Skip to content
2000
Volume 15, Issue 2
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Introduction

Hydrogen bonding plays a very crucial role in weak molecular complex formation. Some of the binding modes may lead to fluorescence quenching or excited state complex formation. The fluorescent property of the gas phase complex of phenylacetylene-methylamine pair is different from that of the phenylacetylene-triethylamine pair.

Methods

A total of 100 mM solution of triethylamine was added in 2 ml of 1 mM phenylacetylene taken in a cuvette. Then, absorption and fluorescence spectra were recorded, and fluorescence decay was measured each time. The experiment was conducted in the non-polar aprotic solvent, cyclohexane, and the polar protic solvent, ethanol.

Results

With an increase in the concentration of triethylamine, fluorescence quenching occurred in the local emission band at 281nm in both cyclohexane and ethanol. Interestingly, in cyclohexane, an exciplex was formed that gave a structureless emission band at 422 nm, but not in ethanol.

Conclusion

In cyclohexane, fluorescence quenching is predominantly dynamic in the lower range of concentrations of triethylamine, and beyond that, it is complicated due to exciplex formation. However, in ethanol, fluorescence quenching is purely dynamic in the entire range of concentrations of triethylamine.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468340750241202094006
2024-12-23
2025-09-25
Loading full text...

Full text loading...

References

  1. Guzmán-AfonsoC. HongY. ColauxH. IijimaH. SaitowA. FukumuraT. AoyamaY. MotokiS. OikawaT. YamazakiT. YonekuraK. NishiyamaY. Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography.Nat. Commun.2019101353710.1038/s41467‑019‑11469‑231388004
    [Google Scholar]
  2. JeffreyG.A. Hydrogen bonds and molecular recognition.Food Chem.199656324124610.1016/0308‑8146(96)00020‑9
    [Google Scholar]
  3. MyersJ.K. PaceC.N. Hydrogen bonding stabilizes globular proteins.Biophys. J.19967142033203910.1016/S0006‑3495(96)79401‑88889177
    [Google Scholar]
  4. SimónL. GoodmanJ.M. Enzyme catalysis by hydrogen bonds: The balance between transition state binding and substrate binding in oxyanion holes.J. Org. Chem.20107561831184010.1021/jo901503d20039621
    [Google Scholar]
  5. HardingS.E. ChannellG. Phillips-JonesM.K. The discovery of hydrogen bonds in DNA and a re-evaluation of the 1948 Creeth two-chain model for its structure.Biochem. Soc. Trans.20184651171118210.1042/BST2018015830190332
    [Google Scholar]
  6. SattlerW. RuccoloS. ParkinG. Synthesis, structure, and reactivity of a terminal organozinc fluoride compound: hydrogen bonding, halogen bonding, and donor-acceptor interactions.J. Am. Chem. Soc.201313550187141871710.1021/ja408733f24320225
    [Google Scholar]
  7. BelkovaN.V. ShubinaE.S. EpsteinL.M. Diverse world of unconventional hydrogen bonds.Acc. Chem. Res.200538862463110.1021/ar040006j16104685
    [Google Scholar]
  8. NekoeiA.R. VatanparastM. π-Hydrogen bonding and aromaticity: A systematic interplay study.Phys. Chem. Chem. Phys.201921262363010.1039/C8CP07003B30540313
    [Google Scholar]
  9. LegonA.C. WallworkA.L. WarnerH.E. Do methyl groups form hydrogen bonds? An answer from the rotational spectrum of ethane-hydrogen cyanide.Chem. Phys. Lett.19921911-29810110.1016/0009‑2614(92)85375‑K
    [Google Scholar]
  10. LosonczyM. MoskowitzJ.W. StillingerF.H. Hydrogen bonding between neon and water.J. Chem. Phys.19735963264327010.1063/1.1680468
    [Google Scholar]
  11. SzuromiP.D. Hydrogen bonding to metal.Science2003299560647510.1126/science.299.5606.475b
    [Google Scholar]
  12. HobzaP. HavlasZ. Blue-shifting hydrogen bonds.Chem. Rev.2000100114253426410.1021/cr990050q11749346
    [Google Scholar]
  13. SedlakR. HobzaP. PatwariG.N. Hydrogen-bonded complexes of phenylacetylene with water, methanol, ammonia, and methylamine. The origin of methyl group-induced hydrogen bond switching.J. Phys. Chem. A2009113246620662510.1021/jp900813n19514784
    [Google Scholar]
  14. VermaK. DaveK. ViswanathanK.S. Hydrogen-bonded complexes of phenylacetylene-acetylene: Who is the proton donor?J. Phys. Chem. A201511951126561266410.1021/acs.jpca.5b0855926643730
    [Google Scholar]
  15. KarirG. FatimaM. ViswanathanK.S. The elusive ≡C-H⋯O complex in the hydrogen bonded systems of Phenylacetylene: A matrix isolation infrared and ab initio study.J. Chem. Sci.2016128101557156910.1007/s12039‑016‑1166‑1
    [Google Scholar]
  16. MaityS. GuinM. SinghP.C. PatwariG.N. Phenylacetylene: A hydrogen bonding chameleon.ChemPhysChem2011121264610.1002/cphc.20100063021226178
    [Google Scholar]
  17. MaityS. PatwariG.N. KarthikeyanS. KimK.S. Binary complexes of tertiary amines with phenylacetylene. Dispersion wins over electrostatics.Phys. Chem. Chem. Phys.201012236150615610.1039/b918013c20386800
    [Google Scholar]
  18. WalkerM.S. BednarT.W. LumryR. Exciplex formation in the excited state of indole.J. Chem. Phys.19664593455345610.1063/1.17281335957016
    [Google Scholar]
  19. GehlenM.H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map.J. Photochem. Photobiol. Photochem. Rev.202042310033810.1016/j.jphotochemrev.2019.100338
    [Google Scholar]
  20. Suresh KumarH.M. KunabenchiR.S. BiradarJ.S. MathN.N. KadadevarmathJ.S. InamdarS.R. Analysis of fluorescence quenching of new indole derivative by aniline using Stern–Volmer plots.J. Lumin.20061161-2354210.1016/j.jlumin.2005.02.012
    [Google Scholar]
  21. MöllerM. DenicolaA. Protein tryptophan accessibility studied by fluorescence quenching.Biochem. Mol. Biol. Educ.200230317517810.1002/bmb.2002.494030030035
    [Google Scholar]
  22. SuryawanshiV.D. WalekarL.S. GoreA.H. AnbhuleP.V. KolekarG.B. Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin.J. Pharm. Anal.201661566310.1016/j.jpha.2015.07.00129403963
    [Google Scholar]
  23. BadeaM.G. BrandL. Time-resolved fluorescence measurements.Methods Enzymol.19796137842510.1016/0076‑6879(79)61019‑4481233
    [Google Scholar]
  24. LemmetyinenH. TkachenkoN.V. ValeurB. HottaJ. AmelootM. ErnstingN.P. GustavssonT. BoensN. Time-resolved fluorescence methods (IUPAC Technical Report).Pure Appl. Chem.201486121969199810.1515/pac‑2013‑0912
    [Google Scholar]
  25. WangB. LinR.B. ZhangZ. XiangS. ChenB. Hydrogen-bonded organic frameworks as a tunable platform for functional materials.J. Am. Chem. Soc.202014234143991441610.1021/jacs.0c0647332786796
    [Google Scholar]
  26. LiJ. TianJ. GaoY. QinR. PiH. LiM. YangP. All-natural superhydrophobic coating for packaging and blood-repelling materials.Chem. Eng. J.20214101512834710.1016/j.cej.2020.128347
    [Google Scholar]
  27. WangH. WangC. ZouY. HuJ. LiY. ChengY. Natural polyphenols in drug delivery systems: Current status and future challenges.Giant2020310002210.1016/j.giant.2020.100022
    [Google Scholar]
  28. EscobarL. BallesterP. Molecular recognition in water using macrocyclic synthetic receptors.Chem. Rev.202112142445251410.1021/acs.chemrev.0c0052233472000
    [Google Scholar]
  29. KarasL.J. WuC.H. DasR. WuJ.I.C. Hydrogen bond design principles.Wiley Interdiscip. Rev. Comput. Mol. Sci.2020106e147710.1002/wcms.147733936251
    [Google Scholar]
  30. LiP. RyderM.R. StoddartJ.F. Hydrogen-bonded organic frameworks: A rising class of porous molecular materials.Acc. Mater. Res.202011778710.1021/accountsmr.0c00019
    [Google Scholar]
  31. GiubertoniG. SofronovO.O. BakkerH.J. Effect of intramolecular hydrogen-bond formation on the molecular conformation of amino acids.Commun. Chem.2020318410.1038/s42004‑020‑0329‑736703397
    [Google Scholar]
  32. JayaramanA. 100th anniversary of macromolecular science viewpoint: Modeling and simulation of macromolecules with hydrogen bonds: Challenges, successes, and opportunities.ACS Macro Lett.20209565666510.1021/acsmacrolett.0c0013435648569
    [Google Scholar]
  33. ChenK. ArnoldF.H. Engineering new catalytic activities in enzymes.Nat. Catal.20203320321310.1038/s41929‑019‑0385‑5
    [Google Scholar]
  34. ZhangX. JiangY. ChenQ. DongS. FengY. CongZ. ShaikS. WangB. H-Bonding networks dictate the molecular mechanism of H2O2 activation by P450.ACS Catal.202111148774878510.1021/acscatal.1c02068
    [Google Scholar]
  35. MagalhãesR.P. FernandesH.S. SousaS.F. modelling enzymatic mechanisms with QM/MM approaches: Current status and future challenges.Isr. J. Chem.202060765566610.1002/ijch.202000014
    [Google Scholar]
  36. BeiranvandN. FreindorfM. KrakaE. Hydrogen bonding in natural and unnatural base pairs - A local vibrational mode study.Molecules2021268226810.3390/molecules2608226833919989
    [Google Scholar]
  37. PyneA.L.B. NoyA. MainK.H.S. Velasco-BerrellezaV. PiperakisM.M. MitchenallL.A. CugliandoloF.M. BetonJ.G. StevensonC.E.M. HoogenboomB.W. BatesA.D. MaxwellA. HarrisS.A. Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides.Nat. Commun.2021121105310.1038/s41467‑021‑21243‑y33594049
    [Google Scholar]
  38. ZhuravelR. HuangH. PolycarpouG. PolydoridesS. MotamarriP. KatrivasL. RotemD. SperlingJ. ZottiL.A. KotlyarA.B. CuevasJ.C. GaviniV. SkourtisS.S. PorathD. Backbone charge transport in double-stranded DNA.Nat. Nanotechnol.2020151083684010.1038/s41565‑020‑0741‑232807877
    [Google Scholar]
  39. MarxA. BetzK. The structural basis for processing of unnatural base pairs by DNA polymerases.Chemistry202026163446346310.1002/chem.20190352531544987
    [Google Scholar]
  40. FedorovaI.V. SafonovaL.P. Comparisons of NH…O and OH…O hydrogen bonds in various ethanolammonium–based protic ionic liquids.Struct. Chem.20213252061207310.1007/s11224‑021‑01792‑0
    [Google Scholar]
  41. ZhaoW. FloodA.H. WhiteN.G. Recognition and applications of anion–anion dimers based on anti-electrostatic hydrogen bonds (AEHBs).Chem. Soc. Rev.202049227893790610.1039/D0CS00486C32677649
    [Google Scholar]
  42. ReddyT.D.N. MallikB.S. Hydrogen bond kinetics, ionic dynamics, and voids in the binary mixtures of protic ionic liquids with alkanolamines.J. Phys. Chem. B2021125215587560010.1021/acs.jpcb.0c1065834010564
    [Google Scholar]
  43. AbeH. Phase variety in ionic liquids: Hydrogen bonding and molecular conformations.J. Mol. Liq.202133211518910.1016/j.molliq.2020.115189
    [Google Scholar]
  44. JenaS. TulsiyanK.D. RanaA. ChoudhuryS.S. BiswalH.S. Non‐conventional hydrogen bonding and aromaticity: A systematic study on model nucleobases and their solvated clusters.ChemPhysChem202021161826183510.1002/cphc.20200038632506748
    [Google Scholar]
  45. LiH. NiemannT. LudwigR. AtkinR. Effect of hydrogen bonding between ions of like charge on the boundary layer friction of hydroxy-functionalized ionic liquids.J. Phys. Chem. Lett.202011103905391010.1021/acs.jpclett.0c0068932338913
    [Google Scholar]
  46. MishraK.K. BorishK. SinghG. PanwariaP. MetyaS. MadhusudhanM.S. DasA. Observation of an unusually large IR red-shift in an unconventional S–H···S hydrogen-bond.J. Phys. Chem. Lett.20211241228123510.1021/acs.jpclett.0c0318333492971
    [Google Scholar]
  47. YuC. Sanjosé-OrdunaJ. PatureauF.W. Pérez-TempranoM.H. Emerging unconventional organic solvents for C–H bond and related functionalization reactions.Chem. Soc. Rev.20204961643165210.1039/C8CS00883C32115586
    [Google Scholar]
  48. GhoshS. ChopraP. WategaonkarS. C–H⋯S interaction exhibits all the characteristics of conventional hydrogen bonds.Phys. Chem. Chem. Phys.20202231174821749310.1039/D0CP01508C32531006
    [Google Scholar]
  49. ChetryS. SharmaP. FronteraA. DuttaD. VermaA.K. BhattacharyyaM.K. Unconventional formation of a 1D-chain of H-bonded water molecules in bipyridine-based supramolecular hexameric hosts of isostructural coordination compounds of Co(II) and Zn(II): Antiproliferative evaluation and theoretical studies.Polyhedron202019111480910.1016/j.poly.2020.114809
    [Google Scholar]
  50. GrabowskiS.J. Triel bond and coordination of triel centres – Comparison with hydrogen bond interaction.Coord. Chem. Rev.202040721317110.1016/j.ccr.2019.213171
    [Google Scholar]
  51. OrenhaR.P. da SilvaV.B. CaramoriG.F. PiotrowskiM.J. NagurniakG.R. ParreiraR.L.T. The design of anion–π interactions and hydrogen bonds for the recognition of chloride, bromide and nitrate anions.Phys. Chem. Chem. Phys.20212319114551146510.1039/D1CP00113B33956017
    [Google Scholar]
  52. NikolovaE.N. StanfieldR.L. DysonH.J. WrightP.E. CH···O hydrogen bonds mediate highly specific recognition of methylated cpg sites by the zinc finger protein kaiso.Biochemistry201857142109212010.1021/acs.biochem.8b0006529546986
    [Google Scholar]
  53. EvansM.J. AnkerM.D. ColesM.P. Oxidative addition of hydridic, protic, and nonpolar E–H bonds (E = Si, P, N, or O) to an aluminyl anion.Inorg. Chem.20216074772477810.1021/acs.inorgchem.0c0373533724013
    [Google Scholar]
  54. ToriiH. UkawaR. Role of intermolecular charge fluxes in the hydrogen-bond-induced frequency shifts of the oh stretching mode of water.J. Phys. Chem. B202112551468147510.1021/acs.jpcb.0c1146133506673
    [Google Scholar]
  55. HansenP.E. A Spectroscopic overview of intramolecular hydrogen bonds of NH…O,S,N type.Molecules2021269240910.3390/molecules2609240933919132
    [Google Scholar]
  56. XiaoS. LouZ. JiD. ZhaoJ. Understanding solvent polarity dependent excited state behavior and ESIPT mechanism for 2-benzo[b]thiphen-3-yl-3-hydroxy-6-methoxy-chroman-4-one compound.Chem. Phys. Lett.202176913840910.1016/j.cplett.2021.138409
    [Google Scholar]
  57. ZhangW. KongJ. HuD. TaoM. NiuX. VdovićS. AumilerD. MaY. XiaA. Solvation-dependent excited-state dynamics of donor–acceptor molecules with hybridized local and charge transfer character.J. Phys. Chem. C2020124105574558210.1021/acs.jpcc.0c00003
    [Google Scholar]
  58. SchmalzbauerM. MarconM. KönigB. Excited state anions in organic transformations.Angew. Chem. Int. Ed.202160126270629210.1002/anie.20200928833002265
    [Google Scholar]
  59. HeL. BaiR. YuR. MengX. TianM. WangX. Donor/acceptor pairs created by electrostatic interaction: design, synthesis, and investigation on the exciplex formed within the pair.Angew. Chem. Int. Ed.202160116013602010.1002/anie.20201333233331060
    [Google Scholar]
  60. ZhangC. LuY. LiuZ. ZhangY. WangX. ZhangD. DuanL. A π–D and π–A exciplex‐forming host for high‐efficiency and long‐lifetime single‐emissive‐layer fluorescent white organic light‐emitting diodes.Adv. Mater.20203242200404010.1002/adma.202004040
    [Google Scholar]
  61. LuoD. LiaoC.W. ChangC.H. TsaiC.C. LuC.W. ChuangT.C. ChangH.H. Approach to fast screen the formation of an exciplex.J. Phys. Chem. C202012418101751018410.1021/acs.jpcc.0c00825
    [Google Scholar]
  62. HuangT. SongX. CaiM. ZhangD. DuanL. Improving reverse intersystem crossing in exciplex-forming hosts by introducing heavy atom effect.Mater. Today Energy20212110070510.1016/j.mtener.2021.100705
    [Google Scholar]
  63. BanX. ChenF. PanJ. LiuY. ZhuA. JiangW. SunY. Exciplex formation and electromer blocking for highly efficient blue thermally activated delayed fluorescence OLEDs with all‐solution‐processed organic layers.Chemistry202026143090310210.1002/chem.20190441531837285
    [Google Scholar]
  64. BorocciS. GrandinettiF. NunziF. SannaN. Classifying the chemical bonds involving the noble-gas atoms.New J. Chem.20204434145361455010.1039/D0NJ01927E
    [Google Scholar]
  65. NunziF. PannacciG. TarantelliF. BelpassiL. CappellettiD. FalcinelliS. PiraniF. Leading interaction components in the structure and reactivity of noble gases compounds.Molecules20202510236710.3390/molecules2510236732443725
    [Google Scholar]
  66. SahooD.K. JenaS. DuttaJ. RanaA. BiswalH.S. Nature and Strength of M–H···S and M–H···Se (M = Mn, Fe, & Co) Hydrogen Bond.J. Phys. Chem. A2019123112227223610.1021/acs.jpca.8b1200330802055
    [Google Scholar]
  67. GroenewaldF. RaubenheimerH.G. DillenJ. EsterhuysenC. Gold setting the “gold standard” among transition metals as a hydrogen bond acceptor – A theoretical investigation.Dalton Trans.201746154960496710.1039/C7DT00329C28287664
    [Google Scholar]
  68. HerschlagD. PinneyM.M. Hydrogen bonds: Simple after all?Biochemistry201857243338335210.1021/acs.biochem.8b0021729678112
    [Google Scholar]
  69. SchmidbaurH. Proof of concept for hydrogen bonding to gold, Au⋅⋅⋅H−X.Angew. Chem. Int. Ed.201958185806580910.1002/anie.20190252630941857
    [Google Scholar]
  70. GhoshS. WategaonkarS. C–H···Y (Y=N, O, π) hydrogen bond: A unique unconventional hydrogen bond.J. Indian Inst. Sci.2020100110112510.1007/s41745‑019‑00145‑5
    [Google Scholar]
  71. RizzatoS. BergèsJ. MasonS.A. AlbinatiA. KozelkaJ. Dispersion-driven hydrogen bonding: Predicted hydrogen bond between water and platinum(II) identified by neutron diffraction.Angew. Chem. Int. Ed.201049417440744310.1002/anie.20100189220602387
    [Google Scholar]
  72. FreindorfM. McCutcheonM. BeiranvandN. KrakaE. Dihydrogen bonding - Seen through the eyes of vibrational spectroscopy.Molecules202228126310.3390/molecules2801026336615456
    [Google Scholar]
  73. ArunanE. One hundred years after the latimer and rodebush paper, hydrogen bonding remains an elephant!J. Indian Inst. Sci.2020100124925510.1007/s41745‑019‑00154‑4
    [Google Scholar]
  74. BeheraB. DasP.K. Blue-shifted hydrogen bonding in the gas phase CH/D 3 CN···HCCl 3 complexes.J. Phys. Chem. A201912391830183910.1021/acs.jpca.8b1220030730143
    [Google Scholar]
  75. ManiD. ArunanE. The X–C⋯Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions.Phys. Chem. Chem. Phys.20131534143771438310.1039/c3cp51658j23896956
    [Google Scholar]
  76. MaityS. DeyA. PatwariG.N. KarthikeyanS. KimK.S. A combined spectroscopic and ab initio investigation of phenylacetylene-methylamine complex. Observation of σ and π type hydrogen-bonded configurations and fluorescence quenching by weak C-H···N hydrogen bonding.J. Phys. Chem. A201011442113471135210.1021/jp105439y20795721
    [Google Scholar]
  77. KabatcJ. OśmiałowskiB. PączkowskiJ. The experimental studies on the determination of the ground and excited state dipole moments of some hemicyanine dyes.Spectrochim. Acta A Mol. Biomol. Spectrosc.200663352453110.1016/j.saa.2005.05.03916154801
    [Google Scholar]
  78. WeinholdF. KleinR.A. What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions.Mol. Phys.20121109-1056557910.1080/00268976.2012.661478
    [Google Scholar]
  79. StrambiniG.B. GonnelliM. Fluorescence quenching of buried Trp residues by acrylamide does not require penetration of the protein fold.J. Phys. Chem. B201011421089109310.1021/jp909567q19924836
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468340750241202094006
Loading
/content/journals/cpc/10.2174/0118779468340750241202094006
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Exciplex; fluorescence quenching; H-bonding; phenylacetylene; polarity; triethylamine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test