Skip to content
2000
Volume 15, Issue 2
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Aims

Our research aims to uncover how solute-solvent and solute-solute interactions behave in aqueous solutions, exploring how temperature variations and concentration changes influence these interactions. This can provide deeper insights into the behavior of molecules in different environments, potentially leading to applications in fields such as drug delivery, chemical reactions, and material science.

Background

In the aqueous ternary system, the physicochemical interactions between a medically powerful pharmacological molecule and two naturally occurring amino acids were explored. The investigations were performed in a dilute to infinite dilute medium to study the interactions between the solutes and solvent extensively.

Objective

The objective of this research is to systematically investigate the nature of solute-solvent and solute-solute interactions in aqueous solutions across a range of temperatures and concentrations. By doing so, we aim to elucidate the underlying principles governing these interactions, which could contribute to a deeper understanding of solution chemistry. This knowledge is intended to inform the development of more efficient and effective applications in various scientific and industrial fields, including drug formulation, catalysis, and material design.

Methods

To characterize and calculate the interactions in the ternary system, various models and formulas were considered and applied. Based on various parameters, including viscosity-B coefficient, apparent molar volume, and molar conductance from viscosity, density, and conductance studies, varying temperatures and concentrations were used to elucidate the molecular interactions. To elucidate the interactions between solute with co-solute and with solvent, the limiting apparent molar volumes and the experimental slopes, derived from the Masson equation, and the Viscosity constants A and B, obtained the Jones-Doles equation, were examined. To illustrate the structure- breaking/making character of the solutes in the solution, Hepler’s method and dB/dT values were applied.

Results

The results indicated that hydrophobic-hydrophobic interaction plays a significant role in the system.

Conclusion

These amino acid interaction models may explain the properties of a variety of physiologically active compounds, and the mechanism can be expanded to comprehend the nature of similar systems. Furthermore, the research could lead to advancements in areas such as pharmaceutical sciences, where controlling solute interactions is crucial for drug delivery systems, and in environmental chemistry, where understanding pollutant behavior in water is essential for remediation efforts.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468350510241108110131
2024-11-25
2025-10-28
Loading full text...

Full text loading...

References

  1. BalcãoV.M. VilaM.M.D.C. Structural and functional stabilization of protein entities: State-of-the-art.Adv. Drug Deliv. Rev.201593254110.1016/j.addr.2014.10.00525312675
    [Google Scholar]
  2. OrozcoM. LuqueF.J. Theoretical methods for the description of the solvent effect in biomolecular systems.Chem. Rev.2000100114187422610.1021/cr990052a11749344
    [Google Scholar]
  3. ChopraG. SummaC.M. LevittM. Solvent dramatically affects protein structure refinement.Proc. Natl. Acad. Sci. USA200810551202392024410.1073/pnas.081081810519073921
    [Google Scholar]
  4. RamalhoT.C. da CunhaE.F.F. Thermodynamic framework of the interaction between protein and solvent drives protein folding.J. Biomol. Struct. Dyn.201128464564610.1080/07391101101052497521142247
    [Google Scholar]
  5. ShulginI.L. RuckensteinE. Relationship between preferential interaction of a protein in an aqueous mixed solvent and its solubility.Biophys. Chem.20051182-312813410.1016/j.bpc.2005.07.00816260079
    [Google Scholar]
  6. RubinsteinA. ShermanS. Influence of the solvent structure on the electrostatic interactions in proteins.Biophys. J.20048731544155710.1529/biophysj.103.03862015345535
    [Google Scholar]
  7. Oprzeska-ZingrebeE.A. SmiatekJ. Aqueous ionic liquids in comparison with standard co-solutes.Biophys. Rev.201810380982410.1007/s12551‑018‑0414‑729611033
    [Google Scholar]
  8. AliF. ManzoorU. AzamM. AnsariN.A. Protein-osmolyte interactions: Molecular insights. In: Singh, R.; Dar, T., (Eds).; Cellular Osmolytes.SpringerSingapore2017355310.1007/978‑981‑10‑3707‑8_2
    [Google Scholar]
  9. CastellanosI. CrespoR. GriebenowK. Poly(ethylene glycol) as stabilizer and emulsifying agent: A novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres.J. Control. Release200388113514510.1016/S0168‑3659(02)00488‑112586511
    [Google Scholar]
  10. ArnoldF.H. ZhangJ.H. Metal-mediated protein stabilization.Trends Biotechnol.199412518919210.1016/0167‑7799(94)90081‑77764902
    [Google Scholar]
  11. WalkeyC.D. ChanW.C.W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment.Chem. Soc. Rev.20124172780279910.1039/C1CS15233E22086677
    [Google Scholar]
  12. ShemetovA.A. NabievI. SukhanovaA. Molecular interaction of proteins and peptides with nanoparticles.ACS Nano2012664585460210.1021/nn300415x22621430
    [Google Scholar]
  13. KumarH. KaurK. Investigation on molecular interaction of amino acids in antibacterial drug ampicillin solutions with reference to volumetric and compressibility measurements.J. Mol. Liq.201217313013610.1016/j.molliq.2012.07.008
    [Google Scholar]
  14. ZareiH.A. JaliliF. Densities and derived thermodynamic properties of (2-methoxyethanol+1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T=(293.15 to 343.15)K.J. Chem. Thermodyn.2007391556610.1016/j.jct.2006.06.001
    [Google Scholar]
  15. HassW.K. EastonJ.D. New York, NYSpringerTiclopidine, Platelets and Vascular Disease199310.1007/978‑1‑4613‑8306‑2
    [Google Scholar]
  16. SaviP. HerbertJ.M. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis.Semin. Thromb. Hemost.200531217418310.1055/s‑2005‑86952315852221
    [Google Scholar]
  17. KamarovaM. BaigS. PatelH. MonksK. WasayM. AliA. RedgraveJ. MajidA. BellS.M. Antiplatelet use in ischemic stroke.Ann. Pharmacother.202256101159117310.1177/1060028021107300935094598
    [Google Scholar]
  18. PongráczE. KáposztaZ. Antiplatelet therapy in ischemic stroke.Expert Rev. Neurother.20055454154910.1586/14737175.5.4.54116026237
    [Google Scholar]
  19. Van De GraaffE. SteinhublS.R. Antiplatelet medications and their indications in preventing and treating coronary thrombosis.Ann. Med.200032856157110.3109/0785389000899883611127934
    [Google Scholar]
  20. JacobsonA.K. Platelet ADP receptor antagonists: Ticlopidine and clopidogrel.Best Pract. Res. Clin. Haematol.2004171556410.1016/j.beha.2004.03.00215171957
    [Google Scholar]
  21. KamishiradoH. InoueT. MizoguchiK. UchidaT. NakataT. SakumaM. TakayanagiK. MorookaS. Randomized comparison of cilostazol versus ticlopidine hydrochloride for antiplatelet therapy after coronary stent implantation for prevention of late restenosis.Am. Heart J.2002144230330810.1067/mjh.2002.12287412177649
    [Google Scholar]
  22. LeonM.B. BaimD.S. PopmaJ.J. GordonP.C. CutlipD.E. HoK.K.L. GiambartolomeiA. DiverD.J. LasordaD.M. WilliamsD.O. PocockS.J. KuntzR.E. A clinical trial comparing three antithrombotic-drug regimens after coronary-artery stenting.N. Engl. J. Med.1998339231665167110.1056/NEJM1998120333923039834303
    [Google Scholar]
  23. SegelG.B. HaltermanJ.S. Neutropenia in pediatric practice.Pediatr. Rev.2008291122410.1542/pir.29‑1‑1218166617
    [Google Scholar]
  24. DakikH.A. SaltiI. HaidarR. UthmanI.W. Drug points: Ticlopidine associated with acute arthritis.BMJ20023247328272710.1136/bmj.324.7328.2711777802
    [Google Scholar]
  25. RoyS. GuinP.S. MahaliK. HossainA. DoluiB.K. Evaluation and correlation of solubility and solvation thermodynamics of glycine, dl -alanine and dl -valine in aqueous sodium sulphate solutions at two different temperatures.J. Mol. Liq.201723412412810.1016/j.molliq.2017.03.068
    [Google Scholar]
  26. MallickK. RoyD. RoyP. TuduA. DeyM. DebnathS. BomzanP. ChoudhuryS. Nath GhoshN. Nath RoyM. Interpreting various molecular interactions of two amino acids prevalent in aqueous antiplatelet drug by experimental and computational methodologies.J. Mol. Liq.202441412612912612910.1016/j.molliq.2024.126129
    [Google Scholar]
  27. LindJ.E. ZwolenikJ.J. FuossR.M. Calibration of conductance cells at 25° with aqueous solutions of potassium chloride.J. Am. Chem. Soc.19598171557155910.1021/ja01516a010
    [Google Scholar]
  28. NainA.K. Solute-solute and solute-solvent interactions of drug sodium salicylate in aqueous-glucose/sucrose solutions at temperatures from 293.15 to 318.15 K: A physicochemical study.J. Mol. Liq.2020298112006112006
    [Google Scholar]
  29. RoyM.N. DewanR. RoyP.K. BiswasD. Apparent molar volumes and viscosity-B coefficient of carbohydrates in aqueous cetrimonium bromide solutions at (298.15, 308.15, and 318.15) K.J. Chem. Eng. Data20105593617362410.1021/je100211s
    [Google Scholar]
  30. Ankita NainA.K. Volumetric, acoustic and viscometric studies of solute-solute and solute-solvent interactions of isoniazid in aqueous-glucose/sucrose solutions at temperatures from 293.15 K to 318.15 K.J. Chem. Thermodyn.201913312313410.1016/j.jct.2019.01.024
    [Google Scholar]
  31. NainA.K. PalR. Neetu, Volumetric, ultrasonic and viscometric studies of solute–solute and solute–solvent interactions of l-threonine in aqueous-sucrose solutions at different temperatures.J. Chem. Thermodyn.20136417218110.1016/j.jct.2013.05.012
    [Google Scholar]
  32. MassonI. The Making of an Epoch.Nature1929123309319519710.1038/123195a0
    [Google Scholar]
  33. RoyD. MallickK. RoyP. MondalM. SahaB. DeyM. HossainA. RoyP. ChoudhuryS. Nath RoyM. Physicochemical and computational investigations of some essential amino acids prevailing in aqueous solutions of a food preservative (SBz) with the manifestation of hydrophobic and hydrophilic interactions at different temperatures.J. Mol. Liq.202440812523812523810.1016/j.molliq.2024.125238
    [Google Scholar]
  34. MarcusY. HefterG. Standard partial molar volumes of electrolytes and ions in nonaqueous solvents.Chem. Rev.200410473405345210.1021/cr030047d15250746
    [Google Scholar]
  35. PlyasunovA.V. O’ConnellJ.P. WoodR.H. Infinite dilution partial molar properties of aqueous solutions of nonelectrolytes. I. Equations for partial molar volumes at infinite dilution and standard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions.Geochim. Cosmochim. Acta200064349551210.1016/S0016‑7037(99)00322‑1
    [Google Scholar]
  36. DhondgeS.S. PaliwalR.L. BhaveN.S. PandhurnekarC.P. Study of thermodynamic properties of aqueous binary mixtures of glycine, l-alanine and β-alanine at low temperatures (T=275.15, 279.15, and 283.15)K.J. Chem. Thermodyn.201245111412110.1016/j.jct.2011.09.016
    [Google Scholar]
  37. EkkaD. RoyM.N. Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems.Amino Acids201345475577710.1007/s00726‑013‑1519‑823760675
    [Google Scholar]
  38. MarcusY. Solvent Extraction Principles and Practice, Revised and ExpandedCRC PressBoca Raton2nd ed2004
    [Google Scholar]
  39. BarmanS. SahaB. MajumderS. SahaS. DakuaV.K. ChoudhuryS. RoyM.N. Exploration of solvation consequences of nicotinic acid (vitamin B3) prevailing in two significant aqueous ionic liquid solutions by physicochemical and computational studies.J. Chem. Eng. Data20246962167218710.1021/acs.jced.4c00082
    [Google Scholar]
  40. RoyM.N. DakuaV.K. SinhaB. Partial molar volumes, viscosity-B coefficient, and adiabatic compressibilities of sodium molybdate in aqueous 1,3-dioxolane mixtures from 303.15 to 323.15 K.Int. J. Thermophys.20072841275128410.1007/s10765‑007‑0220‑0
    [Google Scholar]
  41. RoyM.N. DeP. SikdarP.S. Probing solute-solvent interactions of some bio-active solutes in aqueous barium nitrate solution on the basis of physicochemical contrivances.Thermochim. Acta201356626827310.1016/j.tca.2013.06.017
    [Google Scholar]
  42. HeplerL.G. Thermal expansion and structure in water and aqueous solutions.Can. J. Chem.196947244613461710.1139/v69‑762
    [Google Scholar]
  43. KoneshanS. RasaiahJ.C. Lynden-BellR.M. LeeS.H. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25°C.J. Phys. Chem. B1998102214193420410.1021/jp980642x
    [Google Scholar]
  44. SilvaW. ZanattaM. FerreiraA.S. CorvoM.C. CabritaE.J. Revisiting ionic liquid structure-property relationship: A critical analysis.Int. J. Mol. Sci.20202120774510.3390/ijms2120774533086771
    [Google Scholar]
  45. AndreevM. de PabloJ.J. ChremosA. DouglasJ.F. Influence of ion solvation on the properties of electrolyte solutions.J. Phys. Chem. B2018122144029403410.1021/acs.jpcb.8b0051829611710
    [Google Scholar]
  46. RajbanshiB. DasK. LepchaK. DasS. RoyD. KunduM. RoyM.N. Minimization of the dosage of food preservatives mixing with ionic liquids for controlling risky effect in human body: Physicochemical, antimicrobial and computational study.J. Mol. Liq.201928241542710.1016/j.molliq.2019.03.034
    [Google Scholar]
  47. RoyD. MajumderS. MallickK. RoyN. SahaB. SahaS. SinhaB. Exploration of solvation consequences of ionic liquids prevalent in the aqueous media of food additive azo dye tartrazine by physicochemical and computational studies.J. Chem. Eng. Data2024691385810.1021/acs.jced.3c00460
    [Google Scholar]
  48. DhondgeS.S. DahasahasraP.N. PaliwalL.J. TangdeV.M. DeshmukhD.W. Volumetric and viscometric study of thiamine hydrochloride, pyridoxine hydrochloride and sodium ascorbate at T=(275.15, 277.15 and 279.15)K in dilute aqueous solutions.J. Chem. Thermodyn.201710718920010.1016/j.jct.2016.12.033
    [Google Scholar]
  49. MilleroF.J. Lo SurdoA. ShinC. The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25°C.J. Phys. Chem.197882778479210.1021/j100496a007
    [Google Scholar]
  50. GeringK.L. Prediction of electrolyte viscosity for aqueous and non-aqueous systems: Results from a molecular model based on ion solvation and a chemical physics framework.Electrochim. Acta200651153125313810.1016/j.electacta.2005.09.011
    [Google Scholar]
  51. PitkänenI. SuuronenJ. NurmiJ. Partial molar volume, ionization, viscosity and structure of glycine betaine in aqueous solutions.J. Solution Chem.201039111609162610.1007/s10953‑010‑9618‑6
    [Google Scholar]
  52. MasonL.S. KampmeyerP.M. RobinsonA.L. The viscosities of aqueous solutions of amino acids at 25 and 35°.J. Am. Chem. Soc.19527451287129010.1021/ja01125a043
    [Google Scholar]
  53. SinghM. PandeyM. Viscometric study of glycine with aqueous chloride and iodide salts of IA alkali metals.Phys. Chem. Liquids201149669970710.1080/00319104.2010.494245
    [Google Scholar]
  54. ShekaariH. JebaliF. Solute–solvent interactions of amino acids in aqueous 1-propyl-3-methylimidazolium bromide ionic liquid solutions at 298.15 K.J. Solution Chem.201039101409142710.1007/s10953‑010‑9597‑7
    [Google Scholar]
  55. RoyP. MondalM. RoyD. MallickK. BasakS. RoyD. HossainA. ChoudhuryS. RayT. RoyM.N. Exploring diverse amino acid-polyol interactions prevailing in aqueous systems at different temperatures by physicochemical contrivance simultaneously optimized by DFT.J. Chem. Eng. Data20246941468148310.1021/acs.jced.3c00671
    [Google Scholar]
  56. SahaN. DasB. Apparent molar volumes of some symmetrical tetraalkylammonium bromides in acetonitrile at (298.15, 308.15, and 318.15) K.J. Chem. Eng. Data199742222722910.1021/je960205g
    [Google Scholar]
  57. KlofutarC. PaljkŠ. Golc-TegerS. Thermodynamic functions of activation for viscous flow of cholesterol in some non-aqueous solutions.Thermochim. Acta1992206193210.1016/0040‑6031(92)85280‑9
    [Google Scholar]
  58. TongJ. ZhangD. LiK. ChenX. LiuL. QuY. The thermodynamics of the activation for viscous flow of aqueous [C 6 mim][Ala] (1-hexyl-3-methylimidazolium alanine salt).J. Chem. Thermodyn.201610135636210.1016/j.jct.2016.06.022
    [Google Scholar]
  59. Contreras SM. Densities and Viscosities of Binary Mixtures of 1,4-Dioxane with 1-Propanol and 2-Propanol at (25, 30, 35, and 40) °C.J. Chem. Eng. Data20014651149115210.1021/je010045v
    [Google Scholar]
  60. PoddarA. RajbanshiB. MajumderS. ChoudhuryS. HossainA. RoyM.N. Physico-chemical and spectroscopic study of some biologically potent molecules in aqueous solution of an anti-malarial drug molecule with reference to diverse molecular interactions simultaneously optimized by DFT.Fluid Phase Equilib.202457911402511402510.1016/j.fluid.2024.114025
    [Google Scholar]
  61. FalkenhagenH. Stokes RH. and Mills R: Viscosity of electrolytes and related properties. Aus der Serie “The International Encyclopedia of Physical Chemistry and Chemical Physics”, volume 3. pergamon Press, Oxford, Edinburgh, New York und Frankfurt a. M. 1965. X, 151 Seiten. Preis: 50/‐sh.Ber. Bunsenges. Phys. Chem196569875075010.1002/bbpc.19650690824
    [Google Scholar]
  62. HossainA. MondalM. RajbanshiB. TuduA. RoyP. AlamF. MajumderS. PoddarA. ChoudhuryS. GhoshR. BomzanP. Nath RoyM. Physicochemical studies of some bioactive molecules in aqueous solution of tetrabutylammonium methanesulphonate (TBAMS) to investigate assorted molecular interaction at different temperatures simultaneously optimized by computational approach.J. Mol. Liq.202439512381812381810.1016/j.molliq.2023.123818
    [Google Scholar]
  63. FeakinsD. BatesF.M. WaghorneW.E. LawrenceK.G. Relative viscosities and quasi-thermodynamics of solutions of tert-butyl alcohol in the methanol–water system: A different view of the alkyl–water interaction.J. Chem. Soc., Faraday Trans.199389183381338810.1039/FT9938903381
    [Google Scholar]
  64. MallickK. MondalM. RoyD. RoyP. AliS. RoyD. SahaB. ChoudhuryS. DebnathS. RoyN. SahaS. RoyM.N. Exploring various molecular interactions of two essential amino acids prevalent in aqueous solutions of an ionic liquid by density, viscosity, refractive index, conductance, surface tension, nuclear magnetic resonance, ultraviolet, and computational studies.J. Chem. Eng. Data202368123045306110.1021/acs.jced.3c00308
    [Google Scholar]
  65. AliA. HyderS. SabirS. ChandD. NainA.K. Volumetric, viscometric, and refractive index behaviour of α-amino acids and their groups’ contribution in aqueous d-glucose solution at different temperatures.J. Chem. Thermodyn.200638213614310.1016/j.jct.2005.04.011
    [Google Scholar]
  66. SahaB. BarmanS. MajumderS. GhoshB. MallickK. ChoudhuryS. RoyM.N. Investigation of intermolecular interactions of l-Valine and l-Phenylalanine with muscle relaxant drug mephenesin molecule prevalent in aqueous solution by various physico-chemical methods at T=298.15K–313.15K.Heliyon2024101e2356210.1016/j.heliyon.2023.e2356238173535
    [Google Scholar]
  67. GhoshB. SinhaA. RoyN. RajbanshiB. MondalM. RoyD. DasA. GhoshN.N. DakuaV.K. RoyM.N. Molecular interactions of some bioactive molecules prevalent in aqueous ionic liquid solutions at different temperatures investigated by experimental and computational contrivance.Fluid Phase Equilib.202255711341511341510.1016/j.fluid.2022.113415
    [Google Scholar]
  68. AliA. MalikN.A. UzairS. AliM. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids.Mol. Phys.2014112202681269310.1080/00268976.2014.905720
    [Google Scholar]
  69. ShenX.M. ZhangF. DryhurstG. Oxidation of dopamine in the presence of cysteine: Characterization of new toxic products.Chem. Res. Toxicol.199710214715510.1021/tx960145c9049425
    [Google Scholar]
  70. YasminA. BarmanS. BarmanB.K. RoyM.N. Investigation of diverse interactions of amino acids (Asp and Glu) in aqueous Dopamine hydrochloride with the manifestation of the catecholamine molecule recognition tool in solution phase.J. Mol. Liq.201827171572910.1016/j.molliq.2018.08.114
    [Google Scholar]
  71. DeeG.T. SauerB.B. The surface tension of polymer liquids.Adv. Phys.199847216120510.1080/000187398243546
    [Google Scholar]
  72. RomeroC.M. JiménezE. SuárezF. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution.J. Chem. Thermodyn.200941451351610.1016/j.jct.2008.11.004
    [Google Scholar]
  73. RomeroC.M. PaézM.S. Surface tension of aqueous solutions of alcohol and polyols at 298.15 K.Phys. Chem. Liquids2006441616510.1080/01421590500315360
    [Google Scholar]
  74. MondalM. BasakS. ChoudhuryS. GhoshN.N. RoyM.N. Investigation of molecular interactions insight into some biologically active amino acids and aqueous solutions of an anti-malarial drug by physicochemical and theoretical approach.J. Mol. Liq.202134111693311693310.1016/j.molliq.2021.116933
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468350510241108110131
Loading
/content/journals/cpc/10.2174/0118779468350510241108110131
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test