Skip to content
2000
Volume 15, Issue 1
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Introduction

The interaction of dyes (crystal violet, malachite green, and congo red) with cationic (cetrimide) and anionic surfactants (sodium dodecyl sulfate) in the aqueous medium were studied conductometric and UV-visible spectroscopy.

Methods

The critical micelle concentration (CMC) of both cetrimide and SDS upsurges in all the selected dyes on increasing the temperature. Thermodynamic parameters like change in Gibb’s free energy of micellization , change in enthalpy of micellization as well as change in entropy of micellization were calculated by employing mass action model.

Results

The values obtained are positive with and values being negative signified that the phenomenon of micellization is spontaneous as well as exothermic in nature. Moreover, the more negative in water as well as in the presence of dyes signify the presence of electrostatic forces of attraction between the oppositively charged dyes and surfactant moieties. UV-spectroscopy reveals that spectral changes occur because of the interaction of surfactants with dye molecules.

Conclusion

By analyzing shifts in absorption peaks, changes in intensity, and alterations in band shape, insights into the nature of surfactant-dye complexes and their potential applications in various industries can be assessed. This understanding can help in the design and optimization of products and processes involving surfactants and dyes.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468336057240919162508
2024-10-09
2025-10-24
Loading full text...

Full text loading...

References

  1. DuxburyD.F. The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media.Chem. Rev.199393138143310.1021/cr00017a018
    [Google Scholar]
  2. HendersonB.W. DoughertyT.J. Eds. Photodynamic Therapy, Basic Principles and Clinical Applications.New YorkMarcel Dekker1992
    [Google Scholar]
  3. SarkarM. PoddarS. Studies on the interaction of surfactants with cationic dye by absorption spectroscopy.J. Colloid Interface Sci.2000221218118510.1006/jcis.1999.6573 10631018
    [Google Scholar]
  4. MerinoF. RubioS. Pérez-BenditoD. Determination of dialkyldimethylammonium surfactants in sewage based on the formation of premicellar aggregates.Analyst 2001126122230223410.1039/b105983c 11814207
    [Google Scholar]
  5. García-RíoL. HervellaP. MejutoJ.C. ParajóM. Spectroscopic and kinetic investigation of the interaction between crystal violet and sodium dodecylsulfate.Chem. Phys.20073352-316417610.1016/j.chemphys.2007.04.006
    [Google Scholar]
  6. PurkaitM.K. DasGuptaS. DeS. Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant.Separ. Purif. Tech.2004371819210.1016/j.seppur.2003.08.005
    [Google Scholar]
  7. BilskiP. HoltR.N. ChignellC.F. Premicellar aggregates of rose bengal with cationic and zwitterionic surfactants.J. Photochem. Photobiol. Chem.19971101677410.1016/S1010‑6030(97)00166‑4
    [Google Scholar]
  8. Simonc̆ic̆B. KertM. A study of anionic dye–cationic surfactant interactions in mixtures of cationic and nonionic surfactants.Dyes Pigments200254322123710.1016/S0143‑7208(02)00046‑3
    [Google Scholar]
  9. MeftahK. MeftahS. LamkhanterH. BouzidT. RezzakY. TouilS. AbidA. Extraction and optimization of Austrocylindropuntia subulata powder as a novel green coagulant.Desalination Water Treat.202431810033910.1016/j.dwt.2024.100339
    [Google Scholar]
  10. GohainB. SaikiaP.M. SarmaS. BhatS.N. DuttaR.K. Hydrophobicity-induced deprotonation of dye in dye–submicellar surfactant systems.Phys. Chem. Chem. Phys.20024122617262010.1039/b201274j
    [Google Scholar]
  11. SarmientoF. PrietoG. JonesM.N. Thermodynamic studies on the interaction of n-alkyl sulfates with insulin in aqueous solution.J. Chem. Soc., Faraday Trans.19928871003100710.1039/ft9928801003
    [Google Scholar]
  12. TanfordC. The hydrophobic effect: Formation of micelles and biological membranes , 1980. J. Wiley
    [Google Scholar]
  13. Kumar MandalA. Kanta PalM. Spectral analysis of complexes of the dye, 3,3′-diethyl thiacyanine and the anionic surfactant, SDS by the principal component analysis method.Spectrochim. Acta A Mol. Biomol. Spectrosc.1999557-81347135810.1016/S1386‑1425(98)00307‑2
    [Google Scholar]
  14. DuttaR.K. BhatS.N. Interaction of methyl orange with submicellar cationic surfactants.Bull. Chem. Soc. Jpn.19936692457246010.1246/bcsj.66.2457
    [Google Scholar]
  15. MinchM.J. ShahS.S. Spectroscopic studies of hydrophobic association. Merocyanine dyes in cationic and anionic micelles.J. Org. Chem.197944183252325510.1021/jo01332a033
    [Google Scholar]
  16. MoulikS.P. GhoshS. DasA.R. Interaction of acridine orange monohydrochloride dye with sodiumdodecylsulfate, (SDS) cetyltrimethylammonium-bromide (CTAB) and p-tert-octylphenoxypolyoxy ethanol (Triton X 100) surfactants.Colloid Polym. Sci.1979257664565510.1007/BF01548834
    [Google Scholar]
  17. HeimenzP.C. Principles of colloid and surface chemistry.M. Dekker: New York1986
    [Google Scholar]
  18. ČudinaO. Karljiković-RajićK. Ruvarac-BugarčićI. JankovićI. Interaction of hydrochlorothiazide with cationic surfactant micelles of cetyltrimethylammonium bromide.Colloids Surf. A Physicochem. Eng. Asp.20052562-322523210.1016/j.colsurfa.2005.01.023
    [Google Scholar]
  19. FatmaI. SharmaV. ThakurR.C. KumarA. Current trends in protein-surfactant interactions: A review.J. Mol. Liq.202134111734410.1016/j.molliq.2021.117344
    [Google Scholar]
  20. RosenM.J. Surfactants and Interfacial Phenomena.3rd edNew YorkWiley-Interscience200410.1002/0471670561
    [Google Scholar]
  21. SchrammL.L. StasiukE.N. MarangoniD.G. Surfactants and their applications.Annu. Rep. Prog. Chem. Sect. C: Phys. Chem.200399348
    [Google Scholar]
  22. SarajiM. ShirvaniN. Determination of residual 1,4‐dioxane in surfactants and cleaning agents using headspace single‐drop microextraction followed by gas chromatography–flame ionization detection.Int. J. Cosmet. Sci.2017391364110.1111/ics.12345 27239978
    [Google Scholar]
  23. SarP. GhoshA. ScarsoA. SahaB. Surfactant for better tomorrow: Applied aspect of surfactant aggregates from laboratory to industry.Res. Chem. Intermed.201945126021604110.1007/s11164‑019‑04017‑6
    [Google Scholar]
  24. DuttaA. Ed.; Surfactants and Detergents.BoD–Books on Demand201910.5772/intechopen.77548
    [Google Scholar]
  25. TadrosT. F. An introduction to surfactantsde Gruyter 2014 Apr;10.1515/9783110312133
    [Google Scholar]
  26. KhareU. SharmaP.K. KumarA. Applications of surfactants in pharmaceutical formulation development of conventional and advanced delivery systems.Int. J. Pharmacogn20196155163
    [Google Scholar]
  27. MoulikS.P. GhoshS. Surface chemical and micellization behaviours of binary and ternary mixtures of amphiphiles (Triton X-100, Tween-80 and CTAB) in aqueous medium.J. Mol. Liq.1997721-314516110.1016/S0167‑7322(97)00036‑6
    [Google Scholar]
  28. RehmanF. MurtazaS. Ali KhanJ. KhanH.M. Removal of crystal violet dye from aqueous solution by gamma irradiation.J. Chil. Chem. Soc.20176213359336410.4067/S0717‑97072017000100011
    [Google Scholar]
  29. HabibM.A. MuslimM. ShahadatM.T. IslamM.N. IsmailI.M.I. IslamT.S.A. MahmoodA.J. Photocatalytic decolorization of crystal violet in aqueous nano-ZnO suspension under visible light irradiation.J. Nanostructure Chem.2013317010.1186/2193‑8865‑3‑70
    [Google Scholar]
  30. RavalN.P. ShahP.U. ShahN.K. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption.Appl. Water Sci.2017773407344510.1007/s13201‑016‑0512‑2
    [Google Scholar]
  31. LinkeR.P. Congo red staining of amyloid: Improvements and practical guide for a more precise diagnosis of amyloid and the different amyloidoses. In protein misfolding, aggregation, and conformational diseases.Boston, MASpringer2006239276
    [Google Scholar]
  32. LorenzoA. YanknerB.A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red.Proc. Natl. Acad. Sci. USA19949125122431224710.1073/pnas.91.25.12243 7991613
    [Google Scholar]
  33. ChatterjeeS. ChatterjeeS. ChatterjeeB.P. GuhaA.K. Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics.Colloids Surf. A Physicochem. Eng. Asp.20072991-314615210.1016/j.colsurfa.2006.11.036
    [Google Scholar]
  34. KarukstisK.K. LitzJ.P. GarberM.B. AngellL.M. KorirG.K. A spectral approach to determine location and orientation of azo dyes within surfactant aggregates. Spectrochim. Acta - A.Mol. Biomol.2010754354361
    [Google Scholar]
  35. AliA. UzairS. MalikN.A. AliM. Study of interaction between cationic surfactants and cresol red dye by electrical conductivity and spectroscopy methods.J. Mol. Liq.201419639540310.1016/j.molliq.2014.04.013
    [Google Scholar]
  36. NaushadM. AlqadamiA.A. AlOthmanZ.A. AlsohaimiI.H. AlgamdiM.S. AldawsariA.M. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon.J. Mol. Liq.201929311144210.1016/j.molliq.2019.111442
    [Google Scholar]
  37. PrabhuS.M. KhanA. Hasmath FarzanaM. HwangG.C. LeeW. LeeG. Synthesis and characterization of graphene oxide-doped nano-hydroxyapa-tite and its adsorption performance of toxic diazo dyes from aqueous solution.J. Mol. Liq.201826974675410.1016/j.molliq.2018.08.044
    [Google Scholar]
  38. MuntahaS.T. KhanM.N. Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant – A dye surfactant interaction study.J. Clean. Prod.20159314515010.1016/j.jclepro.2015.01.023
    [Google Scholar]
  39. AkpinarE. UygurN. OrduO.D. ReisD. NetoA.M.F. Effect of the surfactant head-group size dependence of the dye-surfactant interactions on the lyotropic uniaxial to biaxial nematic phase transitions.J. Mol. Liq.202133211584210.1016/j.molliq.2021.115842
    [Google Scholar]
  40. IslamS.I. PyneP. DasD.K. MukherjeeS. ChakrabartyS. MitraR.K. Molecular insight into dye–surfactant interaction at premicellar concentrations: A combined two-photon absorption and molecular dynamics simulation study.Langmuir202238103105311210.1021/acs.langmuir.1c02999 35245073
    [Google Scholar]
  41. NoorS. TajM.B. Mixed-micellar approach for enhanced dye entrapment: A spectroscopic study.J. Mol. Liq.202133811670110.1016/j.molliq.2021.116701
    [Google Scholar]
  42. BhattaraiA. Abdul RubM. KumarD. A UV–visible and conductometric studies on the analyses of valine and ninhydrin reaction in aqueous-surfactant solutions of dicationic geminis (n-s-n type).J. Mol. Liq.202235011858710.1016/j.molliq.2022.118587
    [Google Scholar]
  43. Narayan YadavS. RaiS. ShahP. RoyN. BhattaraiA. Spectrophotometric and conductometric studies on the interaction of surfactant with polyelectrolyte in the presence of dye in aqueous medium.J. Mol. Liq.202235511894910.1016/j.molliq.2022.118949
    [Google Scholar]
  44. SharmaS. KumarK. ChauhanS. Micellization properties of antihistaminic drug diphenhydramine. HCl in aqueous electrolytic solution: Conductometric and spectroscopic studies.J. Mol. Liq.202030011230610.1016/j.molliq.2019.112306
    [Google Scholar]
  45. AliA. BhushanV. MalikN.A. BeheraK. Study of mixed micellar aqueous solutions of sodium dodecyl sulfate and amino acids.Colloid J.201375435736510.1134/S1061933X13040029
    [Google Scholar]
  46. AliA. MalikN.A. FarooqU. TasneemS. NabiF. Interaction of cetrimide with nonionic surfactants—triton x-100 and brij-35: A conductometric and tensiometric study.J. Surfactants Deterg.201619352754210.1007/s11743‑016‑1800‑4
    [Google Scholar]
  47. KaurH. AggarwalN. SoodA.K. BanipalT.S. Analysis of micellar, thermodynamic and structural parameters of gemini surfactants in aqueous solutions of vitamins.J. Mol. Liq.202031011323710.1016/j.molliq.2020.113237
    [Google Scholar]
  48. van OsN.M. DaaneG.J. HaandrikmanG. The effect of chemical structure upon the thermodynamics of micellization of model alkylarenesulfonates.J. Colloid Interface Sci.1991141119921710.1016/0021‑9797(91)90315‑Y
    [Google Scholar]
  49. RauniyarB.S. BhattaraiA. Study of conductivity, contact angle and surface free energy of anionic (SDS, AOT) and cationic (CTAB) surfactants in water and isopropanol mixture.J. Mol. Liq.202132311460410.1016/j.molliq.2020.114604
    [Google Scholar]
  50. YounasN. RashidM.A. Thermodynamic, spectroscopic and biological investigation of interaction of anionic surfactants with [Cu(im)6]F2·4H2O complex in aqueous solution.Colloid Interface Sci. Commun.20203510024010.1016/j.colcom.2020.100240
    [Google Scholar]
  51. ZhengY. LuX. LaiL. YuL. ZhengH. DaiC. The micelle thermodynamics and mixed properties of sulfobetaine-type zwitterionic Gemini surfactant with nonionic and anionic surfactants.J. Mol. Liq.202029911210810.1016/j.molliq.2019.112108
    [Google Scholar]
  52. GrosmaireL. ChorroM. ChorroC. PartykaS. ZanaR. Alkanediyl-α,ω-bis(dimethylalkylammo-nium bromide) surfactants.J. Colloid Interface Sci.2002246117518110.1006/jcis.2001.8001 16290398
    [Google Scholar]
  53. UsmanM. RazaS. SultanaH. RazaZ.A. SiddiqM. HaqA. BukhtawarF. YounisS. RafiqS. Interaction of direct blue 86 with cationic surfactant micelles: Spectroscopic, conductometric and thermodynamic aspects.Tenside Surf. Deterg.202259650151010.1515/tsd‑2022‑2448
    [Google Scholar]
  54. PalA. GarainA. ChowdhuryD. MondalM.H. SahaB. Comparative spectral study on the interaction of organic dye congo-red with selective aqueous micellar media of CPC, rhamnolipids and saponin.Tenside Surfact. Tenside Surf. Deterg.202057540140710.3139/113.110700
    [Google Scholar]
  55. PatilS. AgrawalM.A. Interactions between dyes and cetyl-trimethyl ammonium bromide.Tenside Surf. Deterg.2011483228231
    [Google Scholar]
  56. AliA. Shahjahan; Malik, N. A.; Uzair, S.; Bhushan, V. Physico-chemical studies of glycine, L-alanine, L-phenylalanine and glycylglycine in aqueous Triton X-100 at different temperatures Tenside Surf.Deterg.20155215461
    [Google Scholar]
  57. MalikN.A. FarooqU. Effect of caffeine on the micellization and related thermodynamic parameters of sodium dodecyl sulphate, hexadecyltrimethylammonium bromide and triton x-100: A physicochemical study.Phys. Chem. Liquids202260226527410.1080/00319104.2021.1949594
    [Google Scholar]
  58. RabichiI. SekkouriC. YaacoubiF.E. EnnaciriK. IzghriZ. BouzidT. El FelsL. BaçaouiA. YaacoubiA. Experimental and theoretical investigation of olive mill solid waste biochar for vanillic acid adsorption using DFT/B3LYP analysis.Water Air Soil Pollut.2024235636910.1007/s11270‑024‑07183‑5
    [Google Scholar]
  59. ChafiqM. FatimahS. ChaouikiA. KoY.G. Synergistic sorption strategies: Ionic liquids-modified MOF matrices for adsorption processes.Separ. Purif. Tech.202435112805610.1016/j.seppur.2024.128056
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468336057240919162508
Loading
/content/journals/cpc/10.2174/0118779468336057240919162508
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cetrimide; congo red; crystal violet; Dyes; malachite green oxalate; surfactant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test