Skip to content
2000
image of Engineering Strategies for Hyaluronan Synthesis: A Review of Enzyme Modifications, Strain Selection, and Molecular Weight Control

Abstract

Hyaluronan is a biopolymer with significant biological and commercial importance, particularly due to its applications in medical, cosmetic, and tissue engineering fields. The molecular weight of HA is a key factor that influences its biological function, ranging from anti-inflammatory properties in high-molecular-weight HA to pro-inflammatory effects in low-molecular-weight HA. Recent advancements in protein and strain engineering have enabled precise control of the molecular weight of hyaluronan by manipulating both hyaluronan synthase enzyme variants and the host microbial strains used in hyaluronan production. Strain engineering, through genetic modification and metabolic pathway optimization, enhances the efficiency and yield of hyaluronan with defined molecular properties. Despite progress in industrial-scale hyaluronan production, achieving monodisperse hyaluronan with well-defined molecular weights remains a challenge. This review explores the current breakthroughs in enzyme and strain engineering strategies to optimize hyaluronan synthase enzyme activity and microbial host systems, aiming to produce size-controlled hyaluronan polymers with improved therapeutic efficacy. We discuss the role of specific hyaluronan synthase enzyme mutations and truncations, strain selection, and metabolic engineering, as well as the potential of cell-free systems for producing hyaluronan with tailored molecular properties for advanced biomedical applications.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037367001250702064351
2025-07-24
2026-01-02
Loading full text...

Full text loading...

References

  1. Al-Khateeb R. Prpic J. Hyaluronic acid: The reason for its variety of physiological and biochemical functional properties. Appl. Clin. Res. Clin. Trials Regul. Aff. 2019 6 2 112 159 10.2174/2213476X06666190405094637
    [Google Scholar]
  2. Yang J. Cheng F. Yu H. Wang J. Guo Z. Stephanopoulos G. Key role of the carboxyl terminus of hyaluronan synthase in processive synthesis and size control of hyaluronic acid polymers. Biomacromolecules 2017 18 4 1064 1073 10.1021/acs.biomac.6b01239 28192668
    [Google Scholar]
  3. Iaconisi G.N. Lunetti P. Gallo N. Cappello A.R. Fiermonte G. Dolce V. Capobianco L. Hyaluronic Acid: A powerful biomolecule with wide-ranging applications: A comprehensive review. Int. J. Mol. Sci. 2023 24 12 10296 10.3390/ijms241210296 37373443
    [Google Scholar]
  4. Stern R. Hyaluronan in cancer biology. Academic Press 2009
    [Google Scholar]
  5. Agarwal G. K v K. Prasad S.B. Bhaduri A. Jayaraman G. Biosynthesis of Hyaluronic acid polymer: Dissecting the role of sub structural nlms of hyaluronan synthase. Sci. Rep. 2019 9 1 12510 10.1038/s41598‑019‑48878‑8 31467312
    [Google Scholar]
  6. Weigel P.H. Baggenstoss B.A. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology 2012 22 10 1302 1310 10.1093/glycob/cws102 22745284
    [Google Scholar]
  7. Wang S.T. Neo B.H. Betts R.J. Glycosaminoglycans: Sweet as sugar targets for topical skin anti-aging. Clin. Cosmet. Investig. Dermatol. 2021 14 1227 1246 10.2147/CCID.S328671 34548803
    [Google Scholar]
  8. Lierova A. Kasparova J. Filipova A. Cizkova J. Pekarova L. Korecka L. Mannova N. Bilkova Z. Sinkorova Z. Hyaluronic acid: Known for almost a century, but still in vogue. Pharmaceutics 2022 14 4 838 10.3390/pharmaceutics14040838 35456670
    [Google Scholar]
  9. Boeriu C.G. Springer J. Kooy F.K. van den Broek L.A. Eggink G. Production methods for hyaluronan. Int. J. Carbohydr. Chem. 2013 2013 1 624967
    [Google Scholar]
  10. Weigel PH Padgett-McCue AJ Baggenstoss BA Methods for measuring class I membrane-bound hyaluronan synthase activity. Methods Mol Biol. 2013 1022 229 247 10.1007/978‑1‑62703‑465‑4_18
    [Google Scholar]
  11. Gallo N. Nasser H. Salvatore L. Natali M.L. Campa L. Mahmoud M. Capobianco L. Sannino A. Madaghiele M. Hyaluronic acid for advanced therapies: Promises and challenges. Eur. Polym. J. 2019 117 134 147 10.1016/j.eurpolymj.2019.05.007
    [Google Scholar]
  12. Gupta R.C. Lall R. Srivastava A. Sinha A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 2019 6 192 10.3389/fvets.2019.00192 31294035
    [Google Scholar]
  13. Cowman M.K. Hyaluronan and hyaluronan fragments. Adv. Carbohydr. Chem. Biochem. 2017 74 1 59 10.1016/bs.accb.2017.10.001 29173725
    [Google Scholar]
  14. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  15. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  16. Landén N.X. Li D. Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 2016 73 20 3861 3885 10.1007/s00018‑016‑2268‑0 27180275
    [Google Scholar]
  17. Blundell C.D. Seyfried N.T. Day A.J. Structural and functional diversity of hyaluronan-binding proteins. Chemistry and Biology of Hyaluronan Elsevier 2004 189 204 10.1016/B978‑008044382‑9/50039‑X
    [Google Scholar]
  18. Seyfi R. Kahaki F.A. Ebrahimi T. Montazersaheb S. Eyvazi S. Babaeipour V. Tarhriz V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. Int. J. Pept. Res. Ther. 2020 26 3 1451 1463 10.1007/s10989‑019‑09946‑9
    [Google Scholar]
  19. Gao Y. Sun Y. Yang H. Qiu P. Cong Z. Zou Y. Song L. Guo J. Anastassiades T.P. A low molecular weight hyaluronic acid derivative accelerates excisional wound healing by modulating pro-inflammation, promoting epithelialization and neovascularization, and remodeling collagen. Int. J. Mol. Sci. 2019 20 15 3722 10.3390/ijms20153722 31366051
    [Google Scholar]
  20. Monslow J. Govindaraju P. Puré E. Hyaluronan: A functional and structural sweet spot in the tissue microenvironment. Front. Immunol. 2015 6 231 10.3389/fimmu.2015.00231 26029216
    [Google Scholar]
  21. Tavianatou A.G. Caon I. Franchi M. Piperigkou Z. Galesso D. Karamanos N.K. Hyaluronan: Molecular size‐dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019 286 15 2883 2908 10.1111/febs.14777 30724463
    [Google Scholar]
  22. Kavasi R.M. Berdiaki A. Spyridaki I. Corsini E. Tsatsakis A. Tzanakakis G. Nikitovic D. HA metabolism in skin homeostasis and inflammatory disease. Food Chem. Toxicol. 2017 101 128 138 10.1016/j.fct.2017.01.012 28109952
    [Google Scholar]
  23. Cyphert J.M. Trempus C.S. Garantziotis S. Size matters: Molecular weight specificity of hyaluronan effects in cell biology. Int. J. Cell Biol. 2015 2015 1 1 8 10.1155/2015/563818 26448754
    [Google Scholar]
  24. Li Y Li G Zhao X Shao Y Wu M Ma T Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis. Biotech 2019 9 1 9 31139540
    [Google Scholar]
  25. Viola M. Vigetti D. Karousou E. D’Angelo M.L. Caon I. Moretto P. De Luca G. Passi A. Biology and biotechnology of hyaluronan. Glycoconj. J. 2015 32 3-4 93 103 10.1007/s10719‑015‑9586‑6 25971701
    [Google Scholar]
  26. Mandawe J. Infanzon B. Eisele A. Zaun H. Kuballa J. Davari M.D. Jakob F. Elling L. Schwaneberg U. Directed evolution of hyaluronic acid synthase from Pasteurella multocida towards high‐molecular‐weight hyaluronic acid. ChemBioChem 2018 19 13 1414 1423 10.1002/cbic.201800093 29603528
    [Google Scholar]
  27. Schulte S. Doss S.S. Jeeva P. Ananth M. Blank L.M. Jayaraman G. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight–tailored hyaluronan. Appl. Microbiol. Biotechnol. 2019 103 18 7567 7581 10.1007/s00253‑019‑10023‑w 31367857
    [Google Scholar]
  28. Sze JH Brownlie JC Love CA Biotechnological production of hyaluronic acid: A mini review. Biotech. 2016 6 1 67 10.1007/s13205‑016‑0379‑9
    [Google Scholar]
  29. Sadeghi Y. Fermentation production process of hyaluronic acid: Hochschule Rhein-Waal. Thesis Hochschule Rhein-Waal University 2023
    [Google Scholar]
  30. Baggenstoss B.A. Harris E.N. Washburn J.L. Medina A.P. Nguyen L. Weigel P.H. Hyaluronan synthase control of synthesis rate and hyaluronan product size are independent functions differentially affected by mutations in a conserved tandem B-X 7 -B motif. Glycobiology 2017 27 2 154 164 10.1093/glycob/cww089 27558839
    [Google Scholar]
  31. Wu Y. Zhao S. Wang J. Chen Y. Li H. Li J. Kan Y. Zhang T. Methods for determining the structure and physicochemical properties of hyaluronic acid and its derivatives: A review. Int. J. Biol. Macromol. 2024 282 Pt 6 137603 10.1016/j.ijbiomac.2024.137603 39542327
    [Google Scholar]
  32. Saletti M. Paolino M. Ballerini L. Giuliani G. Leone G. Lamponi S. Andreassi M. Bonechi C. Donati A. Piovani D. Schieroni A.G. Magnani A. Cappelli A. Click-chemistry cross-linking of hyaluronan graft copolymers. Pharmaceutics 2022 14 5 1041 10.3390/pharmaceutics14051041 35631626
    [Google Scholar]
  33. Mandawe J. Schwaneberg U. Blank L.M. Engineering of hyaluronic acid synthases from Streptococcus equi subsp. zooepidemicus and Pasteurella multocida towards improved HA chain length and titer. Dissertation, RWTH Aachen University 2018
    [Google Scholar]
  34. Zhu Y. Li N. Huang M. Bartels M. Dogné S. Zhao S. Chen X. Crewe C. Straub L. Vishvanath L. Zhang Z. Shao M. Yang Y. Gliniak C.M. Gordillo R. Smith G.I. Holland W.L. Gupta R.K. Dong B. Caron N. Xu Y. Akgul Y. Klein S. Scherer P.E. Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nat. Commun. 2021 12 1 4829 10.1038/s41467‑021‑25025‑4 34376643
    [Google Scholar]
  35. Jin P. Kang Z. Yuan P. Du G. Chen J. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab. Eng. 2016 35 21 30 10.1016/j.ymben.2016.01.008 26851304
    [Google Scholar]
  36. Smallman T.R. Williams G.C. Harper M. Boyce J.D. Genome-wide investigation of Pasteurella multocida identifies the stringent response as a negative regulator of hyaluronic acid capsule production. Microbiol. Spectr. 2022 10 2 e00195-22 10.1128/spectrum.00195‑22 35404102
    [Google Scholar]
  37. Maloney F.P. Kuklewicz J. Corey R.A. Bi Y. Ho R. Mateusiak L. Pardon E. Steyaert J. Stansfeld P.J. Zimmer J. Structure, substrate recognition and initiation of hyaluronan synthase. Nature 2022 604 7904 195 201 10.1038/s41586‑022‑04534‑2 35355017
    [Google Scholar]
  38. Jing W. DeAngelis P.L. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J. Biol. Chem. 2004 279 40 42345 42349 10.1074/jbc.M402744200 15299014
    [Google Scholar]
  39. Jing W. DeAngelis P.L. Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology 2003 13 10 661 671 10.1093/glycob/cwg085 12799342
    [Google Scholar]
  40. Fu X. Shang W. Wang S. Liu Y. Qu J. Chen X. Wang P.G. Fang J. A general strategy for the synthesis of homogeneous hyaluronan conjugates and their biological applications. Chem. Commun. (Camb.) 2017 53 25 3555 3558 10.1039/C6CC09431G 28286894
    [Google Scholar]
  41. Cohan R.A. Keramati M. Afshari E. Parsian P. Ahani R. Ebrahimi T. Evaluation of transmembrane domain deletions on hyaluronic acid polymerization of hyaluronan synthase isolated from Streptococcus equisimilis group G. World J. Microbiol. Biotechnol. 2023 39 9 227 10.1007/s11274‑023‑03650‑z 37326689
    [Google Scholar]
  42. Vigetti D. Viola M. Karousou E. De Luca G. Passi A. Metabolic control of hyaluronan synthases. Matrix Biol. 2014 35 8 13 10.1016/j.matbio.2013.10.002 24134926
    [Google Scholar]
  43. Garg H.G. Hales C.A. Chemistry and biology of hyaluronan. Elsevier 2004
    [Google Scholar]
  44. Tlapak-Simmons V.L. Baron C.A. Gotschall R. Haque D. Canfield W.M. Weigel P.H. Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end. J. Biol. Chem. 2005 280 13 13012 13018 10.1074/jbc.M409788200 15668242
    [Google Scholar]
  45. Blackburn M.R. Hubbard C. Kiessling V. Bi Y. Kloss B. Tamm L.K. Zimmer J. Distinct reaction mechanisms for hyaluronan biosynthesis in different kingdoms of life. Glycobiology 2018 28 2 108 121 10.1093/glycob/cwx096 29190396
    [Google Scholar]
  46. Passi A. Vigetti D. Hyaluronan: Structure, metabolism, and biological properties. Extracellular Sugar-Based Biopolymers Matrices Springer 2019 155 186 10.1007/978‑3‑030‑12919‑4_4
    [Google Scholar]
  47. Weigel P.H. Hyaluronan synthase: The mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int. J. Cell Biol. 2015 2015 1 1 15 10.1155/2015/367579 26472958
    [Google Scholar]
  48. Weigel P.H. DeAngelis P.L. Hyaluronan synthases: A decade-plus of novel glycosyltransferases. J. Biol. Chem. 2007 282 51 36777 36781 10.1074/jbc.R700036200 17981795
    [Google Scholar]
  49. Weigel P.H. Baggenstoss B.A. Washburn J.L. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end. Glycobiology 2017 27 6 cwx012 10.1093/glycob/cwx012 28138013
    [Google Scholar]
  50. Prehm P. Biosynthesis of hyaluronan: Direction of chain elongation. Biochem. J. 2006 398 3 469 473 10.1042/BJ20060431 16719838
    [Google Scholar]
  51. Weigel P. Bacterial hyaluronan synthases–an update. Hyaluronan Today 2004 8
    [Google Scholar]
  52. Baggenstoss B.A. Weigel P.H. Size exclusion chromatography–multiangle laser light scattering analysis of hyaluronan size distributions made by membrane-bound hyaluronan synthase. Anal. Biochem. 2006 352 2 243 251 10.1016/j.ab.2006.01.019 16476403
    [Google Scholar]
  53. Kooy F.K. Beeftink H.H. Eppink M.H.M. Tramper J. Eggink G. Boeriu C.G. Structural and functional evidence for two separate oligosaccharide binding sites of Pasteurella multocida hyaluronan synthase. Adv. Enzyme Res. 2013 1 4 97 111 10.4236/aer.2013.14011
    [Google Scholar]
  54. Zhao X. Chen Z. Gu G. Guo Z. Recent advances in the research of bacterial glucuronosyltransferases. J. Carbohydr. Chem. 2016 35 4 201 223 10.1080/07328303.2016.1205597
    [Google Scholar]
  55. Jing W. DeAngelis P.L. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology 2000 10 9 883 889 10.1093/glycob/10.9.883 10988250
    [Google Scholar]
  56. Pummill P.E. Kane T.A. Kempner E.S. DeAngelis P.L. The functional molecular mass of the Pasteurella hyaluronan synthase is a monomer. Biochim. Biophys. Acta, Gen. Subj. 2007 1770 2 286 290 10.1016/j.bbagen.2006.09.020 17095162
    [Google Scholar]
  57. Górniak I. Stephens Z. Erramilli S.K. Gawda T. Kossiakoff A.A. Zimmer J. Structural insights into translocation and tailored synthesis of hyaluronan. Nat. Struct. Mol. Biol. 2024 ••• 1 11 39322765
    [Google Scholar]
  58. Kumari K. Tlapak-Simmons V.L. Baggenstoss B.A. Weigel P.H. The streptococcal hyaluronan synthases are inhibited by sulfhydryl-modifying reagents, but conserved cysteine residues are not essential for enzyme function. J. Biol. Chem. 2002 277 16 13943 13951 10.1074/jbc.M110638200 11799120
    [Google Scholar]
  59. DeAngelis P. Monodisperse hyaluronan polymers: Synthesis and potential applications. Curr. Pharm. Biotechnol. 2008 9 4 246 248 10.2174/138920108785161550 18691084
    [Google Scholar]
  60. Törrönen K. Nikunen K. Kärnä R. Tammi M. Tammi R. Rilla K. Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem. Cell Biol. 2014 141 1 17 31 10.1007/s00418‑013‑1143‑4 24057227
    [Google Scholar]
  61. Kumari K. Baggenstoss B.A. Parker A.L. Weigel P.H. Mutation of two intramembrane polar residues conserved within the hyaluronan synthase family alters hyaluronan product size. J. Biol. Chem. 2006 281 17 11755 11760 10.1074/jbc.M600727200 16505475
    [Google Scholar]
  62. Pummill P.E. DeAngelis P.L. Alteration of polysaccharide size distribution of a vertebrate hyaluronan synthase by mutation. J. Biol. Chem. 2003 278 22 19808 19814 10.1074/jbc.M301097200 12654925
    [Google Scholar]
  63. DeAngelis P.L. Oatman L.C. Gay D.F. Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. J. Biol. Chem. 2003 278 37 35199 35203 10.1074/jbc.M306431200 12840012
    [Google Scholar]
  64. Kumari K. Weigel P.H. Identification of a membrane-localized cysteine cluster near the substrate-binding sites of the Streptococcus equisimilis hyaluronan synthase. Glycobiology 2005 15 5 529 539 10.1093/glycob/cwi030 15616126
    [Google Scholar]
  65. Yoshida M. Itano N. Yamada Y. Kimata K. In vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 gene and characterization of amino acid residues essential for the activity. J. Biol. Chem. 2000 275 1 497 506 10.1074/jbc.275.1.497 10617644
    [Google Scholar]
  66. Zhang L. Huang H. Wang H. Chen J. Du G. Kang Z. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol. Lett. 2016 38 12 2103 2108 10.1007/s10529‑016‑2193‑1 27565668
    [Google Scholar]
  67. Heldermon C.D. Tlapak-Simmons V.L. Baggenstoss B.A. Weigel P.H. Site-directed mutation of conserved cysteine residues does not inactivate the Streptococcus pyogenes hyaluronan synthase. Glycobiology 2001 11 12 1017 1024 10.1093/glycob/11.12.1017 11805074
    [Google Scholar]
  68. Ebrahimi T. Keramati M. Khodabakhsh F. Cohan R.A. Enzyme variants in biosynthesis and biological assessment of different molecular weight hyaluronan. AMB Express 2024 14 1 56 10.1186/s13568‑024‑01713‑4 38730188
    [Google Scholar]
  69. Westbrook A.W. Ren X. Oh J. Moo-Young M. Chou C.P. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab. Eng. 2018 47 401 413 10.1016/j.ymben.2018.04.016 29698777
    [Google Scholar]
  70. Amjad Zanjani F.S. Afrasiabi S. Norouzian D. Ahmadian G. Hosseinzadeh S.A. Fayazi Barjin A. Cohan R.A. Keramati M. Hyaluronic acid production and characterization by novel Bacillus subtilis harboring truncated Hyaluronan Synthase. AMB Express 2022 12 1 88 10.1186/s13568‑022‑01429‑3 35821141
    [Google Scholar]
  71. Afrasiabi S. Zanjani F.S.A. Ahmadian G. Cohan R.A. Keramati M. The effect of manipulating glucuronic acid biosynthetic pathway in Bacillus subtilis strain on hyaluronic acid production. AMB Express 2023 13 1 63 10.1186/s13568‑023‑01567‑2 37354246
    [Google Scholar]
  72. Tlapak-Simmons V.L. Baron C.A. Weigel P.H. Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry 2004 43 28 9234 9242 10.1021/bi049468v 15248781
    [Google Scholar]
  73. Gottschalk J. Zaun H. Eisele A. Kuballa J. Elling L. Key factors for a one-pot enzyme cascade synthesis of high molecular weight hyaluronic acid. Int. J. Mol. Sci. 2019 20 22 5664 10.3390/ijms20225664 31726754
    [Google Scholar]
  74. Jing W. Michael Haller F. Almond A. DeAngelis P.L. Defined megadalton hyaluronan polymer standards. Anal. Biochem. 2006 355 2 183 188 10.1016/j.ab.2006.06.009 16842731
    [Google Scholar]
  75. Shi D. Sheng A. Chi L. Glycosaminoglycan-protein interactions and their roles in human disease. Front. Mol. Biosci. 2021 8 639666 10.3389/fmolb.2021.639666 33768117
    [Google Scholar]
  76. Park P.W. Park P.W. Glycosaminoglycans and infection. Front. Biosci. 2016 21 6 1260 1277 10.2741/4455 27100505
    [Google Scholar]
  77. Aquino R.S. Lee E.S. Park P.W. Diverse functions of glycosaminoglycans in infectious diseases. Prog. Mol. Biol. Transl. Sci. 2010 93 373 394 10.1016/S1877‑1173(10)93016‑0 20807653
    [Google Scholar]
  78. Lu P. Ruan D. Huang M. Tian M. Zhu K. Gan Z. Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct. Target. Ther. 2024 9 1 166 10.1038/s41392‑024‑01852‑x 38945949
    [Google Scholar]
  79. Lin C.Y. Basu K. Ruusala A. Kozlova I. Li Y.S. Skandalis S.S. Heldin C.H. Heldin P. Hyaluronan-induced CD44-iASPP interaction affects fibroblast migration and survival. Cancers 2023 15 4 1082 10.3390/cancers15041082 36831425
    [Google Scholar]
  80. Feng Q. Lin S. Zhang K. Dong C. Wu T. Huang H. Yan X. Zhang L. Li G. Bian L. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater. 2017 53 329 342 10.1016/j.actbio.2017.02.015 28193542
    [Google Scholar]
  81. Mfoafo K. Mittal R. Eshraghi A. Omidi Y. Omidian H. Thiolated polymers: An overview of mucoadhesive properties and their potential in drug delivery via mucosal tissues. J. Drug Deliv. Sci. Technol. 2023 85 104596 10.1016/j.jddst.2023.104596
    [Google Scholar]
  82. Aycan D. Karaca F. Koca A. Alemdar N. Electro-stimulated drug release by methacrylated hyaluronic acid-based conductive hydrogel with enhanced mechanical properties. Int. J. Biol. Macromol. 2023 231 123297 10.1016/j.ijbiomac.2023.123297 36646353
    [Google Scholar]
  83. Dimatteo R. Darling N.J. Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 2018 127 167 184 10.1016/j.addr.2018.03.007 29567395
    [Google Scholar]
  84. Kim K.M. D’Elia A.M. Rodell C.B. Hydrogel-based approaches to target hypersensitivity mechanisms underlying autoimmune disease. Adv. Drug Deliv. Rev. 2024 212 115395 10.1016/j.addr.2024.115395 39004347
    [Google Scholar]
  85. Qiu B. Gong M. He Q.T. Zhou P.H. Controlled release of interleukin-1 receptor antagonist from hyaluronic acid-chitosan microspheres attenuates interleukin-1 β -Induced inflammation and apoptosis in chondrocytes. BioMed Res. Int. 2016 2016 1 1 12 10.1155/2016/6290957 27872853
    [Google Scholar]
  86. Nag S. Mohanto S. Ahmed M.G. Subramaniyan V. “Smart” stimuli-responsive biomaterials revolutionizing the theranostic landscape of inflammatory arthritis. Mater. Today Chem. 2024 39 102178 10.1016/j.mtchem.2024.102178
    [Google Scholar]
  87. Yan M. An X. Duan S. Jiang Z. Liu X. Zhao X. Li Y. A comparative study on cross-linking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin. Int. J. Biol. Macromol. 2022 213 639 650 10.1016/j.ijbiomac.2022.06.006 35671907
    [Google Scholar]
  88. Marunaka K. Shu S. Kobayashi M. Goto M. Katsuta Y. Yoshino Y. Ikari A. Elevation of hyaluronan synthase by magnesium supplementation mediated through the activation of GSK3 and CREB in human keratinocyte-derived HaCaT cells. Int. J. Mol. Sci. 2021 23 1 71 10.3390/ijms23010071 35008494
    [Google Scholar]
  89. Pablos J.L. Lozano D. Manzano M. Vallet-Regí M. Regenerative medicine: Hydrogels and mesoporous silica nanoparticles. Mater. Today Bio 2024 29 101342 10.1016/j.mtbio.2024.101342 39649249
    [Google Scholar]
  90. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  91. Moghtader F. Solakoglu S. Piskin E. Alginate-and chitosan-modified gelatin hydrogel microbeads for delivery of E. coli phages. Gels 2024 10 4 244 10.3390/gels10040244 38667663
    [Google Scholar]
  92. Kubaski F. Osago H. Mason R.W. Yamaguchi S. Kobayashi H. Tsuchiya M. Orii T. Tomatsu S. Glycosaminoglycans detection methods: Applications of mass spectrometry. Mol. Genet. Metab. 2017 120 1-2 67 77 10.1016/j.ymgme.2016.09.005 27746032
    [Google Scholar]
  93. Bayat P. Rambaud C. Priem B. Bourderioux M. Bilong M. Poyer S. Pastoriza-Gallego M. Oukhaled A. Mathé J. Daniel R. Comprehensive structural assignment of glycosaminoglycan oligo- and polysaccharides by protein nanopore. Nat. Commun. 2022 13 1 5113 10.1038/s41467‑022‑32800‑4 36042212
    [Google Scholar]
  94. Eguchi H. Ikeda Y. Ookawara T. Koyota S. Fujiwara N. Honke K. Wang P.G. Taniguchi N. Suzuki K. Modification of oligosaccharides by reactive oxygen species decreases sialyl lewis x-mediated cell adhesion. Glycobiology 2005 15 11 1094 1101 10.1093/glycob/cwj003 16000697
    [Google Scholar]
  95. Taniguchi N. Kizuka Y. Takamatsu S. Miyoshi E. Gao C. Suzuki K. Kitazume S. Ohtsubo K. Glyco-redox, a link between oxidative stress and changes of glycans: Lessons from research on glutathione, reactive oxygen and nitrogen species to glycobiology. Arch. Biochem. Biophys. 2016 595 72 80 10.1016/j.abb.2015.11.024 27095220
    [Google Scholar]
  96. Martin J.A. McCabe D. Walter M. Buckwalter J.A. McKinley T.O. N-acetylcysteine inhibits post-impact chondrocyte death in osteochondral explants. J. Bone Joint Surg. Am. 2009 91 8 1890 1897 10.2106/JBJS.H.00545 19651946
    [Google Scholar]
  97. Sunseri M. Ahuja T. Wilcox T. Green D. Acquired coagulopathy and hemorrhage secondary to subcutaneous heparin prophylaxis. Case Rep. Hematol. 2018 2018 1 1 5 10.1155/2018/9501863 29545958
    [Google Scholar]
  98. Ho P.J. Siordia J.A. Dabigatran approaching the realm of heparin-induced thrombocytopenia. Blood Res. 2016 51 2 77 87 10.5045/br.2016.51.2.77 27382551
    [Google Scholar]
  99. Arai E. Nishida Y. Wasa J. Urakawa H. Zhuo L. Kimata K. Kozawa E. Futamura N. Ishiguro N. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br. J. Cancer 2011 105 12 1839 1849 10.1038/bjc.2011.459 22045192
    [Google Scholar]
  100. Sukowati C.H.C. Anfuso B. Fiore E. Ie S.I. Raseni A. Vascotto F. Avellini C. Mazzolini G. Tiribelli C. Hyaluronic acid inhibition by 4-methylumbelliferone reduces the expression of cancer stem cells markers during hepatocarcinogenesis. Sci. Rep. 2019 9 1 4026 10.1038/s41598‑019‑40436‑6 30858465
    [Google Scholar]
  101. Clausen TM Sandoval DR Spliid CB Pihl J Perrett HR Painter CD SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 2020 183 4 1043 10.1016/j.cell.2020.09.033.
    [Google Scholar]
  102. Cechowska-Pasko M. Pałka J. Bańkowski E. Decrease in the glycosaminoglycan content in the skin of diabetic rats. The role of IGF-I, IGF-binding proteins and proteolytic activity. Mol. Cell. Biochem. 1996 154 1 1 8 10.1007/BF00248454 8717410
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037367001250702064351
Loading
/content/journals/cpps/10.2174/0113892037367001250702064351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test