Skip to content
2000
Volume 15, Issue 3
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Introduction

Electron Paramagnetic Resonance (EPR), also known as Electron Spin Resonance (ESR) is a powerful, nondestructive, and nonintrusive characterization technique to evaluate unpaired electrons in paramagnetic substances. Unpaired electrons are found in free radicals and transition metals and are the main source of physical-chemistry changes in inorganic and organic substances. Thus, EPR characterization has a wide range of applicability in catalysis, photonics, electrochemistry, biology, medicine, semiconductors, biofuels, and radiation dosimetry.

Methods

However, to extract useful data from EPR analysis, a set of measurement parameters have to be adjusted. The present study aims to report how an EPR parametrization such as the number of scans, modulation amplitude and sweep time are effective in the characterization of europium-thulium co-doped yttria (YET) nanoparticles.

Results

Based on results, EPR spectra of YET particles with suitable signal/noise ratio and resolution could be achieved using 10 scans, modulation amplitude of 4G, and sweep time of 10.2s.

Conclusion

These findings are promising data to advance toward formation of new materials based on rare-earth oxides for radiation dosimetry.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468359698250309180548
2025-03-24
2025-11-10
Loading full text...

Full text loading...

References

  1. DikanovS.A. CroftsA.R. Electron paramagnetic resonance spectroscopy.Handbook of Applied Solid State Spectroscopy.ChamSpringer2021445910.1016/B978‑0‑12‑409547‑2.14621‑9
    [Google Scholar]
  2. Seif-EddineM. AbdiazizK. BajadaM. ReisnerE. RoesslerM.M. Following the evolution of paramagnetic species during catalysis: Film-electrochemical EPR spectroscopy.Bioenergetics2022186314874210.1016/j.bbabio.2022.148742
    [Google Scholar]
  3. GryaznovaT.V. NikanshinaE.O. FayzullinR.R. IslamovD.R. TarasovM.V. KholinK.V. BudnikovaY.H. EPR-electrochemical monitoring of P-C coupling: Towards one-step electrochemical phosphorylation of acridine.Electrochim. Acta202242814094610.1016/j.electacta.2022.140946
    [Google Scholar]
  4. HajilooN. ZiaieF. A comparison study of dosimetry response of nano-crystalline hydroxyapatite via the EPR technique: Effect of fabrication process.Results Phys.20234710633810.1016/j.rinp.2023.106338
    [Google Scholar]
  5. IvanovM.Yu. BakulinaO.D. PolienkoY.F. KirilyukI.A. Prikhod’koS.A. AdoninN.Yu. FedinM.V. Radical ionic liquid: An efficient self-probe to study heterogeneous structure in glassy state using EPR spectroscopy.J. Mol. Liq.202338112183010.1016/j.molliq.2023.121830
    [Google Scholar]
  6. DuJ. YangH. WangC.L. ZhanS.Z. Synthesis, structure, characterization, EPR investigation and catalytic behavior for hydrogen evolution of a bis(thiosemicarbazonato)-palladium complex.Polyhedron202120811542610.1016/j.poly.2021.115426
    [Google Scholar]
  7. LiuH.G. MeiY. ZhengW.C. Link between EPR g-factors and local structure of the orthorhombic Ce3+ center in Y3Al5O12 and Lu3Al5O12 garnets.Chem. Phys. Lett.201255421421810.1016/j.cplett.2012.10.003
    [Google Scholar]
  8. WuX.X. ChengM. Research on the EPR parameters and defect structure of the V3+ tetrahedral center in Y3Al5O12:V3+ crystal.Optik202020416411910.1016/j.ijleo.2019.164119
    [Google Scholar]
  9. PotapovA.P. VazheninV.A. ArtyomovM.Y. ShakurovG.S. ZaripovR.B. SubbotinK.A. ShestakovA.V. EPR detection of Cr4+ centers in yttrium orthosilicate Y2SiO5.Opt. Mater.202314311414910.1016/j.optmat.2023.114149
    [Google Scholar]
  10. PetrosyanA.G. AsatryanH.R. HovhannesyanK.L. DerdzyanM.V. FeofilovS.P. EganyanA.V. SargsyanR.S. Growth, optical and EPR studies of 151Eu2+:YAG single crystals.Mater. Chem. Phys.2017185394310.1016/j.matchemphys.2016.10.002
    [Google Scholar]
  11. YurchenkoY. ShyrokovO. KorniienkoO. LagutaV. RemesZ. ZazubovichS. RagulyaA. LobunetsT. X-ray diffraction, luminescence, and electron paramagnetic resonance study of LaLuO3:Yb3+ nanopowders.Ceram. Int.202410.1016/j.ceramint.2024.10.347
    [Google Scholar]
  12. Hari KrishnaR. NagabhushanaB.M. NagabhushanaH. MonikaD.L. SivaramakrishnaR. ShivakumaraC. ChakradharR.P.S. ThomasT. Photoluminescence, thermoluminescence and EPR studies of solvothermally derived Ni2+ doped Y(OH)3 and Y2O3 multi-particle-chain microrods.J. Lumin.201415512513410.1016/j.jlumin.2014.06.019
    [Google Scholar]
  13. SidorowiczA. WajlerA. WęglarzH. NakielskaM. OrlińskiK. DiduszkoR. OlszynaA. Preparation and characterization of thulium doped yttrium oxide (Tm:Y2O3) powders.J. Alloys Compd.201770929329810.1016/j.jallcom.2017.03.165
    [Google Scholar]
  14. PetryJ. KombanR. GimmlerC. WellerH. Simple one pot synthesis of luminescent europium doped yttrium oxide Y2O3:Eu nanodiscs for phosphor converted warm white LEDs.Nanoscale Adv.20224385886410.1039/D1NA00831E 36131820
    [Google Scholar]
  15. VermaT. AgrawalS. Optical studies and estimation of kinetic parameters for dysprosium activated yttrium oxide phosphors.Optik (Stuttg.)201816036137010.1016/j.ijleo.2018.02.015
    [Google Scholar]
  16. KaszewskiJ. WitkowskiB.S. WachnickiŁ. PrzybylińskaH. KozankiewiczB. MijowskaE. GodlewskiM. Reduction of Tb4+ ions in luminescent Y2O3:Tb nanorods prepared by microwave hydrothermal method.J. Rare Earths201634877478110.1016/S1002‑0721(16)60093‑5
    [Google Scholar]
  17. ZhangK. LiT. LiuX. HuangZ. LiuY. The formation process and influencing factors of electric field-induced oxygen vacancy in Y2O3 transparent ceramic.Ceram. Int.20245021414174142510.1016/j.ceramint.2024.07.456
    [Google Scholar]
  18. NathS.G. e iA. A critical review focussing on the synthesis and applications of monoclinic yttrium oxide nanophosphor.Mater. Res. Bull.202518211312810.1016/j.materresbull.2024.113128
    [Google Scholar]
  19. IssaS.A.M. AbulyaziedD.E. AlrowailyA.W. SaudiH.A. AliE.S. HenaishA.M.A. ZakalyH.M.H. Improving electrical, optical and radiation shielding properties of polyvinyl alcohol yttrium oxide composites.J. Rare Earths202341122002200910.1016/j.jre.2023.02.013
    [Google Scholar]
  20. WangB. JinQ. DuX. WangC. LiG. ZhengY. SunH. ZhangD. MaC. Corrosion mechanism and microstructure evolution of yttrium-doped marine steel.J. Mater. Res. Technol.2024282752276610.1016/j.jmrt.2023.12.189
    [Google Scholar]
  21. RenP. WangX. ZhangM. SunX. Fabrication of yttrium oxide refractory with high strength and thermal shock stability for smelting TiAl alloy.Ceram. Int.202450146447310.1016/j.ceramint.2023.10.122
    [Google Scholar]
  22. SantosS.C. RodriguesO.Jr CamposL.L. Bio-prototyping of europium-yttria based rods for radiation dosimetry.Mater. Chem. Phys.201719955756610.1016/j.matchemphys.2017.07.063
    [Google Scholar]
  23. SantosS.C. RodriguesO.Jr CamposL.L. Correlation between zeta potential and electron paramagnetic resonance of thulium, europium co-doped yttria based suspensions.J. Phys. Chem. Solids202419511229010.1016/j.jpcs.2024.112290
    [Google Scholar]
  24. BobbaC. Critical Raw Materials for Strategic Technologies and Sectors in the EU.European Commission202010.2873/58081
    [Google Scholar]
  25. U.S.G.S. Department of the Interior. Reports2017Available from: https://www.commerce.gov/news/reports/2019/06/federal-strategy-ensure-secure-and-reliable-supplies-critical-minerals (accessed on 18-11-2024).
  26. DoebelinN. KleebergR. Profex: A graphical user interface for the Rietveld refinement program BGMN.J. Appl. Cryst.20154851573158010.1107/S1600576715014685 26500466
    [Google Scholar]
  27. MommaK. IzumiF. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data.J. Appl. Cryst.20114461272127610.1107/S0021889811038970
    [Google Scholar]
  28. WeddM. Ward-SmithS. RawleA. Particle Size Analysis.Encyclopedia of Analytical Science. MiróT.E. OxfordAcademic Press201914415710.1016/B978‑0‑12‑409547‑2.14522‑6
    [Google Scholar]
  29. TscharnuterW. Photon Correlation Spectroscopy in Particle Sizing.United States of AmericaJohn Wiley & Sons Ltd200010.1002/9780470027318.a1512
    [Google Scholar]
  30. VámosL. JaniP. Particle sizing by photon correlation laser Doppler anemometer in the submicron/nanometer size range.Opt. Eng.201049101360210.1117/1.3292002
    [Google Scholar]
  31. CouturesJ.P. VergesR. FoexM. Comparison of solidification temperatures of different rare earth sesquioxides; effect of atmosphere.Int. Rev. High Temp. Refrac.197512181185
    [Google Scholar]
  32. RienerK. AlbrechtN. ZiegelmeierS. RamakrishnanR. HaferkampL. SpieringsA.B. LeichtfriedG.J. Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF).Addit. Manuf.20203410128610.1016/j.addma.2020.101286
    [Google Scholar]
  33. QinX. JuY. BernhardS. YaoN. Flame synthesis of Y2O3:Eu Nanophosphors using ethanol as precursor solvents.J. Mater. Res.200520112960296810.1557/JMR.2005.0364
    [Google Scholar]
  34. StarrH. Territory, proximity, and spatiality: The geography of international conflict.Int. Stud. Rev.20057338740610.1111/j.1551‑2916.2005.00506.x
    [Google Scholar]
  35. SantosS.C. RodriguesO.Jr CamposL.L. EPR dosimetry of yttria micro rods.J. Alloys Compd.201874226327010.1016/j.jallcom.2018.01.315
    [Google Scholar]
  36. SantosS.C. RodriguesO.Jr CamposL.L. EPR response of yttria micro rods activated by europium.J. Alloys Compd.201876413614110.1016/j.jallcom.2018.06.063
    [Google Scholar]
  37. SantosS.C. RodriguesO.Jr CamposL.L. Towards a new promising dosimetric material from formation of thulium-yttria nanoparticles with EPR response.Mater. Chem. Phys.202125912400510.1016/j.matchemphys.2020.124005
    [Google Scholar]
  38. NaitoM. YokoyamaT. HosokawaK. Basic Properties and Measuring Methods of Nanoparticles.Nanoparticle Technology Handbook.Elsevier201810.1016/B978‑0‑444‑64110‑6.00001‑9
    [Google Scholar]
  39. YaredW. GadowR. The influence of particle size distribution on the curing behavior of ceramic-filled resins for vat photopolymerization.Ceramics. Int.20224914241562416410.1016/j.ceramint.2022.11.193
    [Google Scholar]
  40. HuangJ. ChenH. YangJ. ZhouT. ZhangH. Effects of particle size on microstructure and mechanical strength of a fly ash based ceramic membrane.Ceram. Int.20234910156551566410.1016/j.ceramint.2023.01.157
    [Google Scholar]
  41. ManothamS. TesavibulP. Effect of particle size on mechanical properties of alumina ceramic processed by photosensitive binder jetting with powder spattering technique.J. Eur. Ceram. Soc.20224241608161710.1016/j.jeurceramsoc.2021.11.062
    [Google Scholar]
  42. FuL. YueJ. LiuW. HanZ. BaiD. XuG. Analysis and experiment of sintering and densification of magnesia particles.Chem. Eng. Sci.202326811839610.1016/j.ces.2022.118396
    [Google Scholar]
  43. SmithD.S. LefeuvreP. RenauxM. Nait-AliB. LericheA. Study of neck formation and densification in porous hydroxyapatite ceramics using thermal conductivity measurements.Open Ceramics20231310032910.1016/j.oceram.2023.100329
    [Google Scholar]
  44. GuoN. ShenH.Z. ShenP. Densification of oxides via cold sintering of hydrate precursors.J. Eur. Ceram. Soc.202343245246110.1016/j.jeurceramsoc.2022.10.007
    [Google Scholar]
  45. FanJ. LiuD. ZhaoK. LiuJ. AnL. Densification kinetics and mechanism of zirconia ceramics via hot oscillating pressing.Open Ceramics20231310032310.1016/j.oceram.2022.100323
    [Google Scholar]
  46. WangC. WangP. HouQ.Y. CuiZ.Q. ZhangN.F. LuoL.M. HuangZ.Y. Microstructure and properties of La2O3-doped tungsten-based bulk material and its densification mechanism during spark plasma sintering process.Fusion Eng. Des.202318811342010.1016/j.fusengdes.2023.113420
    [Google Scholar]
  47. NamG. HwangJ. KangD. OhS. ChaeS. YoonM. KoM. Mechanical densification synthesis of single-crystalline Ni-rich cathode for high-energy lithium-ion batteries.J. Energy Chem.20237956256810.1016/j.jechem.2022.12.057
    [Google Scholar]
  48. SarrafH. High performance ceramics by advanced colloidal processing.Appl. Rheol.200919211912010.1515/arh‑2009‑0020
    [Google Scholar]
  49. RayónE. MorenoR. AlcázarC. SalvadorM.D. ManjónF.J. Jiménez-PiquéE. LLanes, L. Enhanced hydrothermal resistance of Y‐ TZP ceramics through colloidal processing.J. Am. Ceram. Soc.20139641070107610.1111/jace.12225
    [Google Scholar]
  50. SantosS.C. RodriguesO.Jr CamposL.L. Colloidal processing of thulium-yttria microceramics.J. Phys. Chem. Solids202216111042010.1016/j.jpcs.2021.110420
    [Google Scholar]
  51. YiM. DongY. DengD. XuS. LeiL. Shape-controlled synthesis of LiLuF4:15Tb particles by adjusting surface citric acid content.Opt. Mater.202313811361610.1016/j.optmat.2023.113616
    [Google Scholar]
  52. YuX. HanZ. TangH. XieJ. MiX. Investigating luminescence properties and energy transfer of Ca3(PO4)2: Dy3+/Eu3+ phosphor via hydrothermal synthesis.Opt. Mater.202010611000910.1016/j.optmat.2020.110009
    [Google Scholar]
  53. ZettlM. WinterC. MantanusJ. HadjittofisE. RomeS. LeitingerG. HsiaoW.K. RobleggE. PintoJ.T. SpoerkM. Needles to Spheres: Evaluation of inkjet printing as a particle shape enhancement tool.Eur. J. Pharm. Biopharm.20231849210210.1016/j.ejpb.2023.01.016 36707008
    [Google Scholar]
  54. YanP. ZhangY. ZhengS. Microscale spherical TiO2 powder prepared by hydrolysis of TiCl4 solution: Synthesis and kinetics.Particuology202484607110.1016/j.partic.2023.03.004
    [Google Scholar]
  55. AminiN. TuoheyJ. LongJ.M. ZhangJ. MortonD.A.V. DanielsK.E. FazelpourF. HapgoodK.P. Photoelastic stress response of complex 3D-printed particle shapes.Powder Technol.202240911785210.1016/j.powtec.2022.117852
    [Google Scholar]
  56. LotitoV. ZambelliT. Manipulating the morphology of colloidal particles via ion beam irradiation: A route to anisotropic shaping.Adv. Colloid Interface Sci.202230410264210.1016/j.cis.2022.102642 35569386
    [Google Scholar]
  57. HanR. TariqN.H. LiuH. ZhaoL. LuoJ. WangJ. CuiX. XiongT. Development of high infrared emissivity porous ceramic coating using pre-synthesized flower-like CeO2 powder for high temperature applications.Ceram. Int.20224811340134810.1016/j.ceramint.2021.09.218
    [Google Scholar]
  58. DongZ.M. XiaQ. RenH. ShangX. LuX. JooS.W. HuangJ. Preparation of hollow SnO2/ZnO cubes for the high-performance detection of VOCs.Ceramics Int.20224934650465810.1016/j.ceramint.2022.09.352
    [Google Scholar]
  59. KarunakaranC. BalamuruganM. Chapter Four - Electron paramagnetic resonance spectroscopy.Spin Resonance Spectroscopy. KarunakaranC.B.T. Elsevier201816922810.1016/B978‑0‑12‑813608‑9.00004‑6
    [Google Scholar]
  60. KarunakaranC. BalamuruganM. Chapter Five - Advances in electron paramagnetic resonance.Spin Resonance Spectroscopy. KarunakaranC.B.T. Elsevier201822928010.1016/B978‑0‑12‑813608‑9.00005‑8
    [Google Scholar]
  61. KarunakaranC. BalamuruganM. KarthikeyanM. Chapter six - Applications of electron paramagnetic resonance.Spin Resonance Spectroscopy. KarunakaranC.B.T. Elsevier201828134710.1016/B978‑0‑12‑813608‑9.00006‑X
    [Google Scholar]
  62. OsadaY. KoikeS. FukushimaT. OgasawaraS. ShikadaT. IkariyaT. Oxidative coupling of methane over Y2O3CaO catalysts.Appl. Catal.1990591597410.1016/S0166‑9834(00)82187‑9
    [Google Scholar]
  63. SinghK. ThangaduraiV. Chemical reactivity between Ce0.7RE0.2Mo0.1O2 (RE = Y, Sm) and 8YSZ, and conductivity studies of their solid solutions.Solid State Ion.201426244444810.1016/j.ssi.2014.03.030
    [Google Scholar]
  64. BordunO.M. Influence of oxygen vacancies on the luminescence spectra of Y2O3 thin films.J. Appl. Spectrosc.200269343043310.1023/A:1019763518857
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468359698250309180548
Loading
/content/journals/cpc/10.2174/0118779468359698250309180548
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): EPR; ESR; measurement protocol; radiation dosimetry; rare-earths; Yttria
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test