Skip to content
2000
Volume 15, Issue 1
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Since the introduction of the first enzyme electrode in 1962, the area of glucose biosensing has undergone substantial expansion and advancement. The ongoing development of sensing platforms has been achieved by extensive study on different immobilization methods and improvements in electron transfer efficiency between enzymes and electrodes. The advancement of nanostructures and their composites has further accelerated this process. Some noteworthy examples include carbon nanotubes, graphene/graphene oxide, and metal oxides. Nanomaterials are used in biosensors to optimize the immobilization process and enhance the electrocatalytic activity of glucose. This article provides a concise overview of the development of glucose biosensors, emphasizing several iterations and recent patterns in utilizing nanostructures for glucose detection, with or without using enzymes. A complete overview was created by collecting, evaluating, analyzing, and reviewing the most recent literature on electrochemical glucose biosensors, including enzymatic and non-enzymatic approaches. The paper comprehensively analyzes the evolution from the 1st to the 4th generation, focusing on the prospects for the most recent generation of glucose biosensors. In addition, this article examines the many mechanisms of glucose sensors using complex materials and methods for glucose detection technology. We specifically aim to comprehend the mechanisms revealed by different electrochemical techniques that enhance glucose oxidation and its interaction with the electrode. To heighten our comprehension of glucose oxidation, we examine the historical background of these biosensors, progress made in improving electron transfer, the creation of several sensing platforms that utilize nanomaterials, and their resulting performance.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468328947240823182638
2024-09-26
2025-10-01
Loading full text...

Full text loading...

References

  1. MaitiS. AkhtarS. UpadhyayA.K. MohantyS.K. Socioeconomic inequality in awareness, treatment and control of diabetes among adults in India: Evidence from National Family Health Survey of India (NFHS), 2019-2021.Sci. Rep.20231312971298310.1038/s41598‑023‑29978‑y 36805018
    [Google Scholar]
  2. LinX. XuY. PanX. XuJ. DingY. SunX. SongX. RenY. ShanP.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025.Sci. Rep.2020101147901480110.1038/s41598‑020‑71908‑9 32901098
    [Google Scholar]
  3. AlemdarS. Pekel BayramgilN. KarakuşS. Applications of cutting-edge biosensors in healthcare and biomedical research. In: New Advances in Biosensing,202310.5772/intechopen.112693
    [Google Scholar]
  4. KateyB. VoiculescuI. PenkovaA.N. UntaroiuA. A review of biosensors and their applications.ASME Open J. Eng.2023202020102021710.1115/1.4063500
    [Google Scholar]
  5. MohankumarP. AjayanJ. MohanrajT. YasodharanR. Recent developments in biosensors for healthcare and biomedical applications: A review.Measurement202116710829310832110.1016/j.measurement.2020.108293
    [Google Scholar]
  6. HaleemA. JavaidM. SinghR.P. SumanR. RabS. Biosensors applications in medical field: A brief review.Sensors Int.2021210010010011010.1016/j.sintl.2021.100100
    [Google Scholar]
  7. TaguchiM. PtitsynA. McLamoreE.S. ClaussenJ.C. Nanomaterial-mediated biosensors for monitoring glucose.J. Diabetes Sci. Technol.20148240341110.1177/1932296814522799 24876594
    [Google Scholar]
  8. ClarkL.C.Jr LyonsC. Electrode systems for continuous monitoring in cardiovascular surgery.Ann. N. Y. Acad. Sci.19621021294510.1111/j.1749‑6632.1962.tb13623.x 14021529
    [Google Scholar]
  9. UpdikeS.J. HicksG.P. The enzyme electrode.Nature1967214509298698810.1038/214986a0 6055414
    [Google Scholar]
  10. MohamadN.R. MarzukiN.H.C. BuangN.A. HuyopF. WahabR.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes.Biotechnol. Biotechnol. Equip.201529220522010.1080/13102818.2015.1008192 26019635
    [Google Scholar]
  11. SheldonR.A. Enzyme immobilization: The quest for optimum performance.Adv. Synth. Catal.20073498-91289130710.1002/adsc.200700082
    [Google Scholar]
  12. BaiY. HuangH. MengK. ShiP. YangP. LuoH. LuoC. FengY. ZhangW. YaoB. Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry.Food Chem.201213141473147810.1016/j.foodchem.2011.10.036
    [Google Scholar]
  13. HakalaT.K. LiitiäT. SuurnäkkiA. Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp.Carbohydr. Polym.201393110210810.1016/j.carbpol.2012.05.013 23465907
    [Google Scholar]
  14. LyuX. GonzalezR. HortonA. LiT. Immobilization of enzymes by polymeric materials.Catalysts20211110121110.3390/catal11101211
    [Google Scholar]
  15. CenY.K. LiuY.X. XueY.P. ZhengY.G. Immobilization of enzymes in/on membranes and their applications.Adv. Synth. Catal.2019361245500551510.1002/adsc.201900439
    [Google Scholar]
  16. KestwalR.M. Bagal-KestwalD. ChiangB.H. Fenugreek hydrogel–agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.Anal. Chim. Acta201588614315010.1016/j.aca.2015.06.004 26320646
    [Google Scholar]
  17. BagalD. KarveM.S. Entrapment of plant invertase within novel composite of agarose–guar gum biopolymer membrane.Anal. Chim. Acta2006555231632110.1016/j.aca.2005.09.010 17723495
    [Google Scholar]
  18. GrieshaberD. MackenzieR. VörösJ. ReimhultE. Electrochemical biosensors-sensor principles and architectures. Sensors (Basel),2008810.3390/s80314000
    [Google Scholar]
  19. NestorU. FrodouardH. TheonesteM. A brief review of how to construct an enzyme-based sensor involved in nanomaterials.Adv. Nanopart.2021100112510.4236/anp.2021.101001
    [Google Scholar]
  20. GuilbaultG.G. LubranoG.J. An enzyme electrode for the amperometric determination of glucose.Anal. Chim. Acta197364343945510.1016/S0003‑2670(01)82476‑4 4701057
    [Google Scholar]
  21. KondeeS. Pon-OnW. SiriwatcharapiboonW. TuantranontA. WongchoosukC. CuO/SnS2 nanoparticles on PEDOT:PSS for nonenzymatic electrochemical glucose sensors.ACS Appl. Nano Mater.2024766722673510.1021/acsanm.4c01093
    [Google Scholar]
  22. Kazemi-AbataryZ. NaderiL. ShahrokhianS. CuCoP@Cu(OH)2 core-shell nanostructure as a robust electrochemical sensor for glucose detection in biological and beverage samples.Microchem. J.202420011036910.1016/j.microc.2024.110369
    [Google Scholar]
  23. HusseinB.A. TsegayeA.A. ShiferaG. TaddesseM. A sensitive non-enzymatic electrochemical glucose sensor based on a ZnO/Co3O4/reduced graphene oxide nanocomposite.Sensors Diagnostics20232234736010.1039/D2SD00183G
    [Google Scholar]
  24. SaraswathiK.A. ReddyM.S.B. JayarambabuN. VenkateswaraR.K. RaoT.V. Ti3C2Tx/polyaniline nanocomposite in a noninvasive disposable enzyme free glucose sensor.ACS Appl. Nano Mater.2024711131101312310.1021/acsanm.4c01623
    [Google Scholar]
  25. ZhouF. WangJ. TangY. SongX. ZhouW. LiY. GaoF. Enhanced sensing performance of flexible non-enzymatic electrochemical glucose sensors using hollow Fe3O4 nanospheres of controllable morphologies.Ceram. Int.202450380093802110.1016/j.ceramint.2024.07.162
    [Google Scholar]
  26. SharmaK.P. ShinM. KimK. WooK. AwasthiG.P. YuC. Copper nanoparticles/polyaniline/molybdenum disulfide composite as a nonenzymatic electrochemical glucose sensor.Heliyon2023912e2127210.1016/j.heliyon.2023.e21272 38076125
    [Google Scholar]
  27. LeeM.J. ChoiJ.H. ShinJ.H. YunJ. KimT. KimY.J. OhB.K. Gold nanoclusters with two sets of embedded enzyme nanoparticles for applications as electrochemical sensors for glucose.ACS Appl. Nano Mater.2023613125671257710.1021/acsanm.3c02421
    [Google Scholar]
  28. Gonzalez-RodriguezR. HathawayE. CofferJ.L. del CastilloR.M. LinY. CuiJ. Gold nanoparticles in porous silicon nanotubes for glucose detection.Chemosensors (Basel)20241246310.3390/chemosensors12040063
    [Google Scholar]
  29. QiC. DongY. YeM. Two-dimensionally ordered carbon array nanostructures with atomically dispersed nickel for sensitive nonenzymatic detection of glucose.ACS Appl. Nano Mater.2023621198271983610.1021/acsanm.3c03638
    [Google Scholar]
  30. YuanR. YanB. LaiC. WangX. CaoY. TuJ. LiY. WuQ. Carbon dot-modified branched TiO 2 Photoelectrochemical glucose sensors with visible light response.ACS Omega2023824220992210710.1021/acsomega.3c02202 37360461
    [Google Scholar]
  31. ImanzadehH. AmiriM. Nozari-AsbemarzM. A novel NiO/C@rGO nanocomposite derived from Ni(gallate): A non-enzymatic electrochemical glucose sensor.Microchem. J.202419911010610.1016/j.microc.2024.110106
    [Google Scholar]
  32. GijareM.S. ChaudhariS.R. EkarS. ShaikhS.F. Al-EniziA.M. PanditB. GarjeA.D. Green synthesis of reduced graphene oxide (rGO) and its applications in non-enzymatic electrochemical glucose sensors.J. Photochem. Photobiol. Chem.202445011543410.1016/j.jphotochem.2023.115434
    [Google Scholar]
  33. MousaviS.M. HashemiS.A. GholamiA. MazraedoostS. ChiangW.H. ArjmandO. OmidifarN. BabapoorA. Precise blood glucose sensing by] nitrogen-doped graphene quantum dots for tight control of diabetes.J. Sens.202120211558020310.1155/2021/5580203
    [Google Scholar]
  34. GhoshR. LiX. YatesM.Z. Nonenzymatic glucose sensor using bimetallic catalysts.ACS Appl. Mater. Interfaces2024161172910.1021/acsami.3c10167 38118131
    [Google Scholar]
  35. ChenS. HuangH. SunH. LiuQ. ZhuH. ZhaoJ. LiuP. YuJ. Electrochemical sensor made with 3d micro-/mesoporous structures of CoNi-N/GaN for noninvasive detection of glucose.ACS Appl. Mater. Interfaces20221443490354904610.1021/acsami.2c17325 36278873
    [Google Scholar]
  36. GaoF. YangY. QiuW. SongZ. WangQ. NiuL. Ni3 C/Ni nanochains for electrochemical sensing of glucose.ACS Appl. Nano Mater.2021488520852910.1021/acsanm.1c01845
    [Google Scholar]
  37. JiangQ. WangJ. LiuT. YingS. KongY. ChaiN. YiF.Y. UiO-66-Derived PBA composite as multifunctional electrochemical non-enzymatic sensor realizing high-performance detection of hydrogen peroxide and glucose.Inorg. Chem.202362187014702310.1021/acs.inorgchem.3c00285 37126666
    [Google Scholar]
  38. FalahiS. JaafarA. PetrenkoI. ZarejousheghaniM. EhrlichH. RahimiP. JosephY. High-performance three-dimensional spongin–atacamite biocomposite for electrochemical nonenzymatic glucose sensing.ACS Appl. Bio Mater.20225287388010.1021/acsabm.1c01248 35050590
    [Google Scholar]
  39. BhaduriS.N. GhoshD. DebnathS. BiswasR. ChatterjeeP.B. BiswasP. Copper(II)-Incorporated porphyrin-based porous organic polymer for a nonenzymatic electrochemical glucose sensor.Inorg. Chem.202362104136414610.1021/acs.inorgchem.2c04072 36862998
    [Google Scholar]
  40. Bagal-KestwalD. KestwalR.M. ChiangB.H. Invertase-nanogold clusters decorated plant membranes for fluorescence-based sucrose sensor.J. Nanobiotechnology20151313010.1186/s12951‑015‑0089‑1 25886379
    [Google Scholar]
  41. ZhaoY. HuangJ. HuangQ. TaoY. GuR. LiH.Y. LiuH. Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection.Nano Res.20231634085409210.1007/s12274‑022‑5138‑0
    [Google Scholar]
  42. XuK. ChenX. ZhengR. ZhengY. Immobilization of multi-enzymes on support materials for efficient biocatalysis.Front. Bioeng. Biotechnol.2020866010.3389/fbioe.2020.00660 32695758
    [Google Scholar]
  43. AraújoR.G. González-GonzálezR.B. Martinez-RuizM. Coronado-ApodacaK.G. Reyes-PardoH. MorreeuwZ.P. Oyervides-MuñozM.A. Sosa-HernándezJ.E. BarcelóD. Parra-SaldívarR. IqbalH.M.N. Expanding the scope of nanobiocatalysis and nanosensing: applications of nanomaterial constructs.ACS Omega2022737328633287610.1021/acsomega.2c03155 36157779
    [Google Scholar]
  44. BaiJ. LiuD. TianX. WangY. CuiB. YangY. DaiS. LinW. ZhuJ. WangJ. XuA. GuZ. ZhangS. Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors.Sci. Adv.20241016eadl185610.1126/sciadv.adl185638640241
    [Google Scholar]
  45. NarlaS.N. JonesM. HermayerK.L. ZhuY. Critical care glucose point-of-care testing.Adv. Clin. Chem.2016769712110.1016/bs.acc.2016.05.002 27645817
    [Google Scholar]
  46. FerriS. KojimaK. SodeK. Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes.J. Diabetes Sci. Technol.2011551068107610.1177/193229681100500507 22027299
    [Google Scholar]
  47. WilsonR. TurnerA.P.F. Glucose oxidase: An ideal enzyme.Biosens. Bioelectron.19927316518510.1016/0956‑5663(92)87013‑F
    [Google Scholar]
  48. RabaJ. MottolaH.A. Glucose oxidase as an analytical reagent.Crit. Rev. Anal. Chem.199525114210.1080/10408349508050556
    [Google Scholar]
  49. KorneckiJ.F. CarballaresD. TardioliP.W. RodriguesR.C. Berenguer-MurciaÁ. AlcántaraA.R. Fernandez-LafuenteR. Enzyme production of d-gluconic acid and glucose oxidase: successful tales of cascade reactions.Catal. Sci. Technol.202010175740577110.1039/D0CY00819B
    [Google Scholar]
  50. WilliamsD.C.III HuffG.F. SeitzW.R. Evaluation of peroxyoxalate chemiluminescence for determination of enzyme generated peroxide.Anal. Chem.19764871003100610.1021/ac60371a025 1267167
    [Google Scholar]
  51. AusesJ.P. CookS.L. MaloyJ.T. Chemiluminescent enzyme method for glucose.Anal. Chem.197547224424910.1021/ac60352a008
    [Google Scholar]
  52. LottJ.A. TurnerK. Evaluation of Trinder’s glucose oxidase method for measuring glucose in serum and urine.Clin. Chem.197521121754176010.1093/clinchem/21.12.1754 1237363
    [Google Scholar]
  53. ZhuA. RomeroR. PettyH.R. An enzymatic fluorimetric assay for glucose-6-phosphate: Application in an in vitro Warburg-like effect.Anal. Biochem.200938819710110.1016/j.ab.2009.02.009 19454216
    [Google Scholar]
  54. NishigakiJ. IshidaT. HonmaT. HarutaM. Oxidation of β-nicotinamide adenine dinucleotide (NADH) by Au cluster and nanoparticle catalysts aiming for Coenzyme regeneration in enzymatic glucose oxidation.ACS Sustain. Chem. Eng.2020828104131042210.1021/acssuschemeng.0c01893
    [Google Scholar]
  55. ReyesJ.S. Fuentes-LemusE. FigueroaJ.D. RojasJ. FierroA. ArenasF. HägglundP.M. DaviesM.J. López-AlarcónC. Implications of differential peroxyl radical-induced inactivation of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase for the pentose phosphate pathway.Sci. Rep.20221212119110.1038/s41598‑022‑25474‑x 36476946
    [Google Scholar]
  56. WongC.H. WhitesidesG.M. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides.J. Am. Chem. Soc.1981103164890489910.1021/ja00406a037
    [Google Scholar]
  57. BurrinJ.M. PriceC.P. Measurement of blood glucose.Ann. Clin. Biochem.198522432734210.1177/000456328502200401 3898972
    [Google Scholar]
  58. StantonR.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival.IUBMB Life201264536236910.1002/iub.1017 22431005
    [Google Scholar]
  59. JohnJ. CrennellS.J. HoughD.W. DansonM.J. TaylorG.L. The crystal structure of glucose dehydrogenase from Thermoplasma acidophilum.Structure19942538539310.1016/S0969‑2126(00)00040‑X 8081754
    [Google Scholar]
  60. BanauchD. BrümmerW. EbelingW. MetzH. RindfreyH. LangH. LeyboldK. RickW. StaudingerH.J. A glucose dehydrogenase for the determination of glucose concentrations in body fluids (author’s transl).Z. Klin. Chem. Klin. Biochem.1975133101107 810982
    [Google Scholar]
  61. RanaJ.S. JindalJ. BeniwalV. ChhokarV. Utility biosensors for applications in agriculture – A review.J. Am. Sci.201069353375
    [Google Scholar]
  62. XuJ.S. ZhaoG.C. A third-generation biosensor based on the enzyme-like activity of cytochrome c on a room temperature ionic liquid and gold nanoparticles composite film.Int. J. Electrochem. Sci.20083451952710.1016/S1452‑3981(23)15470‑8
    [Google Scholar]
  63. ParkS. BooH. ChungT.D. Electrochemical non-enzymatic glucose sensors.Anal. Chim. Acta20065561465710.1016/j.aca.2005.05.080 17723330
    [Google Scholar]
  64. ShamsipurM. Amouzadeh TabriziM. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing.Mater. Sci. Eng. C20144510310810.1016/j.msec.2014.09.002 25491807
    [Google Scholar]
  65. ChambersJ.P. ArulanandamB.P. MattaL.L. WeisA. ValdesJ.J. Biosensor recognition elements.Curr. Issues Mol. Biol.2008101-2112 18525101
    [Google Scholar]
  66. IqbalS.S. MayoM.W. BrunoJ.G. BronkB.V. BattC.A. ChambersJ.P. A review of molecular recognition technologies for detection of biological threat agents.Biosens. Bioelectron.20001511-1254957810.1016/S0956‑5663(00)00108‑1 11213217
    [Google Scholar]
  67. NewmanJ.D. TurnerA.P. Biosensors: Principles and practice.Essays Biochem.199227147159 1425600
    [Google Scholar]
  68. HabermüllerK. MosbachM. SchuhmannW. Electron-transfer mechanisms in amperometric biosensors.Fresenius J. Anal. Chem.20003666-756056810.1007/s002160051551 11225768
    [Google Scholar]
  69. PearsonJ.E. GillA. VadgamaP. Analytical aspects of biosensors.Ann. Clin. Biochem.200037211914510.1258/0004563001899131 10735356
    [Google Scholar]
  70. ThévenotD.R. TothK. DurstR.A. WilsonG.S. Electrochemical biosensors: Recommended definitions and classification.Biosens. Bioelectron.2001161-2121131 11261847
    [Google Scholar]
  71. BaranwalJ. BarseB. GattoG. BroncovaG. KumarA. Electrochemical sensors and their applications: A review.Chemosensors (Basel)202210936338510.3390/chemosensors10090363
    [Google Scholar]
  72. ParkH. ParkY. LakshminarayanaS. JungH.M. KimM.Y. LeeK.H. JungS. Portable all-in-one electroanalytical device for point of care.IEEE Access202210687006871010.1109/ACCESS.2022.3186678
    [Google Scholar]
  73. TurnerA.P.F. ChenB. PiletskyS.A. In vitro diagnostics in diabetes: meeting the challenge.Clin. Chem.19994591596160110.1093/clinchem/45.9.1596 10471674
    [Google Scholar]
  74. HellerA. Amperometric biosensors.Curr. Opin. Biotechnol.199671505410.1016/S0958‑1669(96)80094‑2 8742376
    [Google Scholar]
  75. HassanM.H. VyasC. GrieveB. BartoloP. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing.Sensors (Basel)202121144672469810.3390/s21144672 34300412
    [Google Scholar]
  76. NaikooG.A. SalimH. HassanI.U. AwanT. ArshadF. PedramM.Z. AhmedW. QurashiA. Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management- A review.Front Chem.2021974895774897710.3389/fchem.2021.748957 34631670
    [Google Scholar]
  77. MahdizadehB. NouriA. BaharinikooL. LotfalipourB. Enzymatic glucose biosensors: A review on recent progress in materials and fabrication techniques.Anal. Bioanal. Chem. Res.2022911910.22036/ABCR.2021.257956.1552
    [Google Scholar]
  78. SchachingerF. ChangH. ScheiblbrandnerS. LudwigR. Amperometric biosensors based on direct electron transfer enzymes.Molecules202126154525455710.3390/molecules26154525 34361678
    [Google Scholar]
  79. D’CostaE.J. HigginsI.J. TurnerA.P.F. Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor.Biosensors198622718710.1016/0265‑928X(86)80011‑6 3454651
    [Google Scholar]
  80. LamprechtW. SteinP. HeinzF. WeisserH. Creatine Phosphate.. In: Methods of Enzymatic Analysis; Academic Press, 197441777178510.1016/B978‑0‑12‑091304‑6.50028‑8
    [Google Scholar]
  81. van EnterB.J. von HauffE. Challenges and perspectives in continuous glucose monitoring.Chem. Commun. (Camb.)201854405032504510.1039/C8CC01678J 29687110
    [Google Scholar]
  82. HellerA. FeldmanB. Electrochemical glucose sensors and their applications in diabetes management.Chem. Rev.200810872482250510.1021/cr068069y 18465900
    [Google Scholar]
  83. BankarS.B. BuleM.V. SinghalR.S. AnanthanarayanL. Glucose oxidase — An overview.Biotechnol. Adv.200927448950110.1016/j.biotechadv.2009.04.003 19374943
    [Google Scholar]
  84. WeibelM.K. BrightH.J. The glucose oxidase mechanism. Interpretation of the pH dependence.J. Biol. Chem.197124692734274410.1016/S0021‑9258(18)62246‑X 4324339
    [Google Scholar]
  85. ShiY. HuF.B. The global implications of diabetes and cancer.Lancet201438399331947194810.1016/S0140‑6736(14)60886‑2 24910221
    [Google Scholar]
  86. KoopalC.G.J. NolteR.J.M. Highly stable first-generation biosensor for glucose utilizing latex particles as the enzyme-immobilizing matrix.Enzyme Microb. Technol.199416540240810.1016/0141‑0229(94)90155‑4 7764792
    [Google Scholar]
  87. JuskaV.B. PembleM.E. A critical review of electrochemical glucose sensing: Evolution of biosensor platforms based on advanced nanosystems.Sensors (Basel)202020216013604110.3390/s20216013 33113948
    [Google Scholar]
  88. ShichiriM. YamasakiY. KawamoriR. HakuiN. AbeH. Wearable artificial endocrine pancrease with needle-type glucose sensor.Lancet198232083081129113110.1016/S0140‑6736(82)92788‑X 6128452
    [Google Scholar]
  89. BottermannP. Blood sugar determination in reflectometric evaluation of dextrostix stripes.Verh. Dtsch. Ges. Inn. Med.1972781256125910.1007/978‑3‑642‑85448‑4_290 4665511
    [Google Scholar]
  90. ChaubeyA. MalhotraB.D. Mediated biosensors.Biosens. Bioelectron.2002176-744145610.1016/S0956‑5663(01)00313‑X 11959464
    [Google Scholar]
  91. FrewJ.E. HillH.A. Electron-transfer biosensors.Philos. Trans. R. Soc. Lond. B Biol. Sci.198731611769510610.1098/rstb.1987.0020 2889234
    [Google Scholar]
  92. BallarinB. CassaniM.C. MazzoniR. ScavettaE. TonelliD. Enzyme electrodes based on sono-gel containing ferrocenyl compounds.Biosens. Bioelectron.20072271317132210.1016/j.bios.2006.05.034 16846733
    [Google Scholar]
  93. Di GleriaK. GreenM.J. HillH.A.O. McNeilC.J. GreenM.J. Homogeneous ferrocene-mediated amperometric immunoassay.Anal. Chem.19865861203120510.1021/ac00297a050 3717577
    [Google Scholar]
  94. WilliamsD.L. DoigA.R.Jr KorosiA. Electrochemical-enzymatic analysis of blood glucose and lactate.Anal. Chem.197042111812110.1021/ac60283a032 5409504
    [Google Scholar]
  95. HuJ. The evolution of commercialized glucose sensors in China.Biosens. Bioelectron.20092451083108910.1016/j.bios.2008.08.051 18929476
    [Google Scholar]
  96. MatthewsD.R. BownE. WatsonA. HolmanR.R. SteemsonJ. HughesS. ScottD. Pen-sized digital 30-second blood glucose meter.Lancet1987329853677877910.1016/S0140‑6736(87)92802‑9 2882186
    [Google Scholar]
  97. PalmisanoF. ZamboninP.G. CentonzeD. QuintoM. A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/] tetrathiafulvalene-tetracyanoquinodimethane composite.Anal. Chem.200274235913591810.1021/ac0258608 12498183
    [Google Scholar]
  98. KhanG.F. OhwaM. WernetW. Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor.Anal. Chem.199668172939294510.1021/ac9510393 8794929
    [Google Scholar]
  99. HuangL. WindS.J. O’BrienS.P. Controlled growth of single-walled carbon nanotubes from an ordered mesoporous silica template.Nano Lett.20033329930310.1021/nl025880p
    [Google Scholar]
  100. CiuparuD. ChenY. LimS. HallerG.L. PfefferleL. Uniform-diameter single-walled carbon nanotubes catalytically grown in cobalt-incorporated MCM-41.J. Phys. Chem. B2004108250350710.1021/jp036453i
    [Google Scholar]
  101. ZhaoQ. JiangT. LiC. YinH. Synthesis of multi-wall carbon nanotubes by Ni-substituted (loading) MCM-41 mesoporous molecular sieve catalyzed pyrolysis of ethanol.J. Ind. Eng. Chem.201117221822210.1016/j.jiec.2011.02.009
    [Google Scholar]
  102. HartA.J. SlocumA.H. RoyerL. Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation.Carbon200644234835910.1016/j.carbon.2005.07.008
    [Google Scholar]
  103. BalamuruganJ. ThangamuthuR. PanduranganA. Effective synthesis of carbon nanotubes of high purity over Cr–Ni–SBA-15 and its application in high performance dye-sensitized solar cells.RSC Advances20133134321433110.1039/c3ra23081c
    [Google Scholar]
  104. ZhengG. ZhuH. LuoQ. ZhouY. ZhaoD. Chemical vapor deposition growth of well-aligned carbon nanotube patterns on cubic mesoporous silica films by soft lithography.Chem. Mater.20011372240224210.1021/cm0009726
    [Google Scholar]
  105. WangX. LiN. LiuC. PfefferleL.D. HallerG.L. One-step synthesis of a Pt–Co–SWCNT hybrid material from a Pt–Co–MCM-41 catalyst.J. Mater. Chem.20122248250832509210.1039/c2jm32276e
    [Google Scholar]
  106. RamachandranK. Raj kumar, T.; Babu, K.J.; Gnana kumar, G. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications.Sci. Rep.201661365833659510.1038/srep36583 27833123
    [Google Scholar]
  107. LiuJ. ChouA. RahmatW. Paddon-RowM.N. GoodingJ.J. Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays.Electroanalysis2005171384610.1002/elan.200403116
    [Google Scholar]
  108. PouraslA.H. AhmadiM.T. RahmaniM. ChinH.C. LimC.S. IsmailR. TanM.L.P. Analytical modeling of glucose biosensors based on carbon nanotubes.Nanoscale Res. Lett.2014913310.1186/1556‑276X‑9‑33 24428818
    [Google Scholar]
  109. LeeD. CuiT. Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing.Biosens. Bioelectron.201025102259226410.1016/j.bios.2010.03.003 20417088
    [Google Scholar]
  110. LinM.H. GuptaS. ChangC. LeeC.Y. TaiN.H. Carbon nanotubes/polyethylenimine/glucose oxidase as a non-invasive electrochemical biosensor performs high sensitivity for detecting glucose in saliva.Microchem. J.202218010754710.1016/j.microc.2022.107547
    [Google Scholar]
  111. GuanY. LiuL. YuS. LvF. GuoM. LuoQ. ZhangS. WangZ. WuL. LinY. LiuG. A noninvasive sweat glucose biosensor based on glucose oxidase/multiwalled carbon nanotubes/ferrocene-polyaniline film/Cu electrodes.Micromachines (Basel)202213122142215510.3390/mi13122142 36557441
    [Google Scholar]
  112. LiuC.T. LiuC.H. LaiY.T. LeeC.Y. GuptaS. TaiN.H. A salivary glucose biosensor based on immobilization of glucose oxidase in Nafion-carbon nanotubes nanocomposites modified on screen printed electrode.Microchem. J.202319110887210.1016/j.microc.2023.108872
    [Google Scholar]
  113. MuqaddasS. JavedM. NadeemS. AsgharM.A. HaiderA. AhmadM. AshrafA.R. NazirA. IqbalM. AlwadaiN. AhmadA. AliA. Carbon nanotube fiber-based flexible microelectrode for electrochemical glucose sensors.ACS Omega2023822272228010.1021/acsomega.2c06594 36687067
    [Google Scholar]
  114. LeeD. CuiT. Layer-by-layer self-assembled single-walled carbon nanotubes based ion-sensitive conductometric glucose biosensors.IEEE Sens. J.20099444945610.1109/JSEN.2009.2014414
    [Google Scholar]
  115. Gnana kumar, G.; Amala, G.; Gowtham, S.M. Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms.RSC Advances2017759369493697610.1039/C7RA02845H
    [Google Scholar]
  116. GodmanN.P. DeLucaJ.L. McCollumS.R. SchmidtkeD.W. GlatzhoferD.T. Electrochemical characterization of layer-by-layer assembled ferrocene-modified linear poly(ethylenimine)/enzyme bioanodes for glucose sensor and biofuel cell applications.Langmuir201632143541355110.1021/acs.langmuir.5b04753 26999756
    [Google Scholar]
  117. PirzadaM. AltintasZ. Nanomaterials for healthcare biosensing applications.Sensors (Basel)201919235311536610.3390/s19235311 31810313
    [Google Scholar]
  118. AminB.G. MasudJ. NathM. A non-enzymatic glucose sensor based on a CoNi2Se4/rGO nanocomposite with ultrahigh sensitivity at low working potential.J. Mater. Chem. B Mater. Biol. Med.20197142338234810.1039/C9TB00104B 32254682
    [Google Scholar]
  119. MansuriyaB. AltintasZ. Applications of graphene quantum dots in biomedical sensors.Sensors (Basel)2020204107210.3390/s20041072 32079119
    [Google Scholar]
  120. MansuriyaB.D. AltintasZ. Graphene quantum dot-based electrochemical immunosensors for biomedical applications.Materials (Basel)202031878102
    [Google Scholar]
  121. YangS. LiG. WangD. QiaoZ. QuL. Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: A three-dimensional hybrid for nonenzymatic glucose sensor.Sens. Actuators B Chem.201723858859510.1016/j.snb.2016.07.105
    [Google Scholar]
  122. RahseparM. ForoughiF. KimH. A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological pH value.Sens. Actuators B Chem.201928232233010.1016/j.snb.2018.11.078
    [Google Scholar]
  123. AsenP. EsfandiarA. KazemiM. Nonenzymatic sweat-based glucose sensing by flower-like Au nanostructures/graphene oxide.ACS Appl. Nano Mater.202259133611337210.1021/acsanm.2c03024
    [Google Scholar]
  124. ChansaenpakK. KamkaewA. LisnundS. PrachaiP. RatwirunkitP. JingphoT. BlayV. PinyouP. Development of a sensitive self-powered glucose biosensor based on an enzymatic biofuel cell.Biosensors (Basel)20211111610.3390/bios11010016 33430194
    [Google Scholar]
  125. SlaughterG. KulkarniT. Highly selective and sensitive self-powered glucose sensor based on capacitor circuit.Sci. Rep.201771147110.1038/s41598‑017‑01665‑9 28469179
    [Google Scholar]
  126. NewmanJ.D. TurnerA.P.F. Home blood glucose biosensors: A commercial perspective.Biosens. Bioelectron.200520122435245310.1016/j.bios.2004.11.012 15854818
    [Google Scholar]
  127. ToghillK.E. ComptonR.G. Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation.Int. J. Electrochem. Sci.2010591246130110.1016/S1452‑3981(23)15359‑4
    [Google Scholar]
  128. LiuS. YuB. ZhangT. A novel non-enzymatic glucose sensor based on NiO hollow spheres.Electrochim. Acta201310210410710.1016/j.electacta.2013.03.191
    [Google Scholar]
  129. LuoS. SuF. LiuC. LiJ. LiuR. XiaoY. LiY. LiuX. CaiQ. A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor.Talanta201186115716310.1016/j.talanta.2011.08.051 22063525
    [Google Scholar]
  130. YadavA.A. ChavanU.J. Electrochemical supercapacitive performance of spray deposited Co3O4 thin film nanostructures.Electrochim. Acta201723237037610.1016/j.electacta.2017.02.157
    [Google Scholar]
  131. BalouchQ. IbupotoZ.H. KhaskheliG.Q. SoomroR.A. Sirajuddin; Samoon, M.K.; Deewani, V.K. Cobalt oxide nanoflowers for electrochemical determination of glucose.J. Electron. Mater.201544103724373210.1007/s11664‑015‑3860‑z
    [Google Scholar]
  132. KangL. HeD. BieL. JiangP. Nanoporous cobalt oxide nanowires for non-enzymatic electrochemical glucose detection.Sens. Actuators B Chem.201522088889410.1016/j.snb.2015.06.015
    [Google Scholar]
  133. IbupotoZ.H. ElhagS. AlSalhiM.S. NurO. WillanderM. Effect of urea on the morphology of Co3O4 nanostructures and their application for potentiometric glucose biosensor.Electroanalysis20142681773178110.1002/elan.201400116
    [Google Scholar]
  134. XuW. DaiS. WangX. HeX. WangM. XiY. HuC. Nanorod-aggregated flower-like CuO grown on a carbon fiber fabric for a super high sensitive non-enzymatic glucose sensor.J. Mater. Chem. B Mater. Biol. Med.20153285777578510.1039/C5TB00592B 32262574
    [Google Scholar]
  135. KajisaT. HosoyamadaS. Mesoporous silica-based metal oxide electrode for a nonenzymatic glucose sensor at a physiological pH.Langmuir20213746135591356610.1021/acs.langmuir.1c01740 34753289
    [Google Scholar]
  136. ChitareY.M. JadhavS.B. PawaskarP.N. MagdumV.V. GunjakarJ.L. LokhandeC.D. Metal oxide-based composites in nonenzymatic electrochemical glucose sensors.Ind. Eng. Chem. Res.20216050181951821710.1021/acs.iecr.1c03662
    [Google Scholar]
  137. SedaghatS. PiepenburgC.R. ZareeiA. QiZ. PeanaS. WangH. RahimiR. Laser-induced mesoporous nickel oxide as a highly sensitive nonenzymatic glucose sensor.ACS Appl. Nano Mater.2020365260527010.1021/acsanm.0c00659
    [Google Scholar]
  138. ZhuZ. Garcia-GancedoL. FlewittA.J. XieH. MoussyF. MilneW.I. A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene.Sensors (Basel)20121255996602210.3390/s120505996 22778628
    [Google Scholar]
  139. AhmadiM. NasriZ. von WoedtkeT. WendeK. d-glucose oxidation by cold atmospheric plasma-induced reactive species.ACS Omega2022736319833199810.1021/acsomega.2c02965 36119990
    [Google Scholar]
  140. NaikooG.A. AwanT. SalimH. ArshadF. HassanI.U. PedramM.Z. AhmedW. FaruckH.L. AljabaliA.A.A. MishraV. Serrano-ArocaÁ. GoyalR. NegiP. BirkettM. NasefM.M. CharbeN.B. BakshiH.A. TambuwalaM.M. Fourth-generation glucose sensors composed of copper nanostructures for diabetes management: A critical review.Bioeng. Transl. Med.202271e1024810.1002/btm2.10248 35111949
    [Google Scholar]
  141. RahmanM.M. AhammadA.J.S. JinJ.H. AhnS.J. LeeJ.J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides.Sensors (Basel)20101054855488610.3390/s100504855 22399911
    [Google Scholar]
  142. ZhuG. XuH. XiaoY. LiuY. YuanA. ShenX. Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures.ACS Appl. Mater. Interfaces20124274475110.1021/am2013882 22257081
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468328947240823182638
Loading
/content/journals/cpc/10.2174/0118779468328947240823182638
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biosensor; diabetes; electrochemical; Glucose; glucose oxidase; nanomaterials
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test