Skip to content
2000
Volume 29, Issue 17
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Organic reactions involve the breaking and formation of bonds, particularly sigma bonds (single bonds) and pi bonds (double and triple bonds). Organic chemists are often more interested in how a reaction works than in why it occurs. With foreknowledge and experience of the reaction details, chemists can generate new compounds and provide a sequential description of each step in the transformations that result in new products. Reaction mechanisms may consist of many steps, including intermediates (like carbocations, carbanions, free radicals, or other species) or transition states between reactants and products. This article will cover 50 key named organic reactions, including every step in each reaction, and their products. In addition, more information on reaction discovery and applications will be discussed. This list represents just a small percentage of the many chemical reactions known in organic chemistry.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728361633250110033342
2025-02-07
2025-10-05
Loading full text...

Full text loading...

References

  1. LaueT. PlagensA. Named organic reactions.2nd edJohn Wiley & Sons200510.1002/0470010428
    [Google Scholar]
  2. ElzagheidM. The most common organic reactions.BerlinDe Gruyter2024111123
    [Google Scholar]
  3. ClemmensenE. On a general method for the reduction of the carbonyl group in aldehydes and ketones to the methylene group.Ber. Dtsch. Chem. Ges.1914471516310.1002/cber.19140470108
    [Google Scholar]
  4. CopeA.C. HardyE.M. Rearrangement involving the migration of an allyl group in a three-carbon system.J. Am. Chem. Soc.194062244144410.1021/ja01859a055
    [Google Scholar]
  5. von FranklandE. On the isolation of organic radicals.Justus Liebigs Ann. Chem.184971217121310.1002/jlac.18490710205
    [Google Scholar]
  6. FreundA. About Trimethylene Mont. J.Chem. Relat. Parts Other Sci.18823625635
    [Google Scholar]
  7. GlaserC. Contributions to the knowledge of acetenylbenzene.18692142242410.1002/cber.186900201183
    [Google Scholar]
  8. AljaarN. MalakarC.C. ConradJ. StrobelS. SchleidT. BeifussU. Cu-catalyzed reaction of 1,2-dihalobenzenes with 1,3-cyclohexanediones for the synthesis of 3,4-dihydrodibenzo[b,d]furan-1(2H)-ones.J. Org. Chem.201277187793780310.1021/jo3014275 22917488
    [Google Scholar]
  9. HeckR.F. NolleyJ.P.Jr Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides.J. Org. Chem.197237142320232210.1021/jo00979a024
    [Google Scholar]
  10. HazraC.K. MalakarC.C. KantK. PatelC.K. ReetuR. TeliY.A. NaikP. SomeS. AljaarN. AttaA.K. Comprehensive strategies for the synthesis of 1,3-Enyne derivatives.Synthesis2025571397010.1055/a‑2317‑7262
    [Google Scholar]
  11. PatelA.K. SamantaS. Organocatalyzed double C(sp3)-H Alkylation of Cyclic N -Sulfonyl Ketimines with 3-Chloropropiophenones: Selective access to 2,3,6-Trisubstituted pyridines.Eur. J. Org. Chem.20232633e20230063110.1002/ejoc.202300631
    [Google Scholar]
  12. KingA.O. OkukadoN. NegishiE. Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides.J. Chem. Soc. Chem. Commun.1977191968368410.1039/c39770000683
    [Google Scholar]
  13. SimmonsH.E. SmithR.D. A new synthesis of cyclopropanes from olefins.J. Am. Chem. Soc.195880195323532410.1021/ja01552a080
    [Google Scholar]
  14. WittigG. SchöllkopfU. Über Triphenyl-phosphin-methylene als olefinbildende Reagenzien (I.Mitteil. Chem. Ber.19548791318133010.1002/cber.19540870919
    [Google Scholar]
  15. KishnerN. Wolff–Kishner reduction; Huang–Minlon modification.J. Russ. Phys. Chem. Soc.191143582595
    [Google Scholar]
  16. WolffL. Chemical Institute of the University of Jena: Method for replacing the oxygen atom of ketones and aldehydes by hydrogen. [First paper.Eur. J. Org. Chem.191239418610810.1002/jlac.19123940107
    [Google Scholar]
  17. WurtzA. On a new class of organic radicals.Ann. Chim. Phys.185544275312https://gallica.bnf.fr/ark:/12148/bpt6k34785p/f274
    [Google Scholar]
  18. WurtzA. On a new class of organic radicals.Eur. J. Org. Chem.185596336437510.1002/jlac.18550960310
    [Google Scholar]
  19. BalzG. SchiemannG. Aromatic fluorine compounds. I. A new method for their preparation.Chemical Reports19276051186119010.1002/cber.19270600539
    [Google Scholar]
  20. JonesR.R. BergmanR.G. p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure.J. Am. Chem. Soc.197294266066110.1021/ja00757a071
    [Google Scholar]
  21. TollensB. FittigR. On the synthesis of the hydrocarbons of the benzene series.Justus Liebigs Annals of Chemistry1864131330332310.1002/jlac.18641310307
    [Google Scholar]
  22. FriedelC. CraftsJ. On a new general method of synthesis of hydrocarbons ketones.C. R. Chim.1877841450
    [Google Scholar]
  23. TeliY.A. ReetuR. ChanuS.A. KantK. KeremaneK.S. AlmeerR. SinghV. MalakarC.C. HFIP-Mediated dual C (Ar)-alkylation process towards the regioselective synthesis of triarylmethanes (TRAMs).Chem. Asian J.20241921e20240063510.1002/asia.202400635 39109591
    [Google Scholar]
  24. HatanakaY. HiyamaT. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate.J. Org. Chem.198853491892010.1021/jo00239a056
    [Google Scholar]
  25. MiyauraN. YamadaK. SuzukiA. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides.Tetrahedron Lett.197920363437344010.1016/S0040‑4039(01)95429‑2
    [Google Scholar]
  26. ThieleJ. On the effect of acetic anhydride on quinone and dibenzoylstyrene.Ber. Dtsch. Chem. Ges.18983111247124910.1002/cber.189803101226
    [Google Scholar]
  27. UllmannF. BieleckiJ. On Syntheses in the Biphenyl Series.Ber. Dtsch. Chem. Ges.19013422174218510.1002/cber.190103402141
    [Google Scholar]
  28. WangZ. Comprehensive Organic Name Reactions and Reagents.John Wiley & Sons, Inc.201010.1002/9780470638859
    [Google Scholar]
  29. AnthonyB. Baylis and Melville E. D. Hillman. Process for the Preparation of Acrylic Compounds.DE Patent 2155113.1972
  30. CannizzaroS. On the alcohol corresponding to benzoic acid.Liebig’s Ann. Chem. Pharm.185388112913010.1002/jlac.18530880114
    [Google Scholar]
  31. ClaisenL. On the introduction of acid radicals into ketones.Ber. Dtsch. Chem. Ges.188720165565710.1002/cber.188702001150
    [Google Scholar]
  32. CriegeeR. An oxidative cleavage of glycols.Report on oxidations with lead193164226026610.1002/cber.19310640212
    [Google Scholar]
  33. DarzensA.G. General method for the synthesis of aldehydes using substituted glycidic acids.Compt. Rend.190413912141220
    [Google Scholar]
  34. DessD.B. MartinJ.C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones.J. Org. Chem.198348224155415610.1021/jo00170a070
    [Google Scholar]
  35. DieckmannW. On a ring-shaped analogue of the ketipic acid ester.Ber. Dtsch. Chem. Ges.189427196596610.1002/cber.189402701202
    [Google Scholar]
  36. ÉtardA.L. On the Synthesis of Aromatic Aldehydes.Essence of Cumin. Compt. Rendus.188090534536
    [Google Scholar]
  37. FavorskiiA.Y. Favorskii rearrangement.J. Russ. Phys. Chem. Soc.189426590
    [Google Scholar]
  38. FischerE. SpeierA. Representation of the esters.Ber. Dtsch. Chem. Ges.18952833252325810.1002/cber.189502803176
    [Google Scholar]
  39. BowdenK. HeilbronI.M. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols.J. Chem. Soc.1946394510.1039/jr9460000039
    [Google Scholar]
  40. KutscheroffM. On a new method of direct addition of water (hydration) to the hydrocarbons of the acetylene series.Ber. Dtsch. Chem. Ges.18811411540154210.1002/cber.188101401320
    [Google Scholar]
  41. GriffithW.P. LeyS.V. WhitcombeG.P. WhiteA.D. Preparation and use of tetra-n-butylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols.J. Chem. Soc. Chem. Commun.198721211625162710.1039/c39870001625
    [Google Scholar]
  42. OppenauerR.V. Dehydration of secondary alcohols to ketones. I. Preparation of sterol ketones and sex hormones.Recl. Trav. Chim. Pays Bas193756213714410.1002/recl.19370560206
    [Google Scholar]
  43. FittigR. On some derivatives of acetone.Annalen der Chemie und Pharmacie18601141546310.1002/jlac.18601140107
    [Google Scholar]
  44. OmuraK. SwernD. Oxidation of alcohols by “activated” dimethyl sulfoxide. a preparative, steric and mechanistic study.Tetrahedron197834111651166010.1016/0040‑4020(78)80197‑5
    [Google Scholar]
  45. VilsmeierA. HaackA. On the effect of halogen phosphorus on alkyl-formanilides. A new method for the preparation of secondary and tertiary p-alkylamino-benzaldehydes. Ber. Dtsch. Chem.Ges. in Berlin192760111912210.1002/cber.19270600118
    [Google Scholar]
  46. BrownH. ZweifelG. Additions and corrections: A stereospecific cis hydration of the double bond in cyclic derivatives.J. Am. Chem. Soc.195981246533653310.1021/ja01533a625
    [Google Scholar]
  47. EmmertB. AsendorfE. Eine Synthese von α-Pyridyl-dialkyl-carbinolen.Ber. Dtsch. Chem. Ges. B193972611881194[A and B Series].10.1002/cber.19390720610
    [Google Scholar]
  48. OkudeY. HiranoS. HiyamaT. NozakiH. Grignard-type carbonyl addition of allyl halides by means of chromous salt. A chemospecific synthesis of homoallyl alcohols.J. Am. Chem. Soc.19779993179318110.1021/ja00451a061
    [Google Scholar]
  49. PaulF. PattJ. HartwigJ.F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides.J. Am. Chem. Soc.1994116135969597010.1021/ja00092a058
    [Google Scholar]
  50. GuramA.S. BuchwaldS.L. Palladium-catalyzed aromatic aminations with in situ generated aminostannanes.J. Am. Chem. Soc.1994116177901790210.1021/ja00096a059
    [Google Scholar]
  51. ForsterM.O. XCI.—Influence of substitution on specific rotation in the bornylamine series.J. Chem. Soc. Trans.189975093495410.1039/CT8997500934
    [Google Scholar]
  52. KoenigsW. KnorrE. On some derivatives of glucose and galactose.Ber. Dtsch. Chem. Ges.190134195798110.1002/cber.190103401162
    [Google Scholar]
  53. MitsunobuO. YamadaM. Preparation of esters of carboxylic and phosphoric acid via quaternary phosphonium salts.Bull. Chem. Soc. Jpn.196740102380238210.1246/bcsj.40.2380
    [Google Scholar]
  54. KatsukiT. The sharpless epoxidation.J. Am. Chem. Soc.19801025974597610.1021/ja00538a077
    [Google Scholar]
  55. KatsukiT. SharplessK.B. The first practical method for asymmetric epoxidation.J. Am. Chem. Soc.1980102185974597610.1021/ja00538a077
    [Google Scholar]
  56. WilliamsonA. XLV. Theory of ætherification.Lond. Edinb. Philos. Mag. J. Sci.18503725135035610.1080/14786445008646627
    [Google Scholar]
  57. FinkelsteinH. Preparation of organic iodides from the corresponding bromides and chlorides.Ber. Dtsch. Chem. Ges.19104321528153210.1002/cber.19100430257
    [Google Scholar]
  58. FusonR.C. BullB.A. The haloform reaction.Chem. Rev.193415327530910.1021/cr60052a001
    [Google Scholar]
  59. MichaelisA. KaehneR. On the behavior of iodoalkyls towards the so-called phosphorous acid esters or O-phosphines.Ber. Dtsch. Chem. Ges.18983111048105510.1002/cber.189803101190
    [Google Scholar]
  60. SwartsF.J.E. Swarts fluorination.Acad. Roy. Belg1892324474
    [Google Scholar]
  61. BhowmikS. BatraS. Applications of morita-baylis-hillman reaction to the synthesis of natural products and drug molecules.Curr. Org. Chem.201518243078311910.2174/1385272819666141125003114
    [Google Scholar]
  62. ChenS. HuA. Recent advances of the Bergman cyclization in polymer science.Sci. China Chem.201558111710172310.1007/s11426‑015‑5460‑4
    [Google Scholar]
  63. ChatterjeeB. MondalD. BeraS. Synthetic applications of the Cannizzaro reaction.Beilstein J. Org. Chem.20242011376139510.3762/bjoc.20.120 38919603
    [Google Scholar]
  64. DebjyotiB. SayanJ.K. BiplabM. Solid-state mechanochemical clemmensen reductionSynthesis2024571849010.1055/a‑2317‑6778
    [Google Scholar]
  65. ShallcrossD.E. TaatjesC.A. PercivalC.J. Criegee intermediates in the indoor environment: New insights.Indoor Air201424549550210.1111/ina.12102 24512513
    [Google Scholar]
  66. AkhtarR. ZahoorA.F. Transition metal catalyzed Glaser and Glaser-Hay coupling reactions: Scope, classical/green methodologies and synthetic applications.Synth. Commun.202050223337336810.1080/00397911.2020.1802757
    [Google Scholar]
  67. SartoriS.K. MirandaI.L. DiazM.A.N. Diaz-MuñozG. Sharpless asymmetric epoxidation: Applications in the synthesis of bioactive natural products.Mini Rev. Org. Chem.202118560662010.2174/1570193X17999200807141622
    [Google Scholar]
  68. SelepeM. Van HeerdenF. Application of the Suzuki-Miyaura reaction in the synthesis of flavonoids.Molecules20131844739476510.3390/molecules18044739 23609624
    [Google Scholar]
  69. RochaD.H.A. PintoD.C.G.A. SilvaA.M.S. Applications of the wittig reaction on the synthesis of natural and natural-analogue heterocyclic compounds.Eur. J. Org. Chem.2018201820-212443245710.1002/ejoc.201800523
    [Google Scholar]
/content/journals/coc/10.2174/0113852728361633250110033342
Loading
/content/journals/coc/10.2174/0113852728361633250110033342
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): carbanions; carbonyl group; Chemistry; free radicals; hydrochloric acid; organic; reactions
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test