Skip to content
2000
Volume 15, Issue 2
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Introduction

Superparamagnetic nanoparticles are widely employed in biomedicine, especially in the fields of Magnetic Resonance Imaging (MRI), targeted medication delivery, and hyperthermia therapy. Drugs or biomolecules can be used to functionalize SPIONs, and an external magnetic field can be used to direct them to specific areas within the body. This allows for more focused medication administration with fewer systemic adverse effects. In chemotherapy, adjunct therapy is found to be more beneficial, and the use of vitamins and minerals as an add-on drug may improve tolerance. In this study, soft hydrolysis of iron silica core-shell nanoparticles was achieved. The aim was to to study the loading and unloading of curcumin using FeO-silane core-shell nanoparticles. Additionally, Vitamin C was utilized as an add-on drug, and DNA was cleavaged in the presence of Vitamin C, whose effects were also studied.

Methods

The curcumin-loaded FeO-silica magnetic nanoparticles (CLFS) were prepared and characterized using various methods. In particular, the nanoparticles were characterised using SEM and XRD spectral techniques. The loading and unloading of curcumin were studied using absorption spectral techniques. The interaction of DNA was studied using emission, CD, electrochemical, and gel electrophoresis techniques.

Results

The loading capacity of curcumin was found to be 6.3 higher than that of commercial samples. A significant release of curcumin was observed using absorption spectroscopy after sonication. The DNA binding of CLFS with CT-DNA was confirmed using absorption, emission, CD, and electrochemical studies.

Discussion

The effective binding was established using these studies. The increase in the curcumin bioavailability was due to the loading of curcumin in CLFS. The efficient binding was established from the absorption, emission, and CD spectral results. The addition of vitamin C resulted in the breakage of DNA, which was demonstrated using gel electrophoresis studies.

Conclusion

The ultimate goal of this novel strategy is to encapsulate curcumin in magnetic nanoparticles so that it can release the compound continuously over a period of seventy hours at a pH that is similar to physiological conditions. In the future, CLFS may be used to treat cancer because it cleaves plasmid DNA into linear form when combined with vitamin C, an add-on medication.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468346682241127050249
2024-12-23
2025-09-25
Loading full text...

Full text loading...

References

  1. VangijzegemT. LecomteV. TernadI. Van LeuvenL. MullerR.N. StanickiD. LaurentS. Superparamagnetic iron oxide nanoparticles (SPION): From fundamentals to state-of-the-art innovative applications for cancer therapy.Pharmaceutics202315123610.3390/pharmaceutics1501023636678868
    [Google Scholar]
  2. FrolovaE.K. PetrikI.S. KolomysO.F. SarbeyO.G. SmirnovaN.P. OranskaO.I. Paramagnetism and super paramagnetism of nanocrystalline titanium dioxide powders.J. Magn. Magn. Mater.202152916790510.1016/j.jmmm.2021.167905
    [Google Scholar]
  3. MikhaylovaM. KimD.K. BobryshevaN. OsmolowskyM. SemenovV. TsakalakosT. MuhammedM. Superparamagnetism of magnetite nanoparticles: Dependence on surface modification.Langmuir20042062472247710.1021/la035648e15835712
    [Google Scholar]
  4. RezaeiB. YariP. SandersS.M. WangH. ChughV.K. LiangS. MostufaS. XuK. WangJ.P. Gómez-PastoraJ. WuK. Magnetic nanoparticles: A review on synthesis, characterization, functionalization, and biomedical applications.Small2024205230484810.1002/smll.20230484837732364
    [Google Scholar]
  5. KaroutaN. SimosY.V. BasinaG. SpyrouK. SubratiM. ChatzikonstantinouA.V. HammamiM.A. TzitziosV. AlhassanS.M. Al WahediY. DouvalisA.P. HadjipanayisG.C. TsamisK. DounousiE. MarkopoulosG.S. BellouS. GeorgakilasV. PeschosD. SideratouZ. StamatisH. GournisD.P. GiannelisE.P. Highly hydrophilic oleylamine-modified superparamagnetic iron oxide nanoparticles for biomedical applications.ACS Appl. Nano Mater.2023642770278310.1021/acsanm.2c04006
    [Google Scholar]
  6. SurpiA. ShelyakovaT. MurgiaM. RivasJ. PiñeiroY. GrecoP. FiniM. DediuV.A. Versatile magnetic configuration for the control and manipulation of superparamagnetic nanoparticles.Sci. Rep.2023131530110.1038/s41598‑023‑32299‑937002375
    [Google Scholar]
  7. IndoliyaA. PoddarR. Hyperthermic treatment by superparamagnetic iron oxide nanoparticles for targeted tumor therapy: An in-vivo approach guided by swept-source optical coherence tomography.J. Med. Biol. Eng.2023431324110.1007/s40846‑022‑00769‑6
    [Google Scholar]
  8. LamichhaneN. SharifabadM.E. HodgsonB. MercerT. SenT. Superparamagnetic iron oxide nanoparticles (SPIONs) as therapeutic and diagnostic agents.Nanoparticle Therapeutics. KesharwaniP. SinghK.K. Academic Press202245549710.1016/B978‑0‑12‑820757‑4.00003‑X
    [Google Scholar]
  9. MahmoudiM. SantS. WangB. LaurentS. SenT. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy.Adv. Drug Deliv. Rev.2011631-2244610.1016/j.addr.2010.05.00620685224
    [Google Scholar]
  10. KandasamyG. MaityD. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics.Int. J. Pharm.2015496219121810.1016/j.ijpharm.2015.10.05826520409
    [Google Scholar]
  11. SmithL. ByrneH.L. WaddingtonD. KuncicZ. Nanoparticles for MRI-guided radiation therapy: A review.Cancer Nanotechnol.20221313810.1186/s12645‑022‑00145‑8
    [Google Scholar]
  12. MaX. GongA. ChenB. ZhengJ. ChenT. ShenZ. WuA. Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy.Colloids Surf. B Biointerfaces2015126444910.1016/j.colsurfb.2014.11.04525543982
    [Google Scholar]
  13. GirardetT. BianchiE. HenrionnetC. PinzanoA. Bouguet-BonnetS. BoulogneC. LeclercS. CleymandF. FleutotS. SPIONs magnetic nanoparticles for MRI applications: Microwave synthesis and physicochemical, magnetic and biological characterizations.Mater. Today Commun.20233610681910.1016/j.mtcomm.2023.106819
    [Google Scholar]
  14. ComanescuC. Magnetic nanoparticles: Current advances in nanomedicine, drug delivery and MRI.Chemistry20224387293010.3390/chemistry4030063
    [Google Scholar]
  15. BarrowM. TaylorA. Fuentes-CaparrósA.M. SharkeyJ. DanielsL.M. MandalP. ParkB.K. MurrayP. RosseinskyM.J. AdamsD.J. SPIONs for cell labelling and tracking using MRI: magnetite or maghemite?Biomater. Sci.20186110110610.1039/C7BM00515F29188240
    [Google Scholar]
  16. TadićM. KusigerskiV. MarkovićD. PanjanM. MiloševićI. SpasojevićV. Highly crystalline superparamagnetic iron oxide nanoparticles (SPION) in a silica matrix.J. Alloys Compd.2012525283310.1016/j.jallcom.2012.02.056
    [Google Scholar]
  17. ArrueboM. Fernández-PachecoR. IbarraM.R. SantamaríaJ. Magnetic nanoparticles for drug delivery.Nano Today200723223210.1016/S1748‑0132(07)70084‑1
    [Google Scholar]
  18. CardosoB.D. RioI.S.R. RodriguesA.R.O. FernandesF.C.T. AlmeidaB.G. PiresA. PereiraA.M. AraújoJ.P. CastanheiraE.M.S. CoutinhoP.J.G. Magnetoliposomes containing magnesium ferrite nanoparticles as nanocarriers for the model drug curcumin.R. Soc. Open Sci.201851018101710.1098/rsos.18101730473847
    [Google Scholar]
  19. PorroC. PanaroM.A. Recent progress in understanding the health benefits of curcumin.Molecules2023285241810.3390/molecules2805241836903663
    [Google Scholar]
  20. SinghD.K. MandalapuD. KumarS. MauryaP. KrishnaS. ThakurS. PantS. SiddiqiM.I. SharmaV.L. BanerjeeD. Novel curcumin monocarbonyl analogue-dithiocarbamate hybrid molecules target human DNA ligase I and show improved activity against colon cancer.Med. Chem. Res.2023321577510.1007/s00044‑022‑02983‑y
    [Google Scholar]
  21. GórnickaJ. MikaM. WróblewskaO. SiudemP. ParadowskaK. Methods to improve the solubility of curcumin from turmeric.Life (Basel)202313120710.3390/life1301020736676157
    [Google Scholar]
  22. ZhengT. WangX. ChenZ. HeA. ZhengZ. LiuG. Efficacy of adjuvant curcumin therapy in ulcerative colitis: A meta‐analysis of randomized controlled trials.J. Gastroenterol. Hepatol.202035572272910.1111/jgh.1491131696975
    [Google Scholar]
  23. HussainY. IslamL. KhanH. FilosaR. AschnerM. JavedS. Curcumin–cisplatin chemotherapy: A novel strategy in promoting chemotherapy efficacy and reducing side effects.Phytother. Res.202135126514652910.1002/ptr.722534347326
    [Google Scholar]
  24. AshrafizadehM. ZarrabiA. HashemiF. MoghadamE.R. HashemiF. EntezariM. HushmandiK. MohammadinejadR. NajafiM. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects.Life Sci.202025611798410.1016/j.lfs.2020.11798432593707
    [Google Scholar]
  25. BeyeneA.M. MoniruzzamanM. KarthikeyanA. MinT. Curcumin nanoformulations with metal oxide nanomaterials for biomedical applications.Nanomaterials202111246010.3390/nano1102046033670161
    [Google Scholar]
  26. DizajM.S. AlipourM. AbdolahiniaD.E. AhmadianE. EftekhariA. ForouhandehH. SaadatR.Y. SharifiS. Zununi VahedS. Curcumin nanoformulations: Beneficial nanomedicine against cancer.Phytother. Res.20223631156118110.1002/ptr.738935129230
    [Google Scholar]
  27. MahjoobM. StochajU. Curcumin nanoformulations to combat aging-related diseases.Ageing Res. Rev.20216910136410.1016/j.arr.2021.10136434000462
    [Google Scholar]
  28. VermaG. GajiparaA. ShelarS.B. PriyadarsiniK.I. HassanP.A. Development of water-dispersible gelatin stabilized hydroxyapatite nanoformulation for curcumin delivery.J. Drug Deliv. Sci. Technol.20216610276910.1016/j.jddst.2021.102769
    [Google Scholar]
  29. PrabakaranN. MareeswaranP.M. ShanmugavelanP. DNA cleavage using magnetic iron oxide-silica/curcumin core–shell nanocomposite.Mater. Lett.202333113355610.1016/j.matlet.2022.133556
    [Google Scholar]
  30. MorN. RaghavN. Design and development of carboxymethylcellulose ester of curcumin as sustained release delivery system in liver.Int. J. Biol. Macromol.202323112329610.1016/j.ijbiomac.2023.12329636649863
    [Google Scholar]
  31. CasanovaF. PereiraC.F. RibeiroA.B. CostaE.M. FreixoR. CastroP.M. FernandesJ.C. PintadoM. RamosÓ.L. Design of innovative biocompatible cellulose nanostructures for the delivery and sustained release of curcumin.Pharmaceutics202315398110.3390/pharmaceutics1503098136986845
    [Google Scholar]
  32. SalehiB. RodriguesC.F. PeronG. Dall’AcquaS. Sharifi-RadJ. AzmiL. ShuklaI. Singh BaghelU. Prakash MishraA. ElissawyA.M. SingabA.N. PezzaniR. RedaelliM. PatraJ.K. Kulandaisamy VenilC. DasG. SinghD. KriplaniP. VendittiA. FokouP.V.T. IritiM. AmarowiczR. MartorellM. Cruz-MartinsN. Curcumin nanoformulations for antimicrobial and wound healing purposes.Phytother. Res.20213552487249910.1002/ptr.697633587320
    [Google Scholar]
  33. Muthu MareeswaranP. BabuE. SathishV. KimB. WooS.I. RajagopalS. p-Sulfonatocalix[4]arene as a carrier for curcumin.New J. Chem.20143831336134510.1039/c3nj00935a
    [Google Scholar]
  34. GuthrieO.W. SpankovichC. Emerging and established therapies for chemotherapy-induced ototoxicity.J. Cancer Surviv.2023171172610.1007/s11764‑022‑01317‑636637631
    [Google Scholar]
  35. HersheyB. Integrative therapies for palliative care of the veterinary cancer patient.Hospice and Palliative Care for Companion AnimalsWiley202310.1002/9781119808817.ch11
    [Google Scholar]
  36. GrefR. DeloménieC. MaksimenkoA. GouadonE. PercocoG. LatiE. DesmaëleD. ZouhiriF. CouvreurP. Vitamin C–squalene bioconjugate promotes epidermal thickening and collagen production in human skin.Sci. Rep.20201011688310.1038/s41598‑020‑72704‑133037252
    [Google Scholar]
  37. GašperlinM. GosencaM. Main approaches for delivering antioxidant vitamins through the skin to prevent skin ageing.Expert Opin. Drug Deliv.20118790591910.1517/17425247.2011.58165721599565
    [Google Scholar]
  38. van GorkomG.N.Y. LookermansE.L. Van ElssenC.H.M.J. BosG.M.J. The effect of vitamin C (ascorbic acid) in the treatment of patients with cancer: A systematic review.Nutrients201911597710.3390/nu1105097731035414
    [Google Scholar]
  39. Zasowska-NowakA. NowakP.J. Ciałkowska-RyszA. High-dose vitamin C in advanced-stage cancer patients.Nutrients202113373510.3390/nu1303073533652579
    [Google Scholar]
  40. RoaF.J. PeñaE. GaticaM. Escobar-AcuñaK. SaavedraP. MaldonadoM. CuevasM.E. Moraga-CidG. RivasC.I. Muñoz-MontesinoC. Therapeutic use of vitamin C in cancer: Physiological considerations.Front. Pharmacol.20201121110.3389/fphar.2020.0021132194425
    [Google Scholar]
  41. GaudanaR. JwalaJ. BodduS.H.S. MitraA.K. Recent perspectives in ocular drug delivery.Pharm. Res.20092651197121610.1007/s11095‑008‑9694‑018758924
    [Google Scholar]
  42. BorettiA. BanikB.K. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome.PharmaNutrition20201210019010.1016/j.phanu.2020.10019032322486
    [Google Scholar]
  43. MehanyA.B.M. FarragI.M. DiabM. GhoneimM.M. El-SherbinyM. Al-SerwiR.H. AminA.H. BelalA. ShaabanS. AbdelhadyA.A. Curcumin and vitamin C improve immunity of kidney via gene expression against diethyl nitrosamine induced nephrotoxicity in rats:In vivo and molecular docking studies.Heliyon202393e1412610.1016/j.heliyon.2023.e1412636923841
    [Google Scholar]
  44. ZareiA. KhazdoozL. KhojastegiA. Ali AltafA. AbbaspourradA. Oil soluble iron: Curcumin derivatives and their complex.Food Chem.202443113708510.1016/j.foodchem.2023.13708537567079
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468346682241127050249
Loading
/content/journals/cpc/10.2174/0118779468346682241127050249
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. Supporting information, along with the manuscript, is available online. The materials employed in this work, the process for synthesizing magnetic nanoparticles, DNA cleavage investigations, UV-CRD data, EDX spectrum, absorption, and UV-CRD spectrum are all included in the supporting materials.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test