Skip to content
2000
Volume 15, Issue 2
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

About 44% of the active medicinal components in all previously disclosed chemical units are hydrophobic and do not extend shop because of their limited water solubility. One of the factors limiting the rate at which oral medications can reach the appropriate concentration in the systemic circulation for pharmacological action is their solubility. Our medical preparation scientists and researchers are constantly surrounded by issues relating to drug release, drug targeting, solubility, overdosing, permeability and bioavailability. Thus, creating or improving frameworks for drug delivery is a territory of ongoing research. Solid dispersion, micronization, salt formation, are some of the vital methods usually employed to improve the solubility of poorly soluble drugs, but each method has some drawbacks and benefits. This review focuses on different methods of improving drug solubility in order to lower the proportion of medication candidates that are removed from development due to poor solubility. The popular solution for all problems related to aspects of solubility and release rate of certain poorly water-soluble drugs, is solid dispersion. Solid dispersions smear the standard to drug release producing a combination of a poorly water-soluble active pharmaceutical ingredients (API) and greatly soluble coformers. The solid dispersion method has been commonly used to increase the drug release, solubility, and bioavailability of poorly water-soluble drugs. The focus of this review paper is on carriers, BCS classification, and solubility. This page also summarizes some of the most current technological advancements and offers a variety of preparation methods for solid dispersion. The various solid dispersions were highlighted according to their molecular configuration and carrier type. It also provides an overview of the solid dispersion methodologies and their mechanics, as well as the marketed medications that can be made utilizing them.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468337741241126094712
2024-12-23
2025-09-25
Loading full text...

Full text loading...

References

  1. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: Importance and enhancement techniques.ISRN Pharm.2012201211010.5402/2012/19572722830056
    [Google Scholar]
  2. BhatiaM. DeviS. Co-crystallization: A green approach for the solubility enhancement of poorly soluble drugs.CrystEngComm202426329331110.1039/D3CE01047C
    [Google Scholar]
  3. BhujbalS.V. MitraB. JainU. GongY. AgrawalA. KarkiS. TaylorL.S. KumarS. Tony ZhouQ. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies.Acta Pharm. Sin. B20211182505253610.1016/j.apsb.2021.05.01434522596
    [Google Scholar]
  4. TranP. PyoY.C. KimD.H. LeeS.E. KimJ.K. ParkJ.S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs.Pharmaceutics201911313210.3390/pharmaceutics1103013230893899
    [Google Scholar]
  5. PindelskaE. SokalA. KolodziejskiW. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques.Adv. Drug Deliv. Rev.201711711114610.1016/j.addr.2017.09.01428931472
    [Google Scholar]
  6. Cerreia VioglioP. ChierottiM.R. GobettoR. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges.Adv. Drug Deliv. Rev.20171178611010.1016/j.addr.2017.07.00128687273
    [Google Scholar]
  7. SaokhamP. MuankaewC. JansookP. LoftssonT. Solubility of cyclodextrins and drug/cyclodextrin complexes.Molecules2018235116110.3390/molecules2305116129751694
    [Google Scholar]
  8. JacobS. NairA.B. Cyclodextrin complexes: Perspective from drug delivery and formulation.Drug Dev. Res.201879520121710.1002/ddr.2145230188584
    [Google Scholar]
  9. VeseliA. ŽakeljS. KristlA. A review of methods for solubility determination in biopharmaceutical drug characterization.Drug Dev. Ind. Pharm.201945111717172410.1080/03639045.2019.166506231512934
    [Google Scholar]
  10. AinurofiqA. PutroD. RamadhaniD. PutraG. Do Espirito SantoL.D.C. A review on solubility enhancement methods for poorly water-soluble drugs.J. Rep. Pharm. Sci.202110113714710.4103/jrptps.JRPTPS_134_19
    [Google Scholar]
  11. ThapaR.K. ChoiH.G. KimJ.O. YongC.S. Analysis and optimization of drug solubility to improve pharmacokinetics.J. Pharm. Investig.20174729511010.1007/s40005‑016‑0299‑z
    [Google Scholar]
  12. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh DavaraniF. JavanmardR. DokhaniA. KhorasaniS. MozafariM.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  13. NorhasriM.S.M. HamidahM.S. FadzilA.M. Applications of using nano material in concrete: A review.Constr. Build. Mater.2017133919710.1016/j.conbuildmat.2016.12.005
    [Google Scholar]
  14. SoukoulisC. BohnT. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids.Crit. Rev. Food Sci. Nutr.201858113610.1080/10408398.2014.97135326065668
    [Google Scholar]
  15. RashwanA.K. KarimN. XuY. XieJ. CuiH. MozafariM.R. ChenW. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review.Crit. Rev. Food Sci. Nutr.202363193362338510.1080/10408398.2021.198785834661483
    [Google Scholar]
  16. AkharumeF.U. AlukoR.E. AdedejiA.A. Modification of plant proteins for improved functionality: A review.Compr. Rev. Food Sci. Food Saf.202120119822410.1111/1541‑4337.1268833393195
    [Google Scholar]
  17. MalekiA. KettigerH. SchoubbenA. RosenholmJ.M. AmbrogiV. HamidiM. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs.J. Control. Release201726232934710.1016/j.jconrel.2017.07.04728778479
    [Google Scholar]
  18. AhireE. ThakkarS. DarshanwadM. MisraM. Parenteral nanosuspensions: A brief review from solubility enhancement to more novel and specific applications.Acta Pharm. Sin. B20188573375510.1016/j.apsb.2018.07.01130245962
    [Google Scholar]
  19. KarakucukA. TeksinZ.S. ErogluH. CelebiN. Evaluation of improved oral bioavailability of ritonavir nanosuspension.Eur. J. Pharm. Sci.201913115315810.1016/j.ejps.2019.02.02830790704
    [Google Scholar]
  20. HeJ. HanY. XuG. YinL. Ngandeu NeubiM. ZhouJ. DingY. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement.RSC Advances2017722130531306410.1039/C6RA28676C
    [Google Scholar]
  21. BhakayA. RahmanM. DaveR.N. BilgiliE. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: Formulation–Processing aspects and challenges.Pharmaceutics20181038610.3390/pharmaceutics1003008629986543
    [Google Scholar]
  22. GuptaD. JamwalD. RanaD. KatochA. Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs.Appl. Nanocompos. Materi. Drug Deliv.Woodhead Publishing201861963210.1016/B978‑0‑12‑813741‑3.00027‑3
    [Google Scholar]
  23. BarradasT.N. de Holanda e SilvaK.G. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review.Environ. Chem. Lett.20211921153117110.1007/s10311‑020‑01142‑2
    [Google Scholar]
  24. PiazziniV. MonteforteE. LuceriC. BigagliE. BiliaA.R. BergonziM.C. Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: Formulation and in vitro evaluation using PAMPA and Caco-2 approaches.Drug Deliv.201724138039010.1080/10717544.2016.125600228165811
    [Google Scholar]
  25. HarwanshR.K. DeshmukhR. RahmanM.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives.J. Drug Deliv. Sci. Technol.20195122423310.1016/j.jddst.2019.03.006
    [Google Scholar]
  26. PandeyP. GulatiN. MakhijaM. PurohitD. DurejaH. Nanoemulsion: a novel drug delivery approach for enhancement of bioavailability.Recent Pat. Nanotechnol.202014427629310.2174/187221051466620060414575532496999
    [Google Scholar]
  27. VarshosazJ. GhassamiE. AhmadipourS. Crystal engineering for enhanced solubility and bioavailability of poorly soluble drugs.Curr. Pharm. Des.201824212473249610.2174/138161282466618071210444729998799
    [Google Scholar]
  28. ChistyakovD. SergeevG. The polymorphism of drugs: New approaches to the synthesis of nanostructured polymorphs.Pharmaceutics20201213410.3390/pharmaceutics1201003431906357
    [Google Scholar]
  29. BaghelS. CathcartH. O’ReillyN.J. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs.J. Pharm. Sci.201610592527254410.1016/j.xphs.2015.10.00826886314
    [Google Scholar]
  30. VoC.L.N. ParkC. LeeB.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs.Eur. J. Pharm. Biopharm.201385379981310.1016/j.ejpb.2013.09.00724056053
    [Google Scholar]
  31. TranP. ParkJ.S. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs.Int. J. Pharm.202161012124710.1016/j.ijpharm.2021.12124734740762
    [Google Scholar]
  32. JakubowskaE. LulekJ. The application of freeze-drying as a production method of drug nanocrystals and solid dispersions – A review.J. Drug Deliv. Sci. Technol.20216210235710.1016/j.jddst.2021.102357
    [Google Scholar]
  33. PandiP. BulusuR. KommineniN. KhanW. SinghM. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products.Int. J. Pharm.202058611956010.1016/j.ijpharm.2020.11956032565285
    [Google Scholar]
  34. SchittnyA. HuwylerJ. PuchkovM. Mechanisms of increased bioavailability through amorphous solid dispersions: A review.Drug Deliv.202027111012710.1080/10717544.2019.170494031885288
    [Google Scholar]
  35. KaurS. JenaS.K. SamalS.K. SainiV. SangamwarA.T. Freeze dried solid dispersion of exemestane: A way to negate an aqueous solubility and oral bioavailability problems.Eur. J. Pharm. Sci.2017107546110.1016/j.ejps.2017.06.03228663037
    [Google Scholar]
  36. CharalabidisA. SfouniM. BergströmC. MacherasP. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): Beyond guidelines.Int. J. Pharm.201956626428110.1016/j.ijpharm.2019.05.04131108154
    [Google Scholar]
  37. MehtaM.U. UppoorR.S. ConnerD.P. SeoP. VaidyanathanJ. VolpeD.A. StierE. ChilukuriD. DorantesA. GhoshT. MandulaH. RainesK. DhanormchitphongP. WoodcockJ. YuL.X. Impact of the US FDA “Biopharmaceutics Classification System”(BCS) guidance on global drug development.Mol. Pharm.201714124334433810.1021/acs.molpharmaceut.7b0068729076742
    [Google Scholar]
  38. Bou-ChacraN. MeloK.J.C. MoralesI.A.C. StipplerE.S. KesisoglouF. YazdanianM. LöbenbergR. Evolution of choice of solubility and dissolution media after two decades of biopharmaceutical classification system.AAPS J.2017194989100110.1208/s12248‑017‑0085‑528516359
    [Google Scholar]
  39. SherjeA.P. LondheV. Development and evaluation of pH-responsive cyclodextrin-based in situ gel of paliperidone for intranasal delivery.AAPS PharmSciTech201819138439410.1208/s12249‑017‑0844‑828748368
    [Google Scholar]
  40. XieC.M. LuX. WangK.F. MengF.Z. JiangO. ZhangH.P. ZhiW. FangL.M. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties.ACS Appl. Mater. Interfaces20146118580858910.1021/am501428e24720634
    [Google Scholar]
  41. VithaniK. HawleyA. JanninV. PoutonC. BoydB.J. Solubilisation behaviour of poorly water-soluble drugs during digestion of solid SMEDDS.Eur. J. Pharm. Biopharm.201813023624610.1016/j.ejpb.2018.07.00629981444
    [Google Scholar]
  42. AloisioC. AntimisiarisS.G. LonghiM.R. Liposomes containing cyclodextrins or meglumine to solubilize and improve the bioavailability of poorly soluble drugs.J. Mol. Liq.201722910611310.1016/j.molliq.2016.12.035
    [Google Scholar]
  43. Dwichandra PutraO. UmedaD. FujitaE. HaraguchiT. UchidaT. YonemochiE. UekusaH. Solubility improvement of benexate through salt formation using artificial sweetener.Pharmaceutics20181026410.3390/pharmaceutics1002006429861459
    [Google Scholar]
  44. KawakamiK. OdaN. MiyoshiK. FunakiT. IdaY. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents.Eur. J. Pharm. Sci.2006281-271410.1016/j.ejps.2005.11.01216406526
    [Google Scholar]
  45. PriemelP.A. LaitinenR. GrohganzH. RadesT. StrachanC.J. In situ amorphisation of indomethacin with Eudragit® E during dissolution.Eur. J. Pharm. Biopharm.20138531259126510.1016/j.ejpb.2013.09.01024056054
    [Google Scholar]
  46. ChiouW.L. RiegelmanS. Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin.J. Pharm. Sci.196958121505151010.1002/jps.26005812185353269
    [Google Scholar]
  47. YuL.X. AmidonG.L. A compartmental absorption and transit model for estimating oral drug absorption.Int. J. Pharm.1999186211912510.1016/S0378‑5173(99)00147‑710486429
    [Google Scholar]
  48. SekiguchiK. ObiN. UedaY. Studies on Absorption of Eutectic Mixture. II. Absorption of fused conglomerates of chloramphenicol and urea in rabbits.Chem. Pharm. Bull. (Tokyo)196412213414410.1248/cpb.12.13414126741
    [Google Scholar]
  49. VarshosazJ. EnteshariS. Solubility enhancement of domperidone by solvent change in situ micronization technique.Adv. Biomed. Res.20187110910.4103/abr.abr_219_1730069440
    [Google Scholar]
  50. ChiouW.L. RiegelmanS. Pharmaceutical applications of solid dispersion systems.J. Pharm. Sci.19716091281130210.1002/jps.26006009024935981
    [Google Scholar]
  51. JacobS. NairA.B. ShahJ. Emerging role of nanosuspensions in drug delivery systems.Biomater. Res.2020241310.1186/s40824‑020‑0184‑831969986
    [Google Scholar]
  52. AttariZ. BhandariA. JagadishP.C. LewisS. Enhanced ex vivo intestinal absorption of olmesartan medoxomil nanosuspension: Preparation by combinative technology.Saudi Pharm. J.2016241576310.1016/j.jsps.2015.03.00826903769
    [Google Scholar]
  53. JunyaprasertV.B. MorakulB. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs.Asian J. Pharm. Sci.2015101132310.1016/j.ajps.2014.08.005
    [Google Scholar]
  54. HecqJ. DeleersM. FanaraD. VranckxH. AmighiK. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine.Int. J. Pharm.20052991-216717710.1016/j.ijpharm.2005.05.01415996838
    [Google Scholar]
  55. JermainS.V. BroughC. WilliamsR.O.III Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – An update.Int. J. Pharm.20185351-237939210.1016/j.ijpharm.2017.10.05129128423
    [Google Scholar]
  56. KottaS. KhanA.W. PramodK. AnsariS.H. SharmaR.K. AliJ. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs.Expert Opin. Drug Deliv.20129558559810.1517/17425247.2012.66852322512597
    [Google Scholar]
  57. ShakeelF. FaisalM.S. Nanoemulsion: A promising tool for solubility and dissolution enhancement of celecoxib.Pharm. Dev. Technol.2010151535610.3109/1083745090296795419552546
    [Google Scholar]
  58. KfouryM. LandyD. FourmentinS. Characterization of cyclodextrin/volatile inclusion complexes: A review.Molecules2018235120410.3390/molecules2305120429772824
    [Google Scholar]
  59. LohG.O. TanY.T. PehK.K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin.Asian J. Pharm. Sci.201611453654610.1016/j.ajps.2016.02.009
    [Google Scholar]
  60. ShiH. XieY. XuJ. ZhuJ. WangC. WangH. Solubility enhancement, solvent effect and thermodynamic analysis of pazopanib in co-solvent mixtures.J. Chem. Thermodyn.202115510634310.1016/j.jct.2020.106343
    [Google Scholar]
  61. SeedherN. KanojiaM. Co-solvent solubilization of some poorly-soluble antidiabetic drugs.Pharm. Dev. Technol.200914218519210.1080/1083745080249889419519190
    [Google Scholar]
  62. LuQ. DunJ. ChenJ.M. LiuS. SunC.C. Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid.Int. J. Pharm.2019554142010.1016/j.ijpharm.2018.10.06230385378
    [Google Scholar]
  63. WuW. LöbmannK. RadesT. GrohganzH. On the role of salt formation and structural similarity of co-formers in co-amorphous drug delivery systems.Int. J. Pharm.20185351-2869410.1016/j.ijpharm.2017.10.05729102703
    [Google Scholar]
  64. SerajuddinA.T.M. Salt formation to improve drug solubility.Adv. Drug Deliv. Rev.200759760361610.1016/j.addr.2007.05.01017619064
    [Google Scholar]
  65. ChaudhariS.P. DugarR.P. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs.J. Drug Deliv. Sci. Technol.201741687710.1016/j.jddst.2017.06.010
    [Google Scholar]
  66. BalakrishnanA. RegeB.D. AmidonG.L. PolliJ.E. Surfactant-mediated dissolution: Contributions of solubility enhancement and relatively low micelle diffusivity.J. Pharm. Sci.20049382064207510.1002/jps.2011815236455
    [Google Scholar]
  67. NgoH.V. TranP.H.L. LeeB.J. TranT.T.D. The roles of a surfactant in zein-HPMC blend solid dispersions for improving drug delivery.Int. J. Pharm.201956316917310.1016/j.ijpharm.2019.04.00930954672
    [Google Scholar]
  68. AitipamulaS. BanerjeeR. BansalA.K. BiradhaK. CheneyM.L. ChoudhuryA.R. DesirajuG.R. DikundwarA.G. DubeyR. DuggiralaN. GhogaleP.P. GhoshS. GoswamiP.K. GoudN.R. JettiR.R.K.R. KarpinskiP. KaushikP. KumarD. KumarV. MoultonB. MukherjeeA. MukherjeeG. MyersonA.S. PuriV. RamananA. RajamannarT. ReddyC.M. Rodriguez-HornedoN. RogersR.D. RowT.N.G. SanphuiP. ShanN. SheteG. SinghA. SunC.C. SwiftJ.A. ThaimattamR. ThakurT.S. Kumar ThaperR. ThomasS.P. TothadiS. VangalaV.R. VariankavalN. VishweshwarP. WeynaD.R. ZaworotkoM.J. Polymorphs, salts, and cocrystals: What’s in a name?Cryst. Growth Des.20121252147215210.1021/cg3002948
    [Google Scholar]
  69. GaneshM. UbaidullaU. RathnamG. JangH.T. Chitosan-telmisartan polymeric cocrystals for improving oral absorption: In vitro and in vivo evaluation.Int. J. Biol. Macromol.201913187988510.1016/j.ijbiomac.2019.03.14130905757
    [Google Scholar]
  70. Hasmukh MehtaC. Pooja SrinivasP. SbA. Fathy MahanyK.B. KoteshwaraK.B. Yogendra NayakU. Computational and experimental insights in design and development of aceclofenac co-crystals.Res. J. Pharm. Technol.20221583709371610.52711/0974‑360X.2022.00622
    [Google Scholar]
  71. ZhangY.X. WangL.Y. DaiJ.K. LiuF. LiY.T. WuZ.Y. YanC.W. The comparative study of cocrystal/salt in simultaneously improving solubility and permeability of acetazolamide.J. Mol. Struct.2019118422523210.1016/j.molstruc.2019.01.090
    [Google Scholar]
  72. ChenP. SongL. LiuY. FangY. Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan.Radiat. Phys. Chem.20077671165116810.1016/j.radphyschem.2006.11.012
    [Google Scholar]
  73. AgiA. JuninR. GbadamosiA. AbbasA. AzliN.B. OsehJ. Influence of nanoprecipitation on crystalline starch nanoparticle formed by ultrasonic assisted weak-acid hydrolysis of cassava starch and the rheology of their solutions.Chem. Eng. Process.201914210755610.1016/j.cep.2019.107556
    [Google Scholar]
  74. BelkacemN. Sheikh SalemM.A. AlKhatibH.S. Effect of ultrasound on the physico-chemical properties of poorly soluble drugs: Antisolvent sonocrystallization of ketoprofen.Powder Technol.2015285162410.1016/j.powtec.2015.06.058
    [Google Scholar]
  75. SharmaC. DesaiM.A. PatelS.R. Anti-solvent sonocrystallization for nano-range particle size of telmisartan through Taguchi and Box–Behnken design.Chem. Pap.202074132333110.1007/s11696‑019‑00886‑8
    [Google Scholar]
  76. MeloT.B.L. de BatistaR.S.A. JúniorJ.V.C. de AndradeF.H.D. de SouzaF.S. de MacêdoR.O. Recrystallisation of ferulic acid using the anti-solvent and sonocrystallisation processes.J. Therm. Anal. Calorim.201913853757376410.1007/s10973‑019‑08925‑y
    [Google Scholar]
  77. BundR.K. PanditA.B. Sonocrystallization: Effect on lactose recovery and crystal habit.Ultrason. Sonochem.200714214315210.1016/j.ultsonch.2006.06.00316904362
    [Google Scholar]
  78. CraigD.Q.M. The mechanisms of drug release from solid dispersions in water-soluble polymers.Int. J. Pharm.2002231213114410.1016/S0378‑5173(01)00891‑211755266
    [Google Scholar]
  79. BhatiaM. DeviR. Enhanced solubility and drug release of ketoprofen using lyophilized bovine serum albumin solid dispersion.ACTA Pharmaceutica Sciencia20195713310.23893/1307‑2080.APS.05703
    [Google Scholar]
  80. TürkM. HilsP. HelfgenB. SchaberK. MartinH.J. WahlM.A. Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): A promising method to improve bioavailability of poorly soluble pharmaceutical agents.J. Supercrit. Fluids2002221758410.1016/S0896‑8446(01)00109‑7
    [Google Scholar]
  81. KimN.A. OhH.K. LeeJ.C. ChoiY.H. JeongS.H. Comparison of solubility enhancement by solid dispersion and micronized butein and its correlation with in vivo study.J. Pharm. Investig.2021511536010.1007/s40005‑020‑00486‑9
    [Google Scholar]
  82. VarshosazJ. TalariR. MostafaviS.A. NokhodchiA. Dissolution enhancement of gliclazide using in situ micronization by solvent change method.Powder Technol.2008187322223010.1016/j.powtec.2008.02.018
    [Google Scholar]
  83. VogtM. KunathK. DressmanJ.B. Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: Comparison with commercial preparations.Eur. J. Pharm. Biopharm.200868228328810.1016/j.ejpb.2007.05.01017574403
    [Google Scholar]
  84. NingX. SunJ. HanX. WuY. YanZ. HanJ. HeZ. Strategies to improve dissolution and oral absorption of glimepiride tablets: Solid dispersion versus micronization techniques.Drug Dev. Ind. Pharm.201137672773610.3109/03639045.2010.53806121204747
    [Google Scholar]
  85. FuQ. LiB. ZhangD. FangM. ShaoJ. GuoM. GuoZ. LiM. SunJ. ZhaiY. Comparative studies of the in vitro dissolution and in vivo pharmacokinetics for different formulation strategies (solid dispersion, micronization, and nanocrystals) for poorly water-soluble drugs: A case study for lacidipine.Colloids Surf. B Biointerfaces201513217117610.1016/j.colsurfb.2015.05.01026047880
    [Google Scholar]
  86. WangL. LiuS. ChenJ. WangY. SunC.C. Novel salt-cocrystals of berberine hydrochloride with aliphatic dicarboxylic acids: Odd–even alternation in physicochemical properties.Mol. Pharm.20211841758176710.1021/acs.molpharmaceut.0c0125033656348
    [Google Scholar]
  87. CrisanM. PetricM. VlaseG. VlaseT. SiminelA.V. BouroshP.N. CroitorL. Organic salt versus salt cocrystal: Thermal behavior, structural and photoluminescence investigations.J. Therm. Anal. Calorim.202214721203121310.1007/s10973‑020‑10438‑y
    [Google Scholar]
  88. TariqQ.N. BiY. ManzoorS. TariqM.N. CaoW.L. DongW.S. ZhangJ.G. Synthesis, performance, and thermal behavior of two insensitive 3,4-dinitropyrazole-based energetic cocrystals.Cryst. Growth Des.202323111211910.1021/acs.cgd.2c00809
    [Google Scholar]
  89. NugrahaniI. KumalasariR.A. AuliW.N. HorikawaA. UekusaH. Salt cocrystal of diclofenac sodium-l-proline: Structural, pseudopolymorphism, and pharmaceutics performance study.Pharmaceutics202012769010.3390/pharmaceutics1207069032708314
    [Google Scholar]
  90. LuoY. ChenS. ZhouJ. ChenJ. TianL. GaoW. ZhangY. MaA. LiL. ZhouZ. Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation.J. Drug Deliv. Sci. Technol.20195024825410.1016/j.jddst.2019.02.004
    [Google Scholar]
  91. BhatiaM. KumarA. VermaV. DeviS. Development of ketoprofen-p-aminobenzoic acid co-crystal: formulation, characterization, optimization, and evaluation.Med. Chem. Res.2021302090210210.1007/s00044‑021‑02794‑7
    [Google Scholar]
  92. DeviS. KumarA. KapoorA. VermaV. YadavS. BhatiaM. Ketoprofen–FA co-crystal: In vitro and in vivo investigation for the solubility enhancement of drug by design of expert.AAPS PharmSciTech202223410110.1208/s12249‑022‑02253‑535348937
    [Google Scholar]
  93. DeviS. BahmaniK. Chitosan co-crystal for enhancing the solubity and dissolution rate of diclofenac sodium.Int. J. Pharm. Sci. Res.202314135736510.13040/IJPSR.0975‑8232
    [Google Scholar]
  94. ChoiJ.S. Design of cilostazol nanocrystals for improved solubility.J. Pharm. Innov.202015341642310.1007/s12247‑019‑09391‑7
    [Google Scholar]
  95. HuangZ. StaufenbielS. BodmeierR. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs.Pharm. Res.202239594996110.1007/s11095‑022‑03243‑935552985
    [Google Scholar]
  96. NagaiN. OgataF. IkeA. ShimomaeY. OsakoH. NakazawaY. YamamotoN. KawasakiN. Oral formulation based on irbesartan nanocrystals improve drug solubility, absorbability, and efficacy.Pharmaceutics202214238710.3390/pharmaceutics1402038735214118
    [Google Scholar]
  97. Lopez-VidalL. ParodiP. ActisM.R. CamachoN. RealD.A. ParedesA.J. IrazoquiF.J. RealJ.P. PalmaS.D. Formulation and optimization of pH-sensitive nanocrystals for improved oral delivery.Drug Deliv. Transl. Res.20231451301130810.1007/s13346‑023‑01463‑z37953429
    [Google Scholar]
  98. AghrbiI. FülöpV. JakabG. Kállai-SzabóN. BaloghE. AntalI. Nanosuspension with improved saturated solubility and dissolution rate of cilostazol and effect of solidification on stability.J. Drug Deliv. Sci. Technol.20216110216510.1016/j.jddst.2020.102165
    [Google Scholar]
  99. ZhouW. ZhangY. LiR. PengS. RuanR. LiJ. LiuW. Fabrication of caseinate stabilized thymol nanosuspensions via the ph-driven method: Enhancement in water solubility of thymol.Foods2021105107410.3390/foods1005107434066210
    [Google Scholar]
  100. RashedM. DadashzadehS. BolourchianN. The impact of process and formulation parameters on the fabrication of efavirenz nanosuspension to improve drug solubility and dissolution.Iran. J. Pharm. Res.2022211e12940910.5812/ijpr‑12940936942076
    [Google Scholar]
  101. ShahR. SoniT. ShahU. SuhagiaB.N. PatelM.N. PatelT. GabrG.A. GorainB. KesharwaniP. Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity.J. Biomater. Sci. Polym. Ed.202132783385710.1080/09205063.2020.187037833380264
    [Google Scholar]
  102. XuR. JiangC. ZhouL. LiB. HuY. GuoY. XiaoX. LuS. Fabrication of stable apigenin nanosuspension with PEG 400 as antisolvent for enhancing the solubility and bioavailability.AAPS PharmSciTech20222311210.1208/s12249‑021‑02164‑x34881399
    [Google Scholar]
  103. YazdaniM. TavakoliO. KhoobiM. WuY.S. FaramarziM.A. GholibeglooE. FarkhondehS. Beta-carotene/cyclodextrin-based inclusion complex: Improved loading, solubility, stability, and cytotoxicity.J. Incl. Phenom. Macrocycl. Chem.20221021-2556410.1007/s10847‑021‑01100‑7
    [Google Scholar]
  104. SidD. BaiticheM. ElbahriZ. DjerbouaF. BoutahalaM. BouazizZ. Le BorgneM. Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: in silico modelling, formulation, characterisation, and in vitro studies.J. Enzyme Inhib. Med. Chem.202136160561710.1080/14756366.2020.186922533557644
    [Google Scholar]
  105. GaoS. JiangJ. LiX. YeF. FuY. ZhaoL. An environmentally safe formulation with enhanced solubility and fungicidal activity: Self-assembly and characterization of Difenoconazole-β-CD inclusion complex.J. Mol. Liq.202132711487410.1016/j.molliq.2020.114874
    [Google Scholar]
  106. LiH. ChangS.L. ChangT.R. YouY. WangX.D. WangL.W. YuanX.F. TanM.H. WangP.D. XuP.W. GaoW.B. ZhaoQ-S. ZhaoB. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: Physicochemical properties, water solubility, and antioxidant activity.J. Mol. Liq.202133411607010.1016/j.molliq.2021.116070
    [Google Scholar]
  107. AytacZ. IpekS. ErolI. DurgunE. UyarT. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex.Colloids Surf. B Biointerfaces201917812913610.1016/j.colsurfb.2019.02.05930852264
    [Google Scholar]
  108. RezaeiA. VarshosazJ. FesharakiM. FarhangA. JafariS.M. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges.Int. J. Nanomedicine2019144589459910.2147/IJN.S20635031296988
    [Google Scholar]
  109. KhalidQ. AhmadM. MinhasM.U. BatoolF. MalikN.S. RehmanM. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies.J. Drug Deliv. Sci. Technol.20216110208910.1016/j.jddst.2020.102089
    [Google Scholar]
  110. RizviS.S.B. AkhtarN. MinhasM.U. MahmoodA. KhanK.U. Synthesis and characterization of carboxymethyl chitosan nanosponges with cyclodextrin blends for drug solubility improvement.Gels2022815510.3390/gels801005535049590
    [Google Scholar]
  111. SharmaK. KadianV. KumarA. MahantS. RaoR. Evaluation of solubility, photostability and antioxidant activity of ellagic acid cyclodextrin nanosponges fabricated by melt method and microwave-assisted synthesis.J. Food Sci. Technol.202259389890810.1007/s13197‑021‑05085‑635153320
    [Google Scholar]
  112. MashaqbehH. ObaidatR. Al-Shar’iN. Evaluation and characterization of curcumin-β-cyclodextrin and cyclodextrin-based nanosponge inclusion complexation.Polymers20211323407310.3390/polym1323407334883577
    [Google Scholar]
  113. Alvani-AlamdariS. RezaeiH. RahimpourE. HemmatiS. MartinezF. Barzegar-JalaliM. JouybanA. Mesalazine solubility in the binary mixtures of ethanol and water at various temperatures.Phys. Chem. Liquids2021591122510.1080/00319104.2019.1675157
    [Google Scholar]
  114. ZhangC. JouybanA. ZhaoH. FarajtabarA. AcreeW.E.Jr Equilibrium solubility, Hansen solubility parameter, dissolution thermodynamics, transfer property and preferential solvation of zonisamide in aqueous binary mixtures of ethanol, acetonitrile, isopropanol and N,N-dimethylformamide.J. Mol. Liq.202132611521910.1016/j.molliq.2020.115219
    [Google Scholar]
  115. YuS. YuanJ. ChengY. DuS. WangY. XueF. XingW. Solid-liquid phase equilibrium of clozapine in aqueous binary solvent mixtures.J. Mol. Liq.202132911537110.1016/j.molliq.2021.115371
    [Google Scholar]
  116. JinC. ZhangX. GengZ. PangX. WangX. JiJ. WangG. LiuH. Effects of various co-solvents on the solubility between blends of soybean oil with either methanol or ethanol.Fuel201924446147110.1016/j.fuel.2019.01.187
    [Google Scholar]
  117. LvR. ZhangX. XingR. ShiW. ZhaoH. LiW. JouybanA. AcreeW.E. Comprehensive understanding on solubility and solvation performance of curcumin (form I) in aqueous co-solvent blends.J. Chem. Thermodyn.202216710671810.1016/j.jct.2021.106718
    [Google Scholar]
  118. CongY. DuC. XingK. BianY. LiX. WangM. Investigation on co-solvency, solvent effect, Hansen solubility parameter and preferential solvation of fenbufen dissolution and models correlation.J. Mol. Liq.202234811841510.1016/j.molliq.2021.118415
    [Google Scholar]
  119. BergqvistS.W. SandbergA.S. CarlssonN.G. AndlidT. Improved iron solubility in carrot juice fermented by homo- and hetero-fermentative lactic acid bacteria.Food Microbiol.2005221536110.1016/j.fm.2004.04.006
    [Google Scholar]
  120. PandaP.K. DashP. ChangY.H. YangJ.M. Improvement of chitosan water solubility by fumaric acid modification.Mater. Lett.202231613204610.1016/j.matlet.2022.132046
    [Google Scholar]
  121. MalkawiR. MalkawiW.I. Al-MahmoudY. TawalbehJ. Current trends on solid dispersions: Past, present, and future.Adv. Pharmacol. Pharm. Sci.2022202211710.1155/2022/591601336317015
    [Google Scholar]
  122. LeeH.J. KimJ.Y. ParkS.H. RheeY.S. ParkC.W. ParkE.S. Controlled-release oral dosage forms containing nimodipine solid dispersion and hydrophilic carriers.J. Drug Deliv. Sci. Technol.201737283710.1016/j.jddst.2016.11.001
    [Google Scholar]
  123. kommavarapuP. MaruthapillaiA. PalanisamyK. SunkaraM. Preparation and characterization of rilpivirine solid dispersions with the application of enhanced solubility and dissolution rate.Beni. Suef Univ. J. Basic Appl. Sci.201541717910.1016/j.bjbas.2015.02.010
    [Google Scholar]
  124. GumasteS.G. GuptaS.S. SerajuddinA.T.M. Investigation of polymer-surfactant and polymer-drug-surfactant miscibility for solid dispersion.AAPS J.20161851131114310.1208/s12248‑016‑9939‑527301752
    [Google Scholar]
  125. MengF. GalaU. ChauhanH. Classification of solid dispersions: Correlation to (i) stability and solubility (ii) preparation and characterization techniques.Drug Dev. Ind. Pharm.20154191401141510.3109/03639045.2015.101827425853292
    [Google Scholar]
  126. JaiswarD.R. JhaD. AminP.D. Preparation and characterizations of stable amorphous solid solution of azithromycin by hot melt extrusion.J. Pharm. Investig.201646765566810.1007/s40005‑016‑0248‑x
    [Google Scholar]
  127. ChokshiR.J. ZiaH. SandhuH.K. ShahN.H. MalickW.A. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: Pros and cons.Drug Deliv.2007141334510.1080/1071754060064027817107929
    [Google Scholar]
  128. SaberiA. KouhjaniM. YariD. JahaniA. Asare-AddoK. KamaliH. NokhodchiA. Development, recent advances, and updates in binary, ternary co-amorphous systems, and ternary solid dispersions.J. Drug Deliv. Sci. Technol.20238610474610.1016/j.jddst.2023.104746
    [Google Scholar]
  129. NikamV.K. SheteS.K. KhapareJ.P. Most promising solid dispersion technique of oral dispersible tablet.Beni. Suef Univ. J. Basic Appl. Sci.2020916210.1186/s43088‑020‑00086‑4
    [Google Scholar]
  130. YadavP.S. KumarV. SinghU.P. BhatH.R. MazumderB. Physicochemical characterization and in vitro dissolution studies of solid dispersions of ketoprofen with PVP K30 and d-mannitol.Saudi Pharm. J.2013211778410.1016/j.jsps.2011.12.00724109206
    [Google Scholar]
  131. BhatnagarP. DhoteV. MahajanS. MishraP. MishraD. Solid dispersion in pharmaceutical drug development: From basics to clinical applications.Curr. Drug Deliv.201411215517110.2174/1567201811310999004423859356
    [Google Scholar]
  132. MishraD.K. DhoteV. BhargavaA. JainD.K. MishraP.K. Amorphous solid dispersion technique for improved drug delivery: Basics to clinical applications.Drug Deliv. Transl. Res.20155655256510.1007/s13346‑015‑0256‑926306524
    [Google Scholar]
  133. KumarP. MohanC. ShankarM.K. GulatiM. Physiochemical characterization and release rate studies of soliddispersions of ketoconazole with pluronic f127 and pvp k-30.IJPR201110468524250403
    [Google Scholar]
  134. BarmpalexisP. KoutsidisI. KaravasE. LoukaD. PapadimitriouS.A. BikiarisD.N. Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique and optimization of dissolution using artificial neural networks.Eur. J. Pharm. Biopharm.20138531219123110.1016/j.ejpb.2013.03.01323541514
    [Google Scholar]
  135. NguyenT.N.G. TranP.H.L. TranT.V. VoT.V. Truong-DinhTranT. Development of a modified – Solid dispersion in an uncommon approach of melting method facilitating properties of a swellable polymer to enhance drug dissolution.Int. J. Pharm.20154841-222823410.1016/j.ijpharm.2015.02.06425735669
    [Google Scholar]
  136. WuJ.X. YangM. BergF. PajanderJ. RadesT. RantanenJ. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability.Eur. J. Pharm. Sci.201144561062010.1016/j.ejps.2011.10.00822024381
    [Google Scholar]
  137. LakshmanJ.P. CaoY. KowalskiJ. SerajuddinA.T.M. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug.Mol. Pharm.200856994100210.1021/mp800107319434852
    [Google Scholar]
  138. TranP.H.L. LeeB.J. TranT.T.D. Recent studies on the processes and formulation impacts in the development of solid dispersions by hot-melt extrusion.Eur. J. Pharm. Biopharm.2021164131910.1016/j.ejpb.2021.04.00933887388
    [Google Scholar]
  139. FuleR. MeerT. AminP. DhamechaD. GhadlingeS. Preparation and characterisation of lornoxicam solid dispersion systems using hot melt extrusion technique.J. Pharm. Investig.2014441415910.1007/s40005‑013‑0099‑7
    [Google Scholar]
  140. AL-JapairaiK. Hamed AlmurisiS. MahmoodS. MadheswaranT. ChatterjeeB. SriP. Azra Binti Ahmad MazlanN. Al HagbaniT. AlheibshyF. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method.Int. J. Pharm.202364712353610.1016/j.ijpharm.2023.123536
    [Google Scholar]
  141. HitzerP. BäuerleT. DrieschnerT. OstertagE. PaulsenK. van LishautH. LorenzG. RebnerK. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions.Anal. Bioanal. Chem.2017409184321433310.1007/s00216‑017‑0292‑z28343348
    [Google Scholar]
  142. BetageriG. MakarlaK.R. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques.Int. J. Pharm.19951261-215516010.1016/0378‑5173(95)04114‑1
    [Google Scholar]
  143. ZajcN. SrčičS. Binary melting phase diagrams of nifedipine-PEG 4000 and nifedipine-mannitol systems.J. Therm. Anal. Calorim.200477257158010.1023/B:JTAN.0000038995.76480.74
    [Google Scholar]
  144. ZhaoY. XinT. YeT. YangX. PanW. Solid dispersion in the development of a nimodipine delayed-release tablet formulation.Asian J. Pharm. Sci.201491354110.1016/j.ajps.2013.11.006
    [Google Scholar]
  145. MedarevićD.P. KachrimanisK. MitrićM. DjurišJ. DjurićZ. IbrićS. Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions.Pharm. Dev. Technol.201621326827610.3109/10837450.2014.99689925582577
    [Google Scholar]
  146. Shamsuddin FazilM. AnsariS. AliJ. Development and evaluation of solid dispersion of spironolactone using fusion method.Int. J. Pharm. Investig.201661636810.4103/2230‑973X.17649027014621
    [Google Scholar]
  147. GuoZ. BoyceC. RhodesT. LiuL. SalituroG.M. LeeK. BakA. LeungD.H. A novel method for preparing stabilized amorphous solid dispersion drug formulations using acoustic fusion.Int. J. Pharm.202159212002610.1016/j.ijpharm.2020.12002633137448
    [Google Scholar]
  148. EloyJ.O. MarchettiJ.M. Solid dispersions containing ursolic acid in Poloxamer 407 and PEG 6000: A comparative study of fusion and solvent methods.Powder Technol.20142539810610.1016/j.powtec.2013.11.017
    [Google Scholar]
  149. GorajanaA. GargS. KohP.T. ChuahJ.N. TalekarM. Formulation development and dissolution rate enhancement of efavirenz by solid dispersion systems.Indian J. Pharm. Sci.201375329130110.4103/0250‑474X.11743424082345
    [Google Scholar]
  150. BhatiaM. DeviS. Development, characterisation and evaluation of pvp k-30/peg solid dispersion containing ketoprofen.ACTA Pharmaceutica Sciencia20205818310.23893/1307‑2080.APS.05806
    [Google Scholar]
  151. KanaujiaP. LauG. NgW.K. WidjajaE. HanefeldA. FischbachM. MaioM. TanR.B.H. Nanoparticle formation and growth during in vitro dissolution of ketoconazole solid dispersion.J. Pharm. Sci.201110072876288510.1002/jps.2249121290385
    [Google Scholar]
  152. LiuC. DesaiK.G.H. LiuC. Enhancement of dissolution rate of valdecoxib using solid dispersions with polyethylene glycol 4000.Drug Dev. Ind. Pharm.200531111010.1081/DDC‑4391815704852
    [Google Scholar]
  153. SarodeA.L. SandhuH. ShahN. MalickW. ZiaH. Hot melt extrusion (HME) for amorphous solid dispersions: Predictive tools for processing and impact of drug–polymer interactions on supersaturation.Eur. J. Pharm. Sci.201348337138410.1016/j.ejps.2012.12.01223267847
    [Google Scholar]
  154. AlshahraniS.M. LuW. ParkJ.B. MorottJ.T. AlsulaysB.B. MajumdarS. LangleyN. KolterK. GryczkeA. RepkaM.A. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of Soluplus® and HPMCAS-HF.AAPS PharmSciTech201516482483410.1208/s12249‑014‑0269‑625567525
    [Google Scholar]
  155. HeH. YangR. TangX. In vitro and in vivo evaluation of fenofibrate solid dispersion prepared by hot-melt extrusion.Drug Dev. Ind. Pharm.201036668168710.3109/0363904090344972020136483
    [Google Scholar]
  156. FanW. ZhangX. ZhuW. DiL. The preparation of curcumin sustained-release solid dispersion by hot-melt extrusion - Ⅱ. Optimization of preparation process and evaluation in vitro and in vivo.J. Pharm. Sci.202010931253126010.1016/j.xphs.2019.11.02031794699
    [Google Scholar]
  157. VerreckG. SixK. Van den MooterG. BaertL. PeetersJ. BrewsterM.E. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion - Part I.Int. J. Pharm.20032511-216517410.1016/S0378‑5173(02)00591‑412527186
    [Google Scholar]
  158. ZhengX. YangR. TangX. ZhengL. Part I: Characterization of solid dispersions of nimodipine prepared by hot-melt extrusion.Drug Dev. Ind. Pharm.200733779180210.1080/0363904060105021317654028
    [Google Scholar]
  159. PonnammalP. KanaujiaP. YaniY. NgW. TanR. Orally disintegrating tablets containing melt extruded amorphous solid dispersion of tacrolimus for dissolution enhancement.Pharmaceutics20181013510.3390/pharmaceutics1001003529547585
    [Google Scholar]
  160. ManiruzzamanM. NairA. ScoutarisN. BradleyM.S.A. SnowdenM.J. DouroumisD. One-step continuous extrusion process for the manufacturing of solid dispersions.Int. J. Pharm.20154961425110.1016/j.ijpharm.2015.09.04826403386
    [Google Scholar]
  161. EmaraL.H. AbdelfattahF.M. TahaN.F. Hot melt extrusion method for preparation of ibuprofen/sucroester WE15 solid dispersions: Evaluation and stability assessment.J. Appl. Pharm. Sci.20177815616710.7324/JAPS.2017.70822
    [Google Scholar]
  162. CuiB. WangC. ZhaoX. YaoJ. ZengZ. WangY. SunC. LiuG. CuiH. Characterization and evaluation of avermectin solid nanodispersion prepared by microprecipitation and lyophilisation techniques.PLoS One2018131e019174210.1371/journal.pone.019174229360866
    [Google Scholar]
  163. ChoudharyA. RanaA.C. AggarwalG. KumarV. ZakirF. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability.Acta Pharm. Sin. B20122442142810.1016/j.apsb.2012.05.002
    [Google Scholar]
  164. ShirsathN.R. GoswamiA.K. Design and development of solid dispersion of valsartan by a lyophilization technique: A 32 factorial design approach.Micro Nanosyst.20211319010210.2174/1876402912666200206155430
    [Google Scholar]
  165. ElgindyN. ElkhodairyK. MolokhiaA. ElzoghbyA. Lyophilization monophase solution technique for preparation of amorphous flutamide dispersions.Drug Dev. Ind. Pharm.201137775476410.3109/03639045.2010.53923221204753
    [Google Scholar]
  166. DhoreP.W. DaveV.S. SaojiS.D. BobdeY.S. MackC. RautN.A. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions.Pharm. Dev. Technol.20172219010210.1080/10837450.2016.119319327291246
    [Google Scholar]
  167. AnsariM.T. HussainA. NadeemS. MajeedH. Saeed-Ul-HassanS. TariqI. MahmoodQ. KhanA.K. MurtazaG. Preparation and characterization of solid dispersions of artemether by freeze-dried method.BioMed Res. Int.2015201511110.1155/2015/10956326097842
    [Google Scholar]
  168. MahmoudiZ.N. UpadhyeS.B. FerrizziD. Rajabi-SiahboomiA.R. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions.AAPS J.201416468569710.1208/s12248‑014‑9590‑y24789531
    [Google Scholar]
  169. ZhangW. ZhangC. HeY. DuanB. YangG. MaW. ZhangY. Factors affecting the dissolution of indomethacin solid dispersions.AAPS PharmSciTech20171883258327310.1208/s12249‑017‑0813‑228584898
    [Google Scholar]
  170. Barzegar-jalaliM. GhanbarzadehS. AdibkiaK. ValizadehH. BibakS. MohammadiG. Siahi-ShadbadM. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers.Bioimpacts20174314114810.15171/bi.2014.00725337467
    [Google Scholar]
  171. SeoS.W. HanH.K. ChunM.K. ChoiH.K. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier.Int. J. Pharm.20124241-2182510.1016/j.ijpharm.2011.12.05122226878
    [Google Scholar]
  172. SethiaS. SquillanteE. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods.Int. J. Pharm.20042721-211010.1016/j.ijpharm.2003.11.02515019063
    [Google Scholar]
  173. ChoiJ.S. LeeS.E. JangW.S. ByeonJ.C. ParkJ.S. Solid dispersion of dutasteride using the solvent evaporation method: Approaches to improve dissolution rate and oral bioavailability in rats.Mater. Sci. Eng. C20189038739610.1016/j.msec.2018.04.07429853105
    [Google Scholar]
  174. ChavanR.B. LodagekarA. YadavB. ShastriN.R. Amorphous solid dispersion of nisoldipine by solvent evaporation technique: Preparation, characterization, in vitro, in vivo evaluation, and scale up feasibility study.Drug Deliv. Transl. Res.202010490391810.1007/s13346‑020‑00775‑832378174
    [Google Scholar]
  175. DouroumisD. BouropoulosN. FahrA. Physicochemical characterization of solid dispersions of three antiepileptic drugs prepared by solvent evaporation method.J. Pharm. Pharmacol.200759564565310.1211/jpp.59.5.000417524229
    [Google Scholar]
  176. AroraS.C. SharmaP.K. IrchhaiyaR. KhatkarA. SinghN. GagoriaJ. Development, characterization and solubility study of solid dispersions of cefuroxime axetil by the solvent evaporation method.J. Adv. Pharm. Technol. Res.20101332632910.4103/2231‑4040.7242722247865
    [Google Scholar]
  177. AroraS.C. SharmaP.K. IrchhaiyaR. KhatkarA. SinghN. GagoriaJ. Development, characterization and solubility study of solid dispersions of azithromycin dihydrate by solvent evaporation method.J. Adv. Pharm. Technol. Res.20101222122810.4103/2231‑4040.7226222247849
    [Google Scholar]
  178. VermaV. SharmaP. SharmaJ. Kaur LambaA. LambaH.S. Development, characterization and solubility study of solid dispersion of Quercetin by solvent evaporation method.Mater. Today Proc.201749101281013310.1016/j.matpr.2017.06.33432289020
    [Google Scholar]
  179. HeY. HoC. Amorphous solid dispersions: utilization and challenges in drug discovery and development.J. Pharm. Sci.2015104103237325810.1002/jps.2454126175316
    [Google Scholar]
  180. TambeS. JainD. MeruvaS.K. RongalaG. JuluriA. NihalaniG. MamidiH.K. NukalaP.K. BollaP.K. Recent advances in amorphous solid dispersions: Preformulation, formulation strategies, technological advancements and characterization.Pharmaceutics20221410220310.3390/pharmaceutics1410220336297638
    [Google Scholar]
  181. EllenbergerD.J. MillerD.A. WilliamsR.O.III Expanding the application and formulation space of amorphous solid dispersions with KinetiSol®: A review.AAPS PharmSciTech20181951933195610.1208/s12249‑018‑1007‑229846889
    [Google Scholar]
  182. NgoT.D. KashaniA. ImbalzanoG. NguyenK.T.Q. HuiD. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges.Compos., Part B Eng.201814317219610.1016/j.compositesb.2018.02.012
    [Google Scholar]
  183. VerreckG. ChunI. PeetersJ. RosenblattJ. BrewsterM.E. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning.Pharm. Res.200320581081710.1023/A:102345000628112751639
    [Google Scholar]
  184. BaiY. WangD. ZhangZ. PanJ. CuiZ. YuD.G. Annie BlighS-W. Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites.Polym. Test.20219310687210.1016/j.polymertesting.2020.106872
    [Google Scholar]
  185. NagyZ.K. BaloghA. VajnaB. FarkasA. PatyiG. KramaricsÁ. MarosiG. Comparison of electrospun and extruded Soluplus®-based solid dosage forms of improved dissolution.J. Pharm. Sci.2012101132233210.1002/jps.2273121918982
    [Google Scholar]
  186. NairA.R. LakshmanY.D. AnandV.S.K. SreeK.S.N. BhatK. DengaleS.J. Overview of extensively employed polymeric carriers in solid dispersion technology.AAPS PharmSciTech202021830910.1208/s12249‑020‑01849‑z33161493
    [Google Scholar]
  187. SrinarongP. KouwenS. VisserM.R. HinrichsW.L.J. FrijlinkH.W. Effect of drug-carrier interaction on the dissolution behavior of solid dispersion tablets.Pharm. Dev. Technol.201015546046810.3109/1083745090328652920735300
    [Google Scholar]
  188. TekadeA.R. YadavJ.N. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs.Adv. Pharm. Bull.202010335936910.34172/apb.2020.04432665894
    [Google Scholar]
  189. DebottonN. DahanA. Applications of polymers as pharmaceutical excipients in solid oral dosage forms.Med. Res. Rev.2017371529710.1002/med.2140327502146
    [Google Scholar]
  190. JonesD. Pharmaceutical Applications of Polymers for Drug Delivery.ChemTec Publishing Inc.2004300301
    [Google Scholar]
  191. KadajjiV.G. BetageriG.V. Water soluble polymers for pharmaceutical applications.Polymers2011341972200910.3390/polym3041972
    [Google Scholar]
  192. FreibergS. ZhuX.X. Polymer microspheres for controlled drug release.Int. J. Pharm.20042821-211810.1016/j.ijpharm.2004.04.01315336378
    [Google Scholar]
  193. FuY. KaoW.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems.Expert Opin. Drug Deliv.20107442944410.1517/1742524100360225920331353
    [Google Scholar]
  194. SharmaD. DevD. PrasadD.N. HansM. Sustained release drug delivery system with the role of natural polymers: A review.J. Drug Deliv. Ther.201993-s91392310.22270/jddt.v9i3‑s.2859
    [Google Scholar]
  195. MaderueloC. ZarzueloA. LanaoJ.M. Critical factors in the release of drugs from sustained release hydrophilic matrices.J. Control. Release2011154121910.1016/j.jconrel.2011.04.00221497624
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468337741241126094712
Loading
/content/journals/cpc/10.2174/0118779468337741241126094712
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): API; bioavailability; co-formers; polymers; solid dispersion; Solubility
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test