Skip to content
2000
Volume 15, Issue 1
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Introduction

Concrete's filler material gets strengthened over time by specific chemical reactions that harden it. Multi-walled carbon nanotubes (MWCNTs) are more frequently used as fillers than SWCNTs, owing to their lower cost of production and their superior reinforcement properties in cement composites.

Methods

Mechanical properties like compressive strength, splitting tensile strength, and modulus of elasticity are proportional to the water/cement ratio () and are considered critical criteria in the design of structural elements.

Results

The aim of the present work was to prepare, characterize, and determine the effects that multi-walled carbon nanotubes (MWCNTs) can have on the mechanical strength of various matrix cementitious composites.

Conclusion

The results showed that the addition of multi-walled carbon nanotubes to the concrete greatly improved both its compressive strength and its splitting tensile strength.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468322449240808114615
2024-08-12
2025-08-16
Loading full text...

Full text loading...

References

  1. GillaniS.S.H. KhitabA. AhmadS. KhushnoodR.A. FerroG.A. Saleem KazmiS.M. QureshiL.A. RestucciaL. Improving the mechanical performance of cement composites by carbon nanotubes addition.Procedia Struct. Integr.20173111710.1016/j.prostr.2017.04.003
    [Google Scholar]
  2. DavolioM. Al-ObaidiS. AltomareM.Y. Lo MonteF. FerraraL. A methodology to assess the evolution of mechanical performance of UHPC as affected by autogenous healing under sustained loadings and aggressive exposure conditions.Cement Concr. Compos.202313910505810505810.1016/j.cemconcomp.2023.105058
    [Google Scholar]
  3. FanJ. DengS. LiG. LiJ. ZhangJ. Synergistic effect of carbon nanotubes and polyvinyl alcohol on the mechanical performance and microstructure of cement mortar.Nanotechnol. Rev.20241312024002810.1515/ntrev‑2024‑0028
    [Google Scholar]
  4. TasongW.A. LynsdaleC.J. CrippsJ.C. Aggregate-cement paste interface.Cement Concr. Res.19992971019102510.1016/S0008‑8846(99)00086‑1
    [Google Scholar]
  5. PoonC.S. LamC.S. The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks.Cement Concr. Compos.200830428328910.1016/j.cemconcomp.2007.10.005
    [Google Scholar]
  6. BhardwajB.B. SinghS. Evaluation of the failure planes in concrete containing reclaimed asphalt pavement (RAP) aggregates.Cement Concr. Compos.202414510533410533410.1016/j.cemconcomp.2023.105334
    [Google Scholar]
  7. JannatT. HuangY. ZhouZ. ZhangD. Influences of CNT dispersion methods, W/C ratios, and concrete constituents on piezoelectric properties of CNT-modified smart cementitious materials.Sensors (Basel)2023235260210.3390/s23052602 36904806
    [Google Scholar]
  8. MardaniM. Hossein Hosseini LavassaniS. AdresiM. RashidiA. Piezoresistivity and mechanical properties of self-sensing CNT cementitious nanocomposites: Optimizing the effects of CNT dispersion and surfactants.Constr. Build. Mater.202234912812712812710.1016/j.conbuildmat.2022.128127
    [Google Scholar]
  9. AdhikaryS.K. RudzionisZ. GhoshR. Influence of CNT, graphene nanoplate and CNT-graphene nanoplate hybrid on the properties of lightweight concrete.Mater. Today Proc.2021441979198210.1016/j.matpr.2020.12.115
    [Google Scholar]
  10. GaoF. TianW. ChengX. Study on spalling and cracking behavior of MWCNTs concrete exposed to high temperatures.Struct. Concr.20232433220323510.1002/suco.202200716
    [Google Scholar]
  11. GaS.J. YooS.W. ChoiY.C. Heating and mechanical properties of MWCNT reinforced cement composites.J. Korea Concr. Inst.2021331495610.4334/JKCI.2021.33.1.049
    [Google Scholar]
  12. BodnárováL. JarolímT. VálekJ. BrožovskýJ. HelaR. Selected properties of cementitous composites with Portland cements and blended Portland cements in extreme conditions.Appl. Mech. Mater.201450744344810.4028/www.scientific.net/AMM.507.443
    [Google Scholar]
  13. SongZ. LiS. BrouwersH.J.H. YuQ. Corrosion risk and corrosion-induced deterioration of ultra-high performance fiber-reinforced concrete containing initial micro-defects.Cement Concr. Compos.202314210520810.1016/j.cemconcomp.2023.105208
    [Google Scholar]
  14. ThomasS.P. RahamanM. HusseinI.A. Impact of aspect ratio and CNT loading on the dynamic mechanical and flammability properties of polyethylene nanocomposites.E-Polymers2014141576310.1515/epoly‑2013‑0019
    [Google Scholar]
  15. FarbodM. MojtahediF.S. AhangarpourA. Effect of CNTs length on thermophysical properties of paraffin/CNTs/graphene aerogel nanocomposite as a shape stabilized phase change material.Diam Relat Mater202414211074611074610.1016/j.diamond.2023.110746
    [Google Scholar]
  16. JagdaleP. Influence of carbon nanotubes addition onto the mechanical properties of restoration mortars. In: Fracture & Structural Integrity Of Materials And engineering components; Gruppo Italiano Frattura (IGF), 2013; pp. 278-286 Available from: https://www.researchgate.net/publication/334446378_Influence_of_carbon_nanotubes_addition_onto_the_mechanical_properties_of_restoration_mortars
    [Google Scholar]
  17. FerroG.A. AhmadS. KhushnoodR.A. RestucciaL. TullianiJ.M. Improvements in self-consolidating cementitious composites by using micro carbonized aggregates.Frat Integrita Strut2014830758310.3221/IGF‑ESIS.30.11
    [Google Scholar]
  18. KhushnoodR.A. AhmadS. RestucciaL. SpotoC. JagdaleP. TullianiJ.M. FerroG.A. Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials.Front. Struct. Civ. Eng.201610220921310.1007/s11709‑016‑0330‑5
    [Google Scholar]
  19. LothenbachB. Le SaoutG. GallucciE. ScrivenerK. Influence of limestone on the hydration of Portland cements.Cement Concr. Res.200838684886010.1016/j.cemconres.2008.01.002
    [Google Scholar]
  20. LiQ. LiuJ. XuS. Progress in research on carbon nanotubes reinforced cementitious composites.Adv. Mater. Sci. Eng.2015201511610.1155/2015/249348
    [Google Scholar]
  21. ChuahS. PanZ. SanjayanJ.G. WangC.M. DuanW.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide.Constr. Build. Mater.20147311312410.1016/j.conbuildmat.2014.09.040
    [Google Scholar]
  22. LiP. LiuJ. SuhH. Im, S.; Piao, T.; Nezhad, E.Z.; Wi, K.; Bae, S. Graphene nanoribbons: A novel additive for enhancing the fire resistance of cementitious composites.Constr. Build. Mater.202442613605713605710.1016/j.conbuildmat.2024.136057
    [Google Scholar]
  23. KhroustalevB.M. LeonovichS.N. YakovlevG.I. PolianskichI.S. LahayneO. EberhardsteinerJ. SkripkiunasG. PudovI.A. KarpovaE.A. Structural modification of new formations in cement matrix using carbon nanotube dispersions and nanosilica.Sci. Tech. (Paris)20171629310310.21122/2227‑1031‑2017‑16‑2‑93‑103
    [Google Scholar]
  24. BezerraA.K.L. MeloA.R.S. FreitasI.L.B. BabadopulosL.F.A.L. CarretJ.C. SoaresJ.B. Determination of modulus of elasticity and Poisson’s ratio of cementitious materials using S-wave measurements to get consistent results between static, ultrasonic and resonant testing.Constr. Build. Mater.202339813245613245610.1016/j.conbuildmat.2023.132456
    [Google Scholar]
  25. Building code requirements for structural plain concrete (ACI 318.1-83) and commentary.Int J Cem Compos Lightweight Concr1985716010.1016/0262‑5075(85)90032‑6
    [Google Scholar]
  26. HanB. ZhangK. BurnhamT. KwonE. YuX. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection.Smart Mater. Struct.201322101502010.1088/0964‑1726/22/1/015020
    [Google Scholar]
  27. AdomakoS. EngelsenC.J. ThorstensenR.T. BarbieriD.M. Review of the relationship between aggregates geology and Los Angeles and micro-Deval tests.Bull. Eng. Geol. Environ.20218031963198010.1007/s10064‑020‑02097‑y
    [Google Scholar]
  28. MohsenM.O. Al-NuaimiN. Abu Al-RubR.K. SenouciA. Bani-HaniK.A. Effect of mixing duration on flexural strength of multi walled carbon nanotubes cementitious composites.Constr. Build. Mater.201612658659810.1016/j.conbuildmat.2016.09.073
    [Google Scholar]
  29. ParveenS. RanaS. FangueiroR. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites.J. Nanomater.2013201311910.1155/2013/710175
    [Google Scholar]
  30. FoldynaV. FoldynaJ. KlichovaD. KlichJ. HlavacekP. BodnarovaL. JarolimT. KutlakovaK.M. Effects of continuous and pulsating water jet on CNT/concrete composite. Stroj. Vestn../J. Mech. Eng.,2017631058358910.5545/sv‑jme.2017.4357
    [Google Scholar]
  31. NamK.W. HurO. KangB.H. ParkS.H. Comparison of piezoresistive sensitivity based on the size of silica as secondary filler on hybrid CNT composites.Compos. Sci. Technol.202425311064211064210.1016/j.compscitech.2024.110642
    [Google Scholar]
  32. YueQ. WangQ. RabczukT. ZhouW. ChangX. ZhuangX. A review on modeling of graphene and associated nanostructures reinforced concrete.Nanotechnol. Rev.20241312024003310.1515/ntrev‑2024‑0033
    [Google Scholar]
  33. Ch Madhavi, Dr.T. Pavithra, P.; Baban Singh, S.; Vamsi Raj, S.B.; Paul, S. Effect of multiwalled carbon nanotubes on mechanical properties of concrete.Int. J. Sci. Res.20122616616810.15373/22778179/JUNE2013/53
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468322449240808114615
Loading
/content/journals/cpc/10.2174/0118779468322449240808114615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test