Skip to content
2000
Volume 15, Issue 3
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Introduction

A comprehensive analysis of the conformational space of the three most abundant naturally occurring methoxylated anthocyanidins -peonidin, petunidin, and malvidin-, as well as their frontier molecular orbitals (HOMO-LUMO) was performed for the first time to explain bioactivities of interest, such as antioxidant and antimutagenic activities.

Methods

Planar (P) and non-planar (Z) conformers were analyzed in vacuum and in various solvents (using polarizable continuum model; PCM), including acetic acid, methanol, and water, at the B3LYP/6-311++G** level of theory. Boltzmann averages were also calculated, thereby achieving the quantitative contribution of each conformation to the total population. Physical properties such as dipole moment and polarizability were also evaluated for each conformer and the entire conformational space.

Results

Thirty-five new conformers were reported for peonidin, thirty-four for petunidin, and nineteen for malvidin. Correct characterization of the whole conformational space for these compounds demonstrated the coexistence of positively charged quinoidal structures, together with other resonance structures. Solvent polarity, incorporation of donor groups into ring B, together with the percentage contribution of P and Z conformers within the conformational space modified the antioxidant activity of these compounds. The percentage atom contributions to HOMO were appropriate to demonstrate antimutagenic activity as enzyme inhibitors, as well as the steric and electrostatic requirements to form the pharmacophore.

Conclusion

Peonidin was the strongest antioxidant anthocyanidin and malvidin was the anthocyanidin with the best antimutagenic activity. The methodology proved to be a useful tool to explain specific bioactivities in anthocyanins and related flavonoid compounds.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468359777250312145241
2025-04-08
2025-12-16
Loading full text...

Full text loading...

References

  1. AmesB.N. ShigenagaM.K. HagenT.M. Oxidants, antioxidants, and the degenerative diseases of aging.Proc. Natl. Acad. Sci. USA199390177915792210.1073/pnas.90.17.7915 8367443
    [Google Scholar]
  2. BobeG. WangB. SeeramN.P. NairM.G. BourquinL.D. Dietary anthocyanin-rich tart cherry extract inhibits intestinal tumorigenesis in APC(Min) mice fed suboptimal levels of sulindac.J. Agric. Food Chem.200654259322932810.1021/jf0612169 17147414
    [Google Scholar]
  3. NikkhahE. KhayamiM. HeidariR. In vitro screening for antioxidant activity and cancer suppressive effect of blackberry (Morus nigra).Int. J. Cancer Manag.200814167172
    [Google Scholar]
  4. HeJ. GiustiM.M. Anthocyanins: Natural colorants with health-promoting properties.Annu. Rev. Food Sci. Technol.20101116318710.1146/annurev.food.080708.100754 22129334
    [Google Scholar]
  5. WuT. YuZ. TangQ. SongH. GaoZ. ChenW. ZhengX. Honeysuckle anthocyanin supplementation prevents diet-induced obesity in C57BL/6 mice.Food Funct.20134111654166110.1039/c3fo60251f 24081320
    [Google Scholar]
  6. Alvarez-SuarezJ.M. GiampieriF. TulipaniS. CasoliT. Di StefanoG. González-ParamásA.M. Santos-BuelgaC. BuscoF. QuilesJ.L. CorderoM.D. BompadreS. MezzettiB. BattinoM. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans.J. Nutr. Biochem.201425328929410.1016/j.jnutbio.2013.11.002 24406274
    [Google Scholar]
  7. BishayeeA. HaskellY. DoC. SiveenK.S. MohandasN. SethiG. StonerG.D. Potential benefits of edible berries in the management of aerodigestive and gastrointestinal tract cancers: Preclinical and clinical evidence.Crit. Rev. Food Sci. Nutr.201656101753177510.1080/10408398.2014.982243 25781639
    [Google Scholar]
  8. LiD. ZhangY. LiuY. SunR. XiaM. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients.J. Nutr.2015145474274810.3945/jn.114.205674 25833778
    [Google Scholar]
  9. CerlettiC. De CurtisA. BraconeF. DigesùC. MorgantiA.G. IacovielloL. de GaetanoG. DonatiM.B. Dietary anthocyanins and health: Data from FLORA and ATHENA EU projects.Br. J. Clin. Pharmacol.201783110310610.1111/bcp.12943 27016122
    [Google Scholar]
  10. AliT. KimT. RehmanS.U. KhanM.S. AminF.U. KhanM. IkramM. KimM.O. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease.Mol. Neurobiol.20185576076609310.1007/s12035‑017‑0798‑6 29170981
    [Google Scholar]
  11. PomilioA.B. MercaderA.G. Natural acylated anthocyanins and other related flavonoids: Structure elucidation of Ipomoea cairica compounds and QSAR studies including multidrug resistance.Studies in Natural Products ChemistryElsevier: Amsterdam201855293322
    [Google Scholar]
  12. SinopoliA. CalogeroG. BartolottaA. Computational aspects of anthocyanidins and anthocyanins: A review.Food Chem.201929712489810.1016/j.foodchem.2019.05.172 31253334
    [Google Scholar]
  13. AlappatB. AlappatJ. Anthocyanin pigments: Beyond aesthetics.Molecules20202523550010.3390/molecules25235500 33255297
    [Google Scholar]
  14. KennethC. AnugrahD.S.B. JulianusJ. JunediS. Molecular insights into the inhibitory potential of anthocyanidins on glucokinase regulatory protein.PLoS One2023187e028881010.1371/journal.pone.0288810 37467274
    [Google Scholar]
  15. Koss-MikołajczykI. BartoszekA. Relationship between chemical structure and biological activity evaluated in vitro for six anthocyanidins most commonly occurring in edible plants.Molecules20232816615610.3390/molecules28166156 37630408
    [Google Scholar]
  16. ZhaoY. JiangC. LuJ. SunY. CuiY. Research progress of proanthocyanidins and anthocyanidins.Phyther. Res.202337625522577
    [Google Scholar]
  17. PomilioA.B. SzewczukN.A. DuchowiczP.R. Dietary anthocyanins balance immune signs in osteoarthritis and obesity - Update of human in vitro studies and clinical trials.Crit. Rev. Food Sci. Nutr.20246492634267210.1080/10408398.2022.2124948 36148839
    [Google Scholar]
  18. EhalaS. VaherM. KaljurandM. Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity.J. Agric. Food Chem.200553166484649010.1021/jf050397w 16076138
    [Google Scholar]
  19. CortezR.E. Gonzalez de MejiaE. Blackcurrants (Ribes nigrum): A review on chemistry, processing, and health benefits.J. Food Sci.20198492387240110.1111/1750‑3841.14781 31454085
    [Google Scholar]
  20. HameedA. GalliM. Adamska-PatrunoE. KrętowskiA. CiborowskiM. Select polyphenol-rich berry consumption to defer or deter diabetes and diabetes-related complications.Nutrients2020129253810.3390/nu12092538 32825710
    [Google Scholar]
  21. ZiemlewskaA. Zagórska-DziokM. Nizioł-ŁukaszewskaZ. Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products.Sci. Rep.2021111324010.1038/s41598‑021‑82207‑2 33547351
    [Google Scholar]
  22. Cyboran-MikołajczykS. MęczarskaK. Solarska-ŚciukK. Ratajczak-WielgomasK. OszmiańskiJ. JencovaV. Bonarska-KujawaD. Protection of erythrocytes and microvascular endothelial cells against oxidative damage by Fragaria vesca L. and Rubus idaeus L. leaves extracts—The mechanism of action.Molecules20222718586510.3390/molecules27185865 36144602
    [Google Scholar]
  23. PonderA. NajmanK. AninowskiM. LeszczyńskaJ. GłowackaA. BielarskaA.M. LasinskasM. HallmannE. Polyphenols content, antioxidant properties and allergenic potency of organic and conventional blue honeysuckle berries.Molecules20222718608310.3390/molecules27186083 36144816
    [Google Scholar]
  24. EjazA. WaliatS. AfzaalM. SaeedF. AhmadA. DinA. AteeqH. AsgharA. ShahY.A. RafiA. KhanM.R. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants (Ribes nigrum L): A comprehensive review.Food Sci. Nutr.202311105799581710.1002/fsn3.3592 37823094
    [Google Scholar]
  25. KaźmierczakT. Bonarska-KujawaD. MęczarskaK. Cyboran-MikołajczykS. OszmiańskiJ. KapustaI. Analysis of the polyphenolic composition of Vaccinium L. extracts and their protective effect on red blood cell membranes.Membranes202313658910.3390/membranes13060589 37367793
    [Google Scholar]
  26. WangJ. ZhaoX. ZhengJ. Herrera-BalandranoD.D. ZhangX. HuangW. SuiZ. In vivo antioxidant activity of rabbiteye blueberry (Vaccinium ashei cv. ‘Brightwell’) anthocyanin extracts.J. Zhejiang Univ. Sci. B202324760261610.1631/jzus.B2200590 37455137
    [Google Scholar]
  27. Barba-OstriaC. Carrera-PachecoS.E. Gonzalez-PastorR. Zuñiga-MirandaJ. Mayorga-RamosA. TejeraE. GuamánL.P. Exploring the multifaceted biological activities of anthocyanins isolated from two Andean berries.Foods20241316262510.3390/foods13162625 39200552
    [Google Scholar]
  28. StancaL. BilteanuL. BujorO.C. IonV.A. PetreA.C. BădulescuL. GeicuO.I. PisoschiA.M. SerbanA.I. GhimpeteanuO.M. Development of functional foods: A comparative study on the polyphenols and anthocyanins content in chokeberry and blueberry pomace extracts and their antitumor properties.Foods20241316255210.3390/foods13162552 39200479
    [Google Scholar]
  29. NodaY. KaneyukiT. MoriA. PackerL. Antioxidant activities of pomegranate fruit extract and its anthocyanidins: Delphinidin, cyanidin, and pelargonidin.J. Agric. Food Chem.200250116617110.1021/jf0108765 11754562
    [Google Scholar]
  30. ZhangH. WangM. YuG. PuJ. TianK. TangX. DuY. WuH. HuJ. LuoX. LinL. DengQ. Comparative analysis of the phenolic contents and antioxidant activities of different parts of two pomegranate (Punica granatum L.) Cultivars: ‘Tunisia’ and ‘Qingpi’.Front. Plant Sci.202314126501810.3389/fpls.2023.1265018 37841630
    [Google Scholar]
  31. ValkoM. LeibfritzD. MoncolJ. CroninM.T.D. MazurM. TelserJ. Free radicals and antioxidants in normal physiological functions and human disease.Int. J. Biochem. Cell Biol.2007391448410.1016/j.biocel.2006.07.001 16978905
    [Google Scholar]
  32. ValkoM. JomovaK. RhodesC.J. KučaK. MusílekK. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.Arch. Toxicol.201690113710.1007/s00204‑015‑1579‑5 26343967
    [Google Scholar]
  33. DudekA. SpiegelM. Strugała-DanakP. GabrielskaJ. Analytical and theoretical studies of antioxidant properties of chosen anthocyanins; A structure-dependent relationships.Int. J. Mol. Sci.20222310543210.3390/ijms23105432 35628243
    [Google Scholar]
  34. LiH. ZhangC. DengZ. ZhangB. LiH. Antioxidant activity of delphinidin and pelargonidin: Theory and practice.J. Food Biochem.2022468e1419210.1111/jfbc.14192 35484873
    [Google Scholar]
  35. JomovaK. RaptovaR. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  36. JomovaK. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants.Arch. Toxicol.20249851323136710.1007/s00204‑024‑03696‑4 38483584
    [Google Scholar]
  37. KozłowskaA. DzierżanowskiT. Targeting inflammation by anthocyanins as the novel therapeutic potential for chronic diseases: An update.Molecules20212614438010.3390/molecules26144380 34299655
    [Google Scholar]
  38. MaZ. DuB. LiJ. YangY. ZhuF. An insight into anti-inflammatory activities and inflammation related diseases of anthocyanins: A review of both in vivo and in vitro investigations.Int. J. Mol. Sci.202122201107610.3390/ijms222011076 34681733
    [Google Scholar]
  39. Fragoso-MedinaJ.A. López VaqueraS.R. Domínguez-UscangaA. Luna-VitalD. GarcíaN. Single anthocyanins effectiveness modulating inflammation markers in obesity: Dosage and matrix composition analysis.Front. Nutr.202310125551810.3389/fnut.2023.1255518 38024376
    [Google Scholar]
  40. Merecz-SadowskaA. SitarekP. KowalczykT. ZajdelK. JęcekM. NowakP. ZajdelR. Food anthocyanins: Malvidin and its glycosides as promising antioxidant and anti-inflammatory agents with potential health benefits.Nutrients20231513301610.3390/nu15133016 37447342
    [Google Scholar]
  41. ValkoM. RhodesC.J. MoncolJ. IzakovicM. MazurM. Free radicals, metals and antioxidants in oxidative stress-induced cancer.Chem. Biol. Interact.2006160114010.1016/j.cbi.2005.12.009 16430879
    [Google Scholar]
  42. ThomassetS. TellerN. CaiH. MarkoD. BerryD.P. StewardW.P. GescherA.J. Do anthocyanins and anthocyanidins, cancer chemopreventive pigments in the diet, merit development as potential drugs?Cancer Chemother. Pharmacol.200964120121110.1007/s00280‑009‑0976‑y 19294386
    [Google Scholar]
  43. de Sousa MoraesL.F. SunX. PeluzioM.C.G. ZhuM.J. Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes?Crit. Rev. Food Sci. Nutr.2019591597110.1080/10408398.2017.1357533 28799785
    [Google Scholar]
  44. MottaghipishehJ. DoustimotlaghA.H. IrajieC. TanidehN. BarzegarA. IrajiA. The promising therapeutic and preventive properties of anthocyanidins/anthocyanins on prostate cancer.Cells2022117107010.3390/cells11071070 35406634
    [Google Scholar]
  45. LiobikasJ. SkemieneK. TrumbeckaiteS. BorutaiteV. Anthocyanins in cardioprotection: A path through mitochondria.Pharmacol. Res.2016113Pt B80881510.1016/j.phrs.2016.03.036
    [Google Scholar]
  46. MattioliR. FranciosoA. MoscaL. SilvaP. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases.Molecules20202517380910.3390/molecules25173809 32825684
    [Google Scholar]
  47. ChenW. ZhaoJ. Association between dietary anthocyanidins intake and depression among US adults: A cross-sectional study (NHANES, 2007-2010 and 2017-2018).BMC Psychiatry202323152510.1186/s12888‑023‑05029‑8 37474898
    [Google Scholar]
  48. ZaaC.A. MarceloÁ.J. AnZ. Medina-FrancoJ.L. Velasco-VelázquezM.A. Anthocyanins: Molecular aspects on their neuroprotective activity.Biomolecules20231311159810.3390/biom13111598 38002280
    [Google Scholar]
  49. SzewczukN.A. DuchowiczP.R. PomilioA.B. LobayanR.M. Resonance structure contributions, flexibility, and frontier molecular orbitals (HOMO-LUMO) of pelargonidin, cyanidin, and delphinidin throughout the conformational space: application to antioxidant and antimutagenic activities.J. Mol. Model.2023291210.1007/s00894‑022‑05392‑5 36480114
    [Google Scholar]
  50. GonzálezmanzanoS. DueñasM. RivasgonzaloJ. EscribanobailónM. SantosbuelgaC. Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine.Food Chem.2009114264965610.1016/j.foodchem.2008.10.002
    [Google Scholar]
  51. DuchowiczP.R. SzewczukN.A. PomilioA.B. QSAR studies of the antioxidant activity of anthocyanins.J. Food Sci. Technol.201956125518553010.1007/s13197‑019‑04024‑w 31749500
    [Google Scholar]
  52. SzewczukN.A. DuchowiczP.R. PomilioA.B. QSAR analysis for the inhibition of the mutagenic activity by anthocyanin derivatives.J Quant Struct-Prop Relat.202054698210.4018/IJQSPR.20201001.oa1
    [Google Scholar]
  53. OliveiraH. CorreiaP. PereiraA.R. AraújoP. MateusN. de FreitasV. OliveiraJ. FernandesI. Exploring the applications of the photoprotective properties of anthocyanins in biological systems.Int. J. Mol. Sci.20202120746410.3390/ijms21207464 33050431
    [Google Scholar]
  54. LiX. LeeS. YoonJ. Supramolecular photosensitizers rejuvenate photodynamic therapy.Chem. Soc. Rev.20184741174118810.1039/C7CS00594F 29334090
    [Google Scholar]
  55. Baba ShekhA.O. Abdul WahabR. YahyaN.A. Formulation of roselle extract water-in-oil nanoemulsion for controlled pulmonary delivery.J. Dispers. Sci. Technol.202344101830184110.1080/01932691.2022.2046044
    [Google Scholar]
  56. KenariR.E. RazaviR. Encapsulation of bougainvillea (Bougainvillea spectabilis) flower extract in Urtica dioica L. seed gum: Characterization, antioxidant/antimicrobial properties, and in vitro digestion.Food Sci. Nutr.202210103436344310.1002/fsn3.2944 36249979
    [Google Scholar]
  57. ZhangR. ZhangQ. OliveiraH. MateusN. YeS. JiangS. HeJ. WuM. Preparation of nanoliposomes loaded with anthocyanins from grape skin extracts: Stability, gastric absorption and antiproliferative properties.Food Funct.20221321109121092210.1039/D2FO02008D 36205145
    [Google Scholar]
  58. Rosales-ChimalS. Navarro-CortezR.O. Bello-PerezL.A. Vargas-TorresA. Palma-RodríguezH.M. Optimal conditions for anthocyanin extract microencapsulation in taro starch: Physicochemical characterization and bioaccessibility in gastrointestinal conditions.Int. J. Biol. Macromol.2023227839210.1016/j.ijbiomac.2022.12.136 36535350
    [Google Scholar]
  59. LiuY. PengB. A novel hyaluronic acid-black rice anthocyanins nanocomposite: Preparation, characterization, and its xanthine oxidase (XO)-inhibiting properties.Front. Nutr.2022987935410.3389/fnut.2022.879354 35495941
    [Google Scholar]
  60. JeongD. NaK. Chondroitin sulfate based nanocomplex for enhancing the stability and activity of anthocyanin.Carbohydr. Polym.201290150751510.1016/j.carbpol.2012.05.072 24751071
    [Google Scholar]
  61. SamadderA. TarafdarD. AbrahamS. GhoshK. Khuda-BukhshA. Nano-pelargonidin protects hyperglycemic-induced L6 cells against mitochondrial dysfunction.Planta Med.201783546847510.1055/s‑0043‑100017 28073120
    [Google Scholar]
  62. Dimitrić MarkovićJ.M. PejinB. MilenkovićD. AmićD. BegovićN. MojovićM. MarkovićZ.S. Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms.Food Chem.201721844044610.1016/j.foodchem.2016.09.106 27719933
    [Google Scholar]
  63. LuL. QiangM. LiF. ZhangH. ZhangS. Theoretical investigation on the antioxidative activity of anthocyanidins: A DFT/B3LYP study.Dyes Pigments201410317518210.1016/j.dyepig.2013.12.015
    [Google Scholar]
  64. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. MennucciB. PeterssonG.A. NakatsujiH. CaricatoM. LiX. HratchianH.P. IzmaylovA.F. BloinoJ. ZhengG. SonnenbergJ.L. HadaM. EharaM. ToyotaK. FukudaR. HasegawaJ. IshidaM. NakajimaT. HondaY. KitaoO. NakaiH. VrevenT. MontgomeryJ.A.Jr PeraltaJ.E. OgliaroF. BearparkM. HeydJ.J. BrothersE. KudinK.N. StaroverovV.N. KobayashiR. NormandJ. RaghavachariK. RendellA. BurantJ.C. IyengarS.S. TomasiJ. CossiM. RegaN. MillamJ.M. KleneM. KnoxJ.E. CrossJ.B. BakkenV. AdamoC. JaramilloJ. GompertsR. StratmannR.E. YazyevO. AustinA.J. CammiR. PomelliC. OchterskiJ.W. MartinR.L. MorokumaK. ZakrzewskiV.G. VothG.A. SalvadorP. DannenbergJ.J. DapprichS. DanielsA.D. FarkasÖ. ForesmanJ.B. OrtizJ.V. CioslowskiJ. FoxD.J. Gaussian 09.Wallingford, CTGaussian, Inc2009https://gaussian.com/
    [Google Scholar]
  65. SakataK. SaitoN. HondaT. Ab initio study of molecular structures and excited states in anthocyanidins.Tetrahedron200662153721373110.1016/j.tet.2006.01.081
    [Google Scholar]
  66. EstévezL. MosqueraR.A. Conformational and substitution effects on the electron distribution in a series of anthocyanidins.J. Phys. Chem. A2009113369908991910.1021/jp904298z 19685919
    [Google Scholar]
  67. AliH.M. AliI.H.A. DFT and QSAR study of the role of hydroxyl group, charge and unpaired-electron distribution in anthocyanidin radical stabilization and antioxidant activity.Med. Chem. Res.201726102666267410.1007/s00044‑017‑1964‑0
    [Google Scholar]
  68. AparicioS. A systematic computational study on flavonoids.Int. J. Mol. Sci.20101152017203810.3390/ijms11052017 20559499
    [Google Scholar]
  69. LobayanR.M. JubertA.H. VitaleM.G. PomilioA.B. Conformational and electronic (AIM/NBO) study of unsubstituted A-type dimeric proanthocyanidin.J. Mol. Model.200915553755010.1007/s00894‑008‑0389‑6 19096885
    [Google Scholar]
  70. BentzE.N. JubertA.H. PomilioA.B. LobayanR.M. Theoretical study of Z isomers of A-type dimeric proanthocyanidins substituted with R=H, OH and OCH3: Stability and reactivity properties.J. Mol. Model.201016121895190910.1007/s00894‑010‑0682‑z 20237815
    [Google Scholar]
  71. LobayanR.M. BentzE.N. JubertA.H. PomilioA.B. Structural and electronic properties of Z isomers of (4α→6´´,2α→O→1´´)-phenylflavans substituted with R = H, OH and OCH3 calculated in aqueous solution with PCM solvation model.J. Mol. Model.20121841667167610.1007/s00894‑011‑1188‑z 21811777
    [Google Scholar]
  72. LobayanR.M. BentzE.N. JubertA.H. PomilioA.B. Charge delocalization in Z-isomers of (4α→6″, 2α→O→1″)-phenylflavans with R=H, OH and OCH3. Effects on bond dissociation enthalpies and ionization potentials.Comput. Theor. Chem.20131006374610.1016/j.comptc.2012.11.008
    [Google Scholar]
  73. BentzE.N. PomilioA.B. LobayanR.M. Structure and electronic properties of (+)-catechin: Aqueous solvent effects.J. Mol. Model.20142022105211810.1007/s00894‑014‑2105‑z 24526380
    [Google Scholar]
  74. BentzE.N. PomilioA.B. LobayanR.M. Exploratory conformational study of (+)-catechin. Modeling of the polarizability and electric dipole moment.J. Mol. Model.20142012252210.1007/s00894‑014‑2522‑z 25431187
    [Google Scholar]
  75. BentzE.N. PomilioA.B. LobayanR.M. Z-Isomers of (4α→6″, 2α→O→1″)-phenylflavan substituted with R′=R=OH. Conformational properties, electronic structure and aqueous solvent effects.J. Mol. Model.201622818710.1007/s00894‑016‑3034‑9 27444878
    [Google Scholar]
  76. BentzE.N. PomilioA.B. LobayanR.M. Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin.Comput. Theor. Chem.20171110142410.1016/j.comptc.2017.03.028
    [Google Scholar]
  77. LobayanR.M. BentzE.N. PomilioA.B. Molecular quantum study of flavanes as potential antioxidants. Structures, reactivity, electron distribution and delocalization effects.2020Available from: https://www.eae-publishing.com/catalog/details//store/es/book/978-620-0-37445-5/estudio-cu
    [Google Scholar]
  78. GuzmánR. SantiagoC. SánchezM. A density functional study of antioxidant properties on anthocyanidins.J. Mol. Struct.20099351-311011410.1016/j.molstruc.2009.06.048
    [Google Scholar]
  79. RajanV.K. HasnaC.K. MuraleedharanK. The natural food colorant Peonidin from cranberries as a potential radical scavenger - A DFT based mechanistic analysis.Food Chem.201826218419010.1016/j.foodchem.2018.04.074 29751907
    [Google Scholar]
  80. AliH.M. AliI.H. Energetic and electronic computation of the two-hydrogen atom donation process in catecholic and non-catecholic anthocyanidins.Food Chem.201824314515010.1016/j.foodchem.2017.09.120 29146321
    [Google Scholar]
  81. RajanV.K. RagiC. MuraleedharanK. A computational exploration into the structure, antioxidant capacity, toxicity and drug-like activity of the anthocyanidin “Petunidin”.Heliyon201957e0211510.1016/j.heliyon.2019.e02115 32346622
    [Google Scholar]
  82. LewisD.F. Frontier orbitals in chemical and biological activity: Quantitative relationships and mechanistic implications.Drug Metab. Rev.199931375581610.1081/DMR‑100101943 10461548
    [Google Scholar]
  83. HuangY. RongC. ZhangR. LiuS. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory.J. Mol. Model.2017231310.1007/s00894‑016‑3175‑x 27933419
    [Google Scholar]
  84. LuT. ChenF. Multiwfn: A multifunctional wavefunction analyzer.J. Comput. Chem.201233558059210.1002/jcc.22885 22162017
    [Google Scholar]
  85. LuT. A comprehensive electron wavefunction analysis toolbox for chemists.Multiwfn. J. Chem. Phys.2024161808250310.1063/5.0216272 39189657
    [Google Scholar]
  86. SordonS. PopłońskiJ. MilczarekM. StachowiczM. TroninaT. KucharskaA.Z. WietrzykJ. HuszczaE. Structure-antioxidant-antiproliferative activity relationships of natural C7 and C7-C8 hydroxylated flavones and flavanones.Antioxidants20198721010.3390/antiox8070210 31284642
    [Google Scholar]
  87. JaneiroP. BrettA.M.O. Redox behavior of anthocyanins present in Vitis vinifera L.Electroanalysis200719171779178610.1002/elan.200703941
    [Google Scholar]
  88. van AckerS.A.B.E. de GrootM.J. van den BergD.J. TrompM.N.J.L. Donné-Op den KelderG. van der VijghW.J.F. BastA. A quantum chemical explanation of the antioxidant activity of flavonoids.Chem. Res. Toxicol.1996981305131210.1021/tx9600964 8951233
    [Google Scholar]
  89. ReedL. ArltV.M. PhillipsD.H. The role of cytochrome P450 enzymes in carcinogen activation and detoxication: An in vivo-in vitro paradox.Carcinogenesis201839785185910.1093/carcin/bgy058 29726902
    [Google Scholar]
  90. ElfakiI. MirR. AlmutairiF.M. DuhierF.M.A. Cytochrome P450: Polymorphisms and roles in cancer, diabetes and atherosclerosis.Asian Pac. J. Cancer Prev.201819820572070 30139042
    [Google Scholar]
  91. ShityakovS. BroscheitJ. PuskásI. RoewerN. FoersterC. Three-dimensional quantitative structure-activity relationship and docking studies in a series of anthocyanin derivatives as cytochrome P450 3A4 inhibitors.Adv. Appl. Bioinform. Chem.201471112110.2147/AABC.S56478 24741320
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468359777250312145241
Loading
/content/journals/cpc/10.2174/0118779468359777250312145241
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test