimize off-target effects of CRISPR-Cas9 without the loss of on-target activity via directed evolution. J. Vis. Exp. 2019 144 10.3791/59202 30882797
    [Google Scholar]
  34. Ishikawa M. Tomoshige S. Demizu Y. Naito M. Selective degradation of target proteins by chimeric small-molecular drugs, PROTACs and SNIPERs. Pharmaceuticals 2020 13 4 74 10.3390/ph13040074 32326273
    [Google Scholar]
  35. Ma Z. Ji Y. Yu Y. Liang D. Specific non-genetic IAP-based protein erasers (SNIPERs) as a potential therapeutic strategy. Eur. J. Med. Chem. 2021 216 113247 10.1016/j.ejmech.2021.113247 33652355
    [Google Scholar]
  36. Naito M. Ohoka N. Shibata N. Tsukumo Y. Targeted protein degradation by chimeric small molecules, PROTACs and SNIPERs. Front Chem. 2019 7 849 10.3389/fchem.2019.00849 31921772
    [Google Scholar]
  37. Okuhira K. Demizu Y. Hattori T. Ohoka N. Shibata N. Kurihara M. Naito M. Molecular design, synthesis, and evaluation of SNIPER(ER) that induces proteasomal degradation of ERα. Methods Mol. Biol. 2016 1366 549 560 10.1007/978‑1‑4939‑3127‑9_42 26585163
    [Google Scholar]
  38. Fan X. Wang Y.T. SNIPER peptide-mediated degradation of endogenous proteins. Curr. Protoc. Chem. Biol. 2015 7 1 1 16 10.1002/9780470559277.ch140202 25727059
    [Google Scholar]
  39. Neklesa T.K. Tae H.S. Schneekloth A.R. Stulberg M.J. Corson T.W. Sundberg T.B. Raina K. Holley S.A. Crews C.M. Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 2011 7 8 538 543 10.1038/nchembio.597 21725302
    [Google Scholar]
  40. Banik S.M. Pedram K. Wisnovsky S. Ahn G. Riley N.M. Bertozzi C.R. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 2020 584 7820 291 297 10.1038/s41586‑020‑2545‑9 32728216
    [Google Scholar]
  41. Shahpasand-Kroner H. Siddique I. Malik R. Linares G.R. Ivanova M.I. Ichida J. Weil T. Münch J. Sanchez-Garcia E. Klärner F.G. Schrader T. Bitan G. Molecular tweezers: Supramolecular hosts with broad-spectrum biological applications. Pharmacol. Rev. 2023 75 2 263 308 10.1124/pharmrev.122.000654 36549866
    [Google Scholar]
  42. Guo J.Y. Teng X. Laddha S.V. Ma S. Van Nostrand S.C. Yang Y. Khor S. Chan C.S. Rabinowitz J.D. White E. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev. 2016 30 15 1704 1717 10.1101/gad.283416.116 27516533
    [Google Scholar]
  43. Parzych K.R. Klionsky D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014 20 3 460 473 10.1089/ars.2013.5371 23725295
    [Google Scholar]
  44. Bondeson D.P. Mares A. Smith I.E.D. Ko E. Campos S. Miah A.H. Mulholland K.E. Routly N. Buckley D.L. Gustafson J.L. Zinn N. Grandi P. Shimamura S. Bergamini G. Faelth-Savitski M. Bantscheff M. Cox C. Gordon D.A. Willard R.R. Flanagan J.J. Casillas L.N. Votta B.J. den Besten W. Famm K. Kruidenier L. Carter P.S. Harling J.D. Churcher I. Crews C.M. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 2015 11 8 611 617 10.1038/nchembio.1858 26075522
    [Google Scholar]
  45. Burslem G.M. Crews C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 2020 181 1 102 114 10.1016/j.cell.2019.11.031 31955850
    [Google Scholar]
  46. Pettersson M. Crews C.M. PROteolysis TArgeting Chimeras (PROTACs) — Past, present and future. Drug Discov. Today. Technol. 2019 31 15 27 10.1016/j.ddtec.2019.01.002 31200855
    [Google Scholar]
  47. Ciechanover A. Proteolysis: From the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 2005 6 1 79 87 10.1038/nrm1552 15688069
    [Google Scholar]
  48. Lai A.C. Crews C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov. 2017 16 2 101 114 10.1038/nrd.2016.211 27885283
    [Google Scholar]
  49. Xiong Y. Yu C. Zhang Q. Ubiquitin-proteasome system–regulated protein degradation in spermatogenesis. Cells 2022 11 6 1058 10.3390/cells11061058 35326509
    [Google Scholar]
  50. Bhat S.A. Vasi Z. Adhikari R. Gudur A. Ali A. Jiang L. Ferguson R. Liang D. Kuchay S. Ubiquitin proteasome system in immune regulation and therapeutics. Curr. Opin. Pharmacol. 2022 67 102310 10.1016/j.coph.2022.102310 36288660
    [Google Scholar]
  51. Tanaka K. The proteasome: Overview of structure and functions. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2009 85 1 12 36 10.2183/pjab.85.12 19145068
    [Google Scholar]
  52. Yang Q. Zhao J. Chen D. Wang Y. E3 ubiquitin ligases: Styles, structures and functions. Mol. Biomed. 2021 2 1 23 10.1186/s43556‑021‑00043‑2 35006464
    [Google Scholar]
  53. Spano D. Catara G. Targeting the ubiquitin–proteasome system and recent advances in cancer therapy. Cells 2023 13 1 29 10.3390/cells13010029 38201233
    [Google Scholar]
  54. Yao T. Xiao H. Wang H. Xu X. Recent advances in PROTACs for drug targeted protein research. Int. J. Mol. Sci. 2022 23 18 10328 10.3390/ijms231810328 36142231
    [Google Scholar]
  55. Lee J.M. Hammarén H.M. Savitski M.M. Baek S.H. Control of protein stability by post-translational modifications. Nat. Commun. 2023 14 1 201 10.1038/s41467‑023‑35795‑8 36639369
    [Google Scholar]
  56. Glozak M.A. Sengupta N. Zhang X. Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005 363 15 23 10.1016/j.gene.2005.09.010 16289629
    [Google Scholar]
  57. Dale B. Cheng M. Park K.S. Kaniskan H.Ü. Xiong Y. Jin J. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 2021 21 10 638 654 10.1038/s41568‑021‑00365‑x 34131295
    [Google Scholar]
  58. Hardy J. Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002 297 5580 353 356 10.1126/science.1072994 12130773
    [Google Scholar]
  59. Babić Leko M. Župunski V. Kirincich J. Smilović D. Hortobágyi T. Hof P.R. Šimić G. Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. Behav. Neurol. 2019 2019 1 18 10.1155/2019/2909168 30774737
    [Google Scholar]
  60. Bates G.P. Dorsey R. Gusella J.F. Hayden M.R. Kay C. Leavitt B.R. Nance M. Ross C.A. Scahill R.I. Wetzel R. Wild E.J. Tabrizi S.J. Huntington disease. Nat. Rev. Dis. Primers 2015 1 1 15005 10.1038/nrdp.2015.5 27188817
    [Google Scholar]
  61. Metcalf D.J. García-Arencibia M. Hochfeld W.E. Rubinsztein D.C. Autophagy and misfolded proteins in neurodegeneration. Exp. Neurol. 2012 238 1 22 28 10.1016/j.expneurol.2010.11.003 21095248
    [Google Scholar]
  62. Cai Z. Yang Z. Li H. Fang Y. Research progress of PROTACs for neurodegenerative diseases therapy. Bioorg. Chem. 2024 147 107386 10.1016/j.bioorg.2024.107386 38643565
    [Google Scholar]
  63. Human Immunodeficiency Virus (HIV). Transfus. Med. Hemother. 2016 43 3 203 222 10.1159/000445852 27403093
    [Google Scholar]
  64. Alugubelli Y. R. Xiao J. Khatua K. Kumar S. Sun L. Ma Y. Ma X. R. Vulupala V. R. Atla S. Blankenship L. R. Coleman D. Xie X. Neuman B. W. Liu W. R. Xu S. Discovery of first-in-class PROTAC degraders of SARS-CoV-2 main protease. J. Med. Chem. 2024 67 8 6495 6507 10.1021/acs.jmedchem.3c02416 38608245
    [Google Scholar]
  65. Mahajan S. Choudhary S. Kumar P. Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg. Med. Chem. 2021 46 116356 10.1016/j.bmc.2021.116356 34416512
    [Google Scholar]
  66. Ahmad H. Zia B. Husain H. Husain A. Recent advances in PROTAC-based antiviral strategies. Vaccines 2023 11 2 270 10.3390/vaccines11020270 36851148
    [Google Scholar]
  67. Christiaansen A. Varga S.M. Spencer J.V. Viral manipulation of the host immune response. Curr. Opin. Immunol. 2015 36 54 60 10.1016/j.coi.2015.06.012 26177523
    [Google Scholar]
  68. Kuemper S. Cairns A.G. Birchall K. Yao Z. Large J.M. Targeted protein degradation in CNS disorders: A promising route to novel therapeutics? Front. Mol. Neurosci. 2024 17 1370509 10.3389/fnmol.2024.1370509 38685916
    [Google Scholar]
  69. Kumar D. Hassan M.I. Targeted protein degraders march towards the clinic for neurodegenerative diseases. Ageing Res. Rev. 2022 78 101616 10.1016/j.arr.2022.101616 35378298
    [Google Scholar]
  70. Hyun S. Shin D. Chemical-mediated targeted protein degradation in neurodegenerative diseases. Life 2021 11 7 607 10.3390/life11070607 34202541
    [Google Scholar]
  71. Fang Y. Wang J. Zhao M. Zheng Q. Ren C. Wang Y. Zhang J. Progress and challenges in targeted protein degradation for neurodegenerative disease therapy. J. Med. Chem. 2022 65 17 11454 11477 10.1021/acs.jmedchem.2c00844 36006861
    [Google Scholar]
  72. Alcami A. Koszinowski U.H. Viral mechanisms of immune evasion. Trends Microbiol. 2000 8 9 410 418 10.1016/S0966‑842X(00)01830‑8 10989308
    [Google Scholar]
  73. Eggleton P. Stress protein–polypeptide complexes acting as autoimmune triggers. Clin. Exp. Immunol. 2003 134 1 6 8 10.1046/j.1365‑2249.2003.02263.x 12974747
    [Google Scholar]
  74. Zhou Q.Q. Xiao H.T. Yang F. Wang Y.D. Li P. Zheng Z.G. Advancing targeted protein degradation for metabolic diseases therapy. Pharmacol. Res. 2023 188 106627 10.1016/j.phrs.2022.106627 36566001
    [Google Scholar]
  75. Hua Y. Nair S. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 2 195 208 10.1016/j.bbadis.2014.04.032 24815358
    [Google Scholar]
  76. Nanini H.F. Bernardazzi C. Castro F. Souza H.S.P. Damage-associated molecular patterns in inflammatory bowel disease: From biomarkers to therapeutic targets. World J. Gastroenterol. 2018 24 41 4622 4634 10.3748/wjg.v24.i41.4622 30416310
    [Google Scholar]
  77. Wynn T.A. Ramalingam T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012 18 7 1028 1040 10.1038/nm.2807 22772564
    [Google Scholar]
  78. Mostofian B. Martin H.J. Razavi A. Patel S. Allen B. Sherman W. Izaguirre J.A. Targeted protein degradation: Advances, challenges, and prospects for computational methods. J. Chem. Inf. Model. 2023 63 17 5408 5432 10.1021/acs.jcim.3c00603 37602861
    [Google Scholar]
  79. Jeong Y. Oh A.R. Jung Y.H. Gi H. Kim Y.U. Kim K. Targeting E3 ubiquitin ligases and their adaptors as a therapeutic strategy for metabolic diseases. Exp. Mol. Med. 2023 55 10 2097 2104 10.1038/s12276‑023‑01087‑w 37779139
    [Google Scholar]
  80. Huang F. Zhang B. Zhou S. Zhao X. Bian C. Wei Y. Chemical proteomics: Terra incognita for novel drug target profiling. Chin. J. Cancer 2012 31 11 507 518 10.5732/cjc.011.10377 22640626
    [Google Scholar]
  81. Li Y. Meng Q. Yang M. Liu D. Hou X. Tang L. Wang X. Lyu Y. Chen X. Liu K. Yu A.M. Zuo Z. Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B 2019 9 6 1113 1144 10.1016/j.apsb.2019.10.001 31867160
    [Google Scholar]
  82. Qi S.M. Dong J. Xu Z.Y. Cheng X.D. Zhang W.D. Qin J.J. PROTAC: An effective targeted protein degradation strategy for cancer therapy. Front. Pharmacol. 2021 12 692574 10.3389/fphar.2021.692574 34025443
    [Google Scholar]
  83. Wang C. Zhang Y. Chen W. Wu Y. Xing D. New-generation advanced PROTACs as potential therapeutic agents in cancer therapy. Mol. Cancer 2024 23 1 110 10.1186/s12943‑024‑02024‑9 38773495
    [Google Scholar]
  84. Gavali S. Liu J. Li X. Paolino M. Ubiquitination in T-cell activation and checkpoint inhibition: New avenues for targeted cancer immunotherapy. Int. J. Mol. Sci. 2021 22 19 10800 10.3390/ijms221910800 34639141
    [Google Scholar]
  85. Bou Antoun N. Chioni A.M. Dysregulated signalling pathways driving anticancer drug resistance. Int. J. Mol. Sci. 2023 24 15 12222 10.3390/ijms241512222 37569598
    [Google Scholar]
  86. Talib W.H. Alsayed A.R. Barakat M. Abu-Taha M.I. Mahmod A.I. Targeting drug chemo-resistance in cancer using natural products. Biomedicines 2021 9 10 1353 10.3390/biomedicines9101353 34680470
    [Google Scholar]
  87. Salama A.K.A.A. Trkulja M.V. Casanova E. Uras I.Z. Targeted protein degradation: Clinical advances in the field of oncology. Int. J. Mol. Sci. 2022 23 23 15440 10.3390/ijms232315440 36499765
    [Google Scholar]
  88. Crews C.M. Targeted protein degradation: A new frontier in drug discovery. Nat. Rev. Drug Discov. 2021 20 6 379 394
    [Google Scholar]
  89. Yoon H. Rutter J.C. Li Y.D. Ebert B.L. Induced protein degradation for therapeutics: Past, present, and future. J. Clin. Invest. 2024 134 1 e175265 10.1172/JCI175265 38165043
    [Google Scholar]
  90. Riching K.M. Caine E.A. Urh M. Daniels D.L. The importance of cellular degradation kinetics for understanding mechanisms in targeted protein degradation. Chem. Soc. Rev. 2022 51 14 6210 6221 10.1039/D2CS00339B 35792307
    [Google Scholar]
  91. Bouvier C. Lawrence R. Cavallo F. Xolalpa W. Jordan A. Hjerpe R. Rodriguez M.S. Breaking bad proteins—discovery approaches and the road to clinic for degraders. Cells 2024 13 7 578 10.3390/cells13070578 38607017
    [Google Scholar]
  92. Kong N.R. Jones L.H. Clinical translation of targeted protein degraders. Clin. Pharmacol. Ther. 2023 114 3 558 568 10.1002/cpt.2985 37399310
    [Google Scholar]
  93. Moingeon P. Kuenemann M. Guedj M. Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine. Drug Discov. Today 2022 27 1 215 222 10.1016/j.drudis.2021.09.006 34555509
    [Google Scholar]
  94. Parvathaneni M. Awol A.K. Kumari M. Lan K. Lingam M. Application of artificial intelligence and machine learning in drug discovery and development. J. Drug Deliv. Ther. 2023 13 1 151 158 10.22270/jddt.v13i1.5867
    [Google Scholar]
  95. Guterres H. Im W. Improving protein-ligand docking results with high-throughput molecular dynamics simulations. J. Chem. Inf. Model. 2020 60 4 2189 2198 10.1021/acs.jcim.0c00057 32227880
    [Google Scholar]
  96. Joshi R.P. Kumar N. Artificial Intelligence for autonomous molecular design: A perspective. Molecules 2021 26 22 6761 10.3390/molecules26226761 34833853
    [Google Scholar]
  97. Shiammala P.N. Duraimutharasan N.K.B. Vaseeharan B. Alothaim A.S. Al-Malki E.S. Snekaa B. Safi S.Z. Singh S.K. Velmurugan D. Selvaraj C. Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors. Methods 2023 219 82 94 10.1016/j.ymeth.2023.09.010 37778659
    [Google Scholar]
  98. Liu Z. Hu M. Yang Y. Du C. Zhou H. Liu C. Chen Y. Fan L. Ma H. Gong Y. Xie Y. An overview of PROTACs: A promising drug discovery paradigm. Mol. Biomed. 2022 3 1 46 10.1186/s43556‑022‑00112‑0 36536188
    [Google Scholar]
  99. Nandave M. Jain P. PROTAC-mediated protein degradation: A paradigm shift in cancer therapeutics. Springer 2024 10.1007/978‑981‑97‑5077‑1
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037355750250526052851
Loading
/content/journals/cpps/10.2174/0113892037355750250526052851
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test