Skip to content
2000
image of Comprehensive Analysis of Glycosyltransferase-Related Genes Reveals their Prognostic and Therapeutic Implications in Stomach Adenocarcinoma

Abstract

Introduction

This study aimed to investigate the role of glycosyltransferase-related genes (GRGs) in stomach adenocarcinoma (STAD) through bioinformatic analysis and experimental validation, exploring their potential as prognostic and therapeutic biomarkers.

Methods

We utilized datasets from TCGA-STAD and GSE26901 to establish training and validation cohorts. Prognostic gene signatures were constructed using differentially expressed genes and LASSO regression. Pathway associations were explored Gene Set Enrichment Analysis (GSEA), and correlations with immune cell infiltration and immune checkpoint genes were analyzed using CIBERSORT, ESTIMATE, and TIDE. Drug sensitivity was assessed using OncoPredict, and GRG expression was confirmed qRT-PCR.

Results

We identified 20 GRGs as prognostic indicators in STAD, with 14 showing abnormal expression. A six-gene signature (B3GAT3, FUT2, GALNT15, GLT8D1, MGAT4C, and ST8SIA6) was constructed, demonstrating AUC values of 0.662, 0.702, and 0.711 in TCGA-STAD for predicting overall survival at 1, 3, and 5 years, respectively. The risk score was significantly associated with reduced survival and identified as an independent prognostic marker. The GRG profile was found to be correlated with immune cell infiltration, immune checkpoint genes, and drug responsiveness.

Discussion

The study highlights the significance of GRGs in STAD prognosis and potential therapeutic applications. The GRG signature shows promise as a predictive biomarker, with implications for personalized medicine. Limitations include modest AUC values and the need for larger, diverse cohorts for validation. Future work should integrate multi-omics data and explore the roles of GRGs in immune modulation and drug sensitivity.

Conclusion

The GRG profile serves as a prognostic biomarker for STAD, offering new insights into therapeutic approaches and potential applications in other gastrointestinal cancers.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037388672250728071209
2025-08-13
2025-11-07
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Aituov B. Duisembekova A. Bulenova A. Alibek K. Pathogen-driven gastrointestinal cancers: Time for a change in treatment paradigm? Infect. Agent. Cancer 2012 7 1 18 10.1186/1750‑9378‑7‑18 22873119
    [Google Scholar]
  3. Zhu Y. Zhou M. Li C. Kong W. Hu Y. Gastric cancer with brain metastasis: From molecular characteristics and treatment. Front. Oncol. 2024 14 1310325 10.3389/fonc.2024.1310325 38577333
    [Google Scholar]
  4. Zhou R. Peng N. Li W. Constructing a novel gene signature derived from oxidative stress specific subtypes for predicting survival in stomach adenocarcinoma. Front. Immunol. 2022 13 964919 10.3389/fimmu.2022.964919 36059494
    [Google Scholar]
  5. Lu L. Yu M. Huang W. Chen H. Jiang G. Li G. Construction of stomach adenocarcinoma prognostic signature based on anoikis-related lncRNAs and clinical significance. Libyan J. Med. 2023 18 1 2220153 10.1080/19932820.2023.2220153 37300839
    [Google Scholar]
  6. Li K. Zhang A. Li X. Zhang H. Zhao L. Advances in clinical immunotherapy for gastric cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1876 2 188615 10.1016/j.bbcan.2021.188615 34403771
    [Google Scholar]
  7. Xu X. Wu Y. Jia G. Zhu Q. Li D. Xie K. A signature based on glycosyltransferase genes provides a promising tool for the prediction of prognosis and immunotherapy responsiveness in ovarian cancer. J. Ovarian Res. 2023 16 1 5 10.1186/s13048‑022‑01088‑9 36611197
    [Google Scholar]
  8. Wu Y. Chen X. Wang S. Wang S. Advances in the relationship between glycosyltransferases and multidrug resistance in cancer. Clin. Chim. Acta 2019 495 417 421 10.1016/j.cca.2019.05.015
    [Google Scholar]
  9. Bastian K. Scott E. Elliott D.J. Munkley J. FUT8 alpha-(1,6)-fucosyltransferase in cancer. Int. J. Mol. Sci. 2021 22 1 455 10.3390/ijms22010455 33466384
    [Google Scholar]
  10. Zhang F. Zhang H. UDP-glucose ceramide glycosyltransferase contributes to the proliferation and glycolysis of cervical cancer cells by regulating the PI3K/AKT Pathway. Ann. Clin. Lab. Sci. 2021 51 5 663 669 34686508
    [Google Scholar]
  11. Venkitachalam S. Guda K. Altered glycosyltransferases in colorectal cancer. Expert Rev. Gastroenterol. Hepatol. 2017 11 1 5 7 10.1080/17474124.2017.1253474 27781489
    [Google Scholar]
  12. Arriagada C. Silva P. Torres V.A. Role of glycosylation in hypoxia-driven cell migration and invasion. Cell Adhes. Migr. 2019 13 1 13 22 10.1080/19336918.2018.1491234 30015560
    [Google Scholar]
  13. Xu H. Huang K. Lin Y. Gong H. Ma X. Zhang D. Glycosyltransferase GLT8D1 and GLT8D2 serve as potential prognostic biomarkers correlated with Tumor Immunity in Gastric Cancer. BMC Med. Genomics 2023 16 1 123 10.1186/s12920‑023‑01559‑y 37277853
    [Google Scholar]
  14. Huang X. Liu Y. Qian C. Shen Q. Wu M. Zhu B. Feng Y. CHSY3 promotes proliferation and migration in gastric cancer and is associated with immune infiltration. J. Transl. Med. 2023 21 1 474 10.1186/s12967‑023‑04333‑x 37461041
    [Google Scholar]
  15. Dong S. Wang Z. Huang B. Zhang J. Ge Y. Fan Q. Wang Z. Bioinformatics insight into glycosyltransferase gene expression in gastric cancer: POFUT1 is a potential biomarker. Biochem. Biophys. Res. Commun. 2017 483 1 171 177 10.1016/j.bbrc.2016.12.172 28040433
    [Google Scholar]
  16. Wang Y. Kanneganti T.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput. Struct. Biotechnol. J. 2021 19 4641 4657 10.1016/j.csbj.2021.07.038 34504660
    [Google Scholar]
  17. Cai F. Xu H. Song S. Wang G. Zhang Y. Qian J. Xu L. Knockdown of ubiquitin-conjugating enzyme E2 T abolishes the progression of head and neck squamous cell carcinoma by inhibiting NF-Kb signaling and inducing ferroptosis. Curr. Protein Pept. Sci. 2024 25 7 577 585 10.2174/0113892037287640240322084946 38584528
    [Google Scholar]
  18. Chen J. Tang H. Li T. Jiang K. Zhong H. Wu Y. He J. Li D. Li M. Cai X. Comprehensive analysis of the expression, prognosis, and biological significance of ovols in breast cancer. Int. J. Gen. Med. 2021 14 3951 3960 10.2147/IJGM.S326402 34345183
    [Google Scholar]
  19. Lin Z. Huang W. Yi Y. Li D. Xie Z. Li Z. Ye M. LncRNA ADAMTS9-AS2 is a prognostic biomarker and correlated with immune infiltrates in lung adenocarcinoma. Int. J. Gen. Med. 2021 14 8541 8555 10.2147/IJGM.S340683 34849000
    [Google Scholar]
  20. Lao Y. Li T. Xie X. Chen K. Li M. Huang L. MiR-195-3p is a novel prognostic biomarker associated with immune infiltrates of lung adenocarcinoma. Int. J. Gen. Med. 2022 15 191 203 10.2147/IJGM.S350340 35023957
    [Google Scholar]
  21. Li M. Wang X. Liu J. Mao X. Li D. Wang Z. Tang Y. Wu S. Identification of core prognosis‐related candidate genes in chinese gastric cancer population based on integrated bioinformatics. BioMed Res. Int. 2020 2020 1 8859826 8859826 10.1155/2020/8859826 33381592
    [Google Scholar]
  22. Lyu G. Li D. Li S. Hu H. STO and GA negatively regulate UV-B-induced Arabidopsis root growth inhibition. Plant Signal. Behav. 2019 14 12 1675471 10.1080/15592324.2019.1675471 31595819
    [Google Scholar]
  23. Lu X. Jing L. Liu S. Wang H. Chen B. miR-149-3p is a potential prognosis biomarker and correlated with immune infiltrates in uterine corpus endometrial carcinoma. Int. J. Endocrinol. 2022 2022 1 15 10.1155/2022/5006123 35719192
    [Google Scholar]
  24. Pourghasem N. Ghorbanzadeh S. Nejatizadeh A. Expression and regulatory roles of small nucleolar rna host gene 4 in gastric cancer. Curr. Protein Pept. Sci. 2023 24 9 767 779 10.2174/1389203724666230810094548 37565552
    [Google Scholar]
  25. Zhang S. Li X. Zheng Y. Hu H. Liu J. Zhang S. Tang C. Mo Z. Kuang W. Prognostic role of unfolded protein response-related genes in hepatocellular carcinoma. Curr. Protein Pept. Sci. 2023 24 8 666 683 10.2174/1389203724666230816090504 37587817
    [Google Scholar]
  26. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  27. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  28. Fu J. Li K. Zhang W. Wan C. Zhang J. Jiang P. Liu X.S. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020 12 1 21 10.1186/s13073‑020‑0721‑z 32102694
    [Google Scholar]
  29. Maeser D. Gruener R.F. Huang R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021 22 6 bbab260 10.1093/bib/bbab260 34260682
    [Google Scholar]
  30. Han Q. Cui Z. Wang Q. Pang F. Li D. Wang D. Upregulation of OTX2-AS1 is associated with immune infiltration and predicts prognosis of gastric cancer. Technol. Cancer Res. Treat. 2023 22 15330338231154091 10.1177/15330338231154091 36740995
    [Google Scholar]
  31. Lyu G. Li D. Xiong H. Xiao L. Tong J. Ning C. Wang P. Li S. Quantitative proteomic analyses identify STO/BBX24 -related proteins induced by UV-B. Int. J. Mol. Sci. 2020 21 7 2496 10.3390/ijms21072496 32260266
    [Google Scholar]
  32. Yang D. Liu M. Jiang J. Luo Y. Wang Y. Chen H. Li D. Wang D. Yang Z. Chen H. Comprehensive analysis of DMRT3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma. Cancers 2022 14 24 6220 10.3390/cancers14246220 36551704
    [Google Scholar]
  33. Liang W. Lu Y. Pan X. Zeng Y. Zheng W. Li Y. Nie Y. Li D. Wang D. Decreased expression of a novel lncrna fam181a-as1 is associated with poor prognosis and immune infiltration in lung adenocarcinoma. Pharm. Genomics Pers. Med. 2022 15 985 998 10.2147/PGPM.S384901 36482943
    [Google Scholar]
  34. Cai H. Chen S. Wu Z. Wang F. Tang S. Li D. Wang D. Guo W. Comprehensive analysis of ZNF692 as a potential biomarker associated with immune infiltration in a pan cancer analysis and validation in hepatocellular carcinoma. Aging (Albany NY) 2023 15 22 13041 13058 10.18632/aging.205218 37980166
    [Google Scholar]
  35. Li Z. Fan Y. Ma Y. Meng N. Li D. Wang D. Lian J. Hu C. Identification of crucial genes and signaling pathways in alectinib-resistant lung adenocarcinoma using bioinformatic analysis. Mol. Biotechnol. 2024 66 12 3655 3673 10.1007/s12033‑023‑00973‑y 38142454
    [Google Scholar]
  36. Cai X. Lv Y. Pan J. Cao Z. Zhang J. Li Y. Zheng H. CBX8 Promotes epithelial-mesenchymal transition, migration, and invasion of lung cancer through Wnt/β-catenin signaling pathway. Curr. Protein Pept. Sci. 2024 25 5 386 393 10.2174/0113892037273375231204080906 38265409
    [Google Scholar]
  37. Zhang X. Dong W. Zhou H. Li H. Wang N. Miao X. Jia L. α-2,8-sialyltransferase is involved in the development of multidrug resistance via PI3K/Akt pathway in human chronic myeloid leukemia. IUBMB Life 2015 67 2 77 87 10.1002/iub.1351 25855199
    [Google Scholar]
  38. Zhao Y. Zhang J. Wang S. Jiang Q. Xu K. Identification and validation of a nine-gene amino acid metabolism-related risk signature in HCC. Front. Cell Dev. Biol. 2021 9 731790 10.3389/fcell.2021.731790 34557495
    [Google Scholar]
  39. Xia R.W. Qin W.Y. Gan L.N. Wang J. Wu S.L. Bao W.B. Differential expression of FUT1 and FUT2 in Large White, Meishan, and Sutai porcine breeds. Genet. Mol. Res. 2016 15 1 15017613 10.4238/gmr.15017613 26985939
    [Google Scholar]
  40. Hwang S. Mahadevan S. Qadir F. Hutchison I.L. Costea D.E. Neppelberg E. Liavaag P.G. Waseem A. Teh M.T. Identification of FOXM1‐induced epigenetic markers for head and neck squamous cell carcinomas. Cancer 2013 119 24 4249 4258 10.1002/cncr.28354 24114764
    [Google Scholar]
  41. Yu H. Li M. Shu J. Dang L. Wu X. Wang Y. Wang X. Chang X. Bao X. Zhu B. Ren X. Chen W. Li Y. Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods. Arthritis Res. Ther. 2023 25 1 102 10.1186/s13075‑023‑03084‑w 37308935
    [Google Scholar]
  42. Yi W. Shen H. Sun D. Xu Y. Feng Y. Li D. Wang C. Low expression of long noncoding RNA SLC26A4 antisense RNA 1 is an independent prognostic biomarker and correlate of immune infiltrates in breast cancer. Med. Sci. Monit. 2022 28 934522 10.12659/MSM.934522 34880202
    [Google Scholar]
  43. Yang Y. Gu X. Li Z. Zheng C. Wang Z. Zhou M. Chen Z. Li M. Li D. Xiang J. Whole-exome sequencing of rectal cancer identifies locally recurrent mutations in the Wnt pathway. Aging 2021 13 19 23262 23283 10.18632/aging.203618 34642262
    [Google Scholar]
  44. Mohamed Abd-El-Halim Y. El Kaoutari A. Silvy F. Rubis M. Bigonnet M. Roques J. Cros J. Nicolle R. Iovanna J. Dusetti N. Mas E. A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. EBioMedicine 2021 71 103541 10.1016/j.ebiom.2021.103541 34425307
    [Google Scholar]
  45. Qi Y. Lv W. Liu X. Wang Q. Xing B. Jiang Q. Wang Z. Huang Y. Shu K. Lei T. Comprehensive analysis identified glycosyltransferase signature to predict glioma prognosis and TAM phenotype. BioMed Res. Int. 2023 2023 1 6082635 10.1155/2023/6082635 36685667
    [Google Scholar]
  46. Lin X. Han T. Xia Q. Cui J. Zhuo M. Liang Y. Su W. Wang L. Wang L. Liu Z. Xiao X. CHPF promotes gastric cancer tumorigenesis through the activation of E2F1. Cell Death Dis. 2021 12 10 876 10.1038/s41419‑021‑04148‑y 34564711
    [Google Scholar]
  47. Alexander K.L. Serrano C.A. Chakraborty A. Nearing M. Council L.N. Riquelme A. Garrido M. Bellis S.L. Smythies L.E. Smith P.D. Modulation of glycosyltransferase ST6Gal-I in gastric cancer-derived organoids disrupts homeostatic epithelial cell turnover. J. Biol. Chem. 2020 295 41 14153 14163 10.1074/jbc.RA120.014887 32763973
    [Google Scholar]
  48. Wang H. Zhang J. Wei Z. Chen S. Zheng J. Li Y. The prognostic implications and tumor-promoting functions of CHSY3 in gastric cancer. Front. Immunol. 2024 15 1364979 10.3389/fimmu.2024.1364979 38812506
    [Google Scholar]
  49. Liu S.Y. Shun C.T. Hung K.Y. Juan H.F. Hsu C.L. Huang M.C. Lai I.R. Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation. Oncotarget 2016 7 10 11251 11262 10.18632/oncotarget.7081 26848976
    [Google Scholar]
  50. Hu W.T. Yeh C.C. Liu S.Y. Huang M.C. Lai I.R. The O-glycosylating enzyme GALNT2 suppresses the malignancy of gastric adenocarcinoma by reducing EGFR activities. Am. J. Cancer Res. 2018 8 9 1739 1751 30323967
    [Google Scholar]
  51. Ebert K. Haffner I. Zwingenberger G. Keller S. Raimúndez E. Geffers R. Wirtz R. Barbaria E. Hollerieth V. Arnold R. Walch A. Hasenauer J. Maier D. Lordick F. Luber B. Combining gene expression analysis of gastric cancer cell lines and tumor specimens to identify biomarkers for anti-HER therapies—the role of HAS2, SHB and HBEGF. BMC Cancer 2022 22 1 254 10.1186/s12885‑022‑09335‑4 35264144
    [Google Scholar]
  52. Zhang Y. Ding C. Sun L. High expression B3GAT3 is related with poor prognosis of liver cancer. Open Med. 2019 14 1 251 258 10.1515/med‑2019‑0020 30847403
    [Google Scholar]
  53. Takahashi A. Koike R. Watanabe S. Kuribayashi K. Wabitsch M. Miyamoto M. Komuro A. Seki M. Nashimoto M. Shimizu-Ibuka A. Yamashita K. Iwata T. Polypeptide N-acetylgalactosaminyltransferase-15 regulates adipogenesis in human SGBS cells. Sci. Rep. 2024 14 1 20049 10.1038/s41598‑024‑70930‑5 39209927
    [Google Scholar]
  54. He L. Guo Z. Wang W. Tian S. Lin R. FUT2 inhibits the EMT and metastasis of colorectal cancer by increasing LRP1 fucosylation. Cell Commun. Signal. 2023 21 1 63 10.1186/s12964‑023‑01060‑0 36973740
    [Google Scholar]
  55. Deng G. Chen L. Zhang Y. Fan S. Li W. Lu J. Chen X. Fucosyltransferase 2 induced epithelial-mesenchymal transition via TGF-β/Smad signaling pathway in lung adenocarcinaoma. Exp. Cell Res. 2018 370 2 613 622 10.1016/j.yexcr.2018.07.026 30031128
    [Google Scholar]
  56. Liu K. Jiang L. Shi Y. Liu B. He Y. Shen Q. Jiang X. Nie Z. Pu J. Yang C. Chen Y. Hypoxia-induced GLT8D1 promotes glioma stem cell maintenance by inhibiting CD133 degradation through N-linked glycosylation. Cell Death Differ. 2022 29 9 1834 1849 10.1038/s41418‑022‑00969‑2 35301431
    [Google Scholar]
  57. Ilina E.I. Cialini C. Gerloff D.L. Duarte Garcia-Escudero M. Jeanty C. Thézénas M.L. Lesur A. Puard V. Bernardin F. Moter A. Schuster A. Dieterle M. Golebiewska A. Gérardy J.J. Dittmar G. Niclou S.P. Müller T. Mittelbronn M. Enzymatic activity of glycosyltransferase GLT8D1 promotes human glioblastoma cell migration. iScience 2022 25 2 103842 10.1016/j.isci.2022.103842 35198895
    [Google Scholar]
  58. Bliskunova T. Genis-Mendoza A.D. Martínez-Magaña J.J. Vega-Sevey J.G. Jiménez-Genchi J. Roche A. Guzmán R. Zapata L. Castro-Chavira S. Fernández T. Villatoro-Velázquez J.A. Camarena B. Fleiz-Bautista C. Bustos-Gamiño M. Medina-Mora M.E. Nicolini H. Association of MGAT4C with major neurocognitive disorder in the Mexican population. Gene 2021 778 145484 10.1016/j.gene.2021.145484 33581268
    [Google Scholar]
  59. Ko C.Y. Chu T.H. Hsu C.C. Chen H.P. Huang S.C. Chang C.L. Tzou S.J. Chen T.Y. Lin C.C. Shih P.C. Lin C.H. Chang C.F. Lee Y.K. Bioinformatics analyses identify the therapeutic potential of ST8SIA6 for colon cancer. J. Pers. Med. 2022 12 3 401 10.3390/jpm12030401 35330401
    [Google Scholar]
  60. Yang X. Chen L. Mao Y. Hu Z. He M. Progressive and prognostic performance of an extracellular matrix-receptor interaction signature in gastric cancer. Dis. Markers 2020 2020 1 23 10.1155/2020/8816070 33178362
    [Google Scholar]
  61. Mishra Y.G. Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell. Signal. 2021 85 110046 10.1016/j.cellsig.2021.110046 34004332
    [Google Scholar]
  62. Zhang P. Cao X. Guan M. Li D. Xiang H. Peng Q. Zhou Y. Weng C. Fang X. Liu X. Mao H. Li Q. Liu G. Lu L. CPNE8 promotes gastric cancer metastasis by modulating focal adhesion pathway and tumor microenvironment. Int. J. Biol. Sci. 2022 18 13 4932 4949 10.7150/ijbs.76425 35982908
    [Google Scholar]
  63. Zhao G. Luo T. Liu Z. Li J. Development and validation of focal adhesion-related genes signature in gastric cancer. Front. Genet. 2023 14 1122580 10.3389/fgene.2023.1122580 36968601
    [Google Scholar]
  64. Dai J. Nishi A. Li Z.X. Zhang Y. Zhou T. You W.C. Li W.Q. Pan K.F. DNA methylation signatures associated with prognosis of gastric cancer. BMC Cancer 2021 21 1 610 10.1186/s12885‑021‑08389‑0 34034702
    [Google Scholar]
  65. Yamaguchi T. Fushida S. Yamamoto Y. Tsukada T. Kinoshita J. Oyama K. Miyashita T. Tajima H. Ninomiya I. Munesue S. Harashima A. Harada S. Yamamoto H. Ohta T. Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer 2016 19 4 1052 1065 10.1007/s10120‑015‑0579‑8 26621525
    [Google Scholar]
  66. Liu X. Zhang Z. Zhao G. Recent advances in the study of regulatory T cells in gastric cancer. Int. Immunopharmacol. 2019 73 560 567 10.1016/j.intimp.2019.05.009 31181438
    [Google Scholar]
  67. Wang Y. Zhu C. Song W. Li J. Zhao G. Cao H. PD-L1 expression and CD8 + T cell infiltration predict a favorable prognosis in advanced gastric cancer. J. Immunol. Res. 2018 2018 1 10 10.1155/2018/4180517 30003113
    [Google Scholar]
  68. Chen J. Zhang B. Zhou Y. Zhao X. Bai Y. Resting memory CD4+ T cells and plasma cells in gastric cancer may be potential immune biomarkers. J. Clin. Oncol. 2020 38 15 Suppl. e16523 e16523 (Suppl.)
    [Google Scholar]
  69. Maiorano B.A. Maiorano M.F.P. Lorusso D. Maiello E. Ovarian cancer in the era of immune checkpoint inhibitors: State of the art and future perspectives. Cancers 2021 13 17 4438 10.3390/cancers13174438 34503248
    [Google Scholar]
  70. Yang C. Xia B.R. Zhang Z.C. Zhang Y.J. Lou G. Jin W.L. Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant. Front. Immunol. 2020 11 577869 10.3389/fimmu.2020.577869 33123161
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037388672250728071209
Loading
/content/journals/cpps/10.2174/0113892037388672250728071209
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test