Skip to content
2000
Volume 29, Issue 17
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Kojic Acid (KA) is an oxygen-based heterocycle of natural occurrence and is chemically known as 5-hydroxy-2-(hydroxymethy1)-4-pyran-4-one. This review has been designed to lighten up the various biological potentials, including the tyrosinase inhibition potential and depigmenting action of KA and its derivatives. KA has very interesting physical and chemical properties and has many applications in the medicinal and cosmetic industries, like antimicrobial, antifungal, antitumor, anti-inflammatory, and depigmentation activities. Despite its medicinal importance, KA possesses a fascinating structure with multiple reactive centers, making it valuable in various chemical transformations. Therefore, a variety of KA derivatives have been/may be prepared with improved stability and with more effective and interesting biological activities than KA itself. Here, in this review, we have briefly described the biological activities of some potent KA derivatives with a brief introduction to the physical and chemical properties of KA. This review would bridge the gap between basic research and applied science, offering value to both scientific and industrial communities.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728350999241230080328
2025-01-31
2025-10-05
Loading full text...

Full text loading...

References

  1. ZirakM. SisE.B. Kojic acid in organic synthesis.Turk. J. Chem.201539343949610.3906/kim‑1502‑55
    [Google Scholar]
  2. YabutaT. LXXIII. The constitution of kojic acid, a γ-pyrone derivative formed by Aspergillus Oryzæ from carbohydrates.J. Chem. Soc. Trans.1924125057558710.1039/CT9242500575
    [Google Scholar]
  3. BeélikA. Kojic acidAdvances in carbohydrate chemistryElsevier195611145183
    [Google Scholar]
  4. PhashaV. SenabeJ. NdzotoyiP. OkoleB. FoucheG. ChuturgoonA. Review on the use of kojic acid—A skin-lightening ingredient.Cosmetics2022936410.3390/cosmetics9030064
    [Google Scholar]
  5. BashirF. SultanaK. KhalidM. RabiaH. Kojic acid: A comprehensive reviewAsian Journal of Allied Health Sciences2021
    [Google Scholar]
  6. MorisonW.L. What is the function of melanin?Arch. Dermatol.198512191160116310.1001/archderm.1985.01660090074017 4037841
    [Google Scholar]
  7. BrennerM. HearingV.J. The protective role of melanin against UV damage in human skin.Photochem. Photobiol.200884353954910.1111/j.1751‑1097.2007.00226.x 18435612
    [Google Scholar]
  8. WaltersK.A. RobertsM.S. Dermatologic, cosmeceutic, and cosmetic development: Therapeutic and novel approaches.CRC Press200710.3109/9780849375903
    [Google Scholar]
  9. LyT.A.N. ReyesC. SchwarzeF.W.M.R. RiberaJ. Microbial production of melanin and its various applications.World J. Microbiol. Biotechnol.2020361117010.1007/s11274‑020‑02941‑z 33043393
    [Google Scholar]
  10. ChibS. JamwalV.L. KumarV. GandhiS.G. SaranS. Fungal production of kojic acid and its industrial applications.Appl. Microbiol. Biotechnol.20231077-82111213010.1007/s00253‑023‑12451‑1 36912905
    [Google Scholar]
  11. KwonS.H. HwangY.J. LeeS.K. ParkK.C. Heterogeneous pathology of melasma and its clinical implications.Int. J. Mol. Sci.201617682410.3390/ijms17060824 27240341
    [Google Scholar]
  12. SaeediM. EslamifarM. KhezriK. Kojic acid applications in cosmetic and pharmaceutical preparations.Biomed. Pharmacother.201911058259310.1016/j.biopha.2018.12.006 30537675
    [Google Scholar]
  13. OhyamaT. Melanogenesis-inhibitory effect of kojic acid and its action mechanism.Fragrance J.199065358
    [Google Scholar]
  14. ChoudharyD. SahayG. SinghJ. Effect of some mycotoxins on reproduction in pregnant albino rats.Semantic Scholar1992264265
    [Google Scholar]
  15. ChaudharyJ. PathakA. LakhawatS. Production technology and applications of kojic acid.Annu. Res. Rev. Biol.20144213165319610.9734/ARRB/2014/10643
    [Google Scholar]
  16. AndayiW.A. EganT.J. ChibaleK. Kojic acid derived hydroxypyridinone–chloroquine hybrids: Synthesis, crystal structure, antiplasmodial activity and β-haematin inhibition.Bioorg. Med. Chem. Lett.201424153263326710.1016/j.bmcl.2014.06.012 24974345
    [Google Scholar]
  17. SarkerS.D. NurunnabiT.R. MajmaieA.S. NakoutiI. NaharL. RahmanS.M.M. SohrabM.H. BillahM.M. IsmailF.M.D. SharplesG.P. Antimicrobial activity of kojic acid from endophytic fungus Colletotrichum gloeosporioides isolated from Sonneratia apetala, a mangrove plant of the Sundarbans.Asian Pac. J. Trop. Med.201811535035410.4103/1995‑7645.233183
    [Google Scholar]
  18. KumarR. JayalakshmiS. Screening of kojic acid antimicrobial activity against skin pathogens.Int. J. Life Sci.201863755760
    [Google Scholar]
  19. LiuX. XiaW. JiangQ. XuY. YuP. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria.J. Biosci. Bioeng.2015120333533910.1016/j.jbiosc.2015.01.010 25682520
    [Google Scholar]
  20. ZhuG.Y. ShiX.C. WangS.Y. WangB. LabordaP. Antifungal mechanism and efficacy of kojic acid for the control of Sclerotinia sclerotiorum in soybean.Front. Plant Sci.20221384569810.3389/fpls.2022.845698 35360341
    [Google Scholar]
  21. KimJ. CampbellB. ChanK. MahoneyN. HaffR. Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid.Molecules20131821564158110.3390/molecules18021564 23353126
    [Google Scholar]
  22. CostaD.J.P. RodriguesA.P.D. FariasL.H.S. FradeP.C.R. SilvaD.B.J.M. NascimentoD.J.L.M. SilvaE.O. Biological effects of kojic acid on human monocytes in vitro.Biomed. Pharmacother.201810110010610.1016/j.biopha.2018.02.036 29477469
    [Google Scholar]
  23. GomesA.J. LunardiC.N. GonzalezS. TedescoA.C. The antioxidant action of Polypodium leucotomos extract and kojic acid: Reactions with reactive oxygen species.Braz. J. Med. Biol. Res.200134111487149410.1590/S0100‑879X2001001100018 11668361
    [Google Scholar]
  24. LiuX. JiangQ. XiaW. One-step procedure for enhancing the antibacterial and antioxidant properties of a polysaccharide polymer: Kojic acid grafted onto chitosan.Int. J. Biol. Macromol.20181131125113310.1016/j.ijbiomac.2018.03.007 29505872
    [Google Scholar]
  25. WangK. LiuC. DiC.J. MaC. HanC.G. YuanM.R. LiP.F. LiL. LiuY.X. Kojic acid protects C57BL/6 mice from gamma-irradiation induced damage.Asian Pac. J. Cancer Prev.201415129129710.7314/APJCP.2014.15.1.291 24528043
    [Google Scholar]
  26. NiwaY. AkamatsuH. Kojic acid scavenges free radicals while potentiating leukocyte functions including free radical generation.Inflammation199115430331510.1007/BF00917315 1769733
    [Google Scholar]
  27. MahmoudG. ZohriA.N. EldinK.N. AbdelhamidN. Application of Aspergillus oryzae ASU44 (OL314732) and their kojic acid as pesticides against cotton aphid, Aphis gossypii.Bull. Pharm. Sci.2023461638210.21608/bfsa.2023.300763
    [Google Scholar]
  28. BusiS. RajkumariJ. HnamteS. Feeding deterrence, acute toxicity and sublethal growth effects of kojic acid isolated from Aspergillus funiculosus.Nat. Prod. J.201441182210.2174/2210315504666140515004643
    [Google Scholar]
  29. SuryadiH. IriantiM.I. SeptiariniT.H. Methods of random mutagenesis of Aspergillus strain for increasing kojic acid production.Curr. Pharm. Biotechnol.202223448649410.2174/1389201022666210615125004 34132182
    [Google Scholar]
  30. Rozarid.P. Lampiran 1F Paper Single production of Kojic acid by Aspergillus flavus and the revision of flufuran.2021Available from: https://osf.io/preprints/osf/jyu8z [Accessed on: July 22].
  31. LassfolkR. SuonpääA. BirikhK. LeinoR. Chemo-enzymatic three-step conversion of glucose to kojic acid.Chem. Commun.20195598147371474010.1039/C9CC07405H 31754674
    [Google Scholar]
  32. RosfarizanM. MohdS.M. NurashikinS. MadihahM.S. ArbakariyaB.A. Kojic acid: Applications and development of fermentation process for production.Biotechnol. Mol. Biol. Rev.2010522437
    [Google Scholar]
  33. CruegerW. Organic acidsBiotechnology, a textbook of industrial microbology1984134149
    [Google Scholar]
  34. NakajimaN. IshiharaK. HamadaH. Functional glucosylation of kojic acid and daidzein with the Eucalyptus membrane-associated UDP-glucosyltransferase reaction system.J. Biosci. Bioeng.200192546947110.1016/S1389‑1723(01)80298‑X 16233130
    [Google Scholar]
  35. KimJ. ChangP.K. ChanK. FariaN. MahoneyN. KimY. MartinsM. CampbellB. Enhancement of commercial antifungal agents by Kojic Acid.Int. J. Mol. Sci.20121311138671388010.3390/ijms131113867 23203038
    [Google Scholar]
  36. ZaidA.N. RamahiA.R. ™ Depigmentation and anti-aging treatment by natural molecules.Curr. Pharm. Des.201925202292231210.2174/1381612825666190703153730 31269882
    [Google Scholar]
  37. MortonH.E. KocholatyW. KocholatyJ.R. KelnerA. Toxicity and antibiotic activity of kojic acid produced by Aspergillus luteo-virescens.J. Bacteriol.194550557958410.1128/jb.50.5.579‑584.1945 16561031
    [Google Scholar]
  38. GillbroJ.M. OlssonM.J. The melanogenesis and mechanisms of skin-lightening agents – existing and new approaches.Int. J. Cosmet. Sci.201133321022110.1111/j.1468‑2494.2010.00616.x 21265866
    [Google Scholar]
  39. EphremE. ElaissariH. GergesG.H. Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge.Int. J. Pharm.20175261-2506810.1016/j.ijpharm.2017.04.020 28416402
    [Google Scholar]
  40. BalaguerA. SalvadorA. ChisvertA. A rapid and reliable size-exclusion chromatographic method for determination of kojic dipalmitate in skin-whitening cosmetic products.Talanta200875240741110.1016/j.talanta.2007.11.021 18371899
    [Google Scholar]
  41. HatemS. HoffyE.N.M. ElezabyR.S. NasrM. KamelA.O. ElkheshenS.A. Background and different treatment modalities for melasma: Conventional and nanotechnology-based approaches.J. Drug Deliv. Sci. Technol.20206010198410.1016/j.jddst.2020.101984
    [Google Scholar]
  42. EzzatH. RadyM. HathoutR.M. HalimA.M. MansourS. Enhanced anti-bacterial effect of kojic acid using gelatinized core liposomes: A potential approach to combat antibiotic resistance.J. Drug Deliv. Sci. Technol.20216410262510.1016/j.jddst.2021.102625
    [Google Scholar]
  43. BracarenseA.A.P. TakahashiJ.A. Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus.Braz. J. Microbiol.201445131332110.1590/S1517‑83822014000100045 24948950
    [Google Scholar]
  44. RomagnoliC. BaldisserottoA. MalisardiG. VicentiniC. MaresD. AndreottiE. VertuaniS. ManfrediniS. A multi-target approach toward the development of novel candidates for antidermatophytic activity: Ultrastructural evidence on α-bisabolol-treated microsporum gypseum.Molecules2015207117651177610.3390/molecules200711765 26132903
    [Google Scholar]
  45. VijayalakshmiP. DurgadeviK.B. A study on anti-fungal activity of kojic acid synthesized by Aspergillus flavus FJ537130 strain isolated from peanut soil.Asian J. Microbiol. Biotechnol. Environ. Sci.201719160164
    [Google Scholar]
  46. ÇevikK. UlusoyS. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2′-bipyridyl, lipoic, kojic and picolinic acids.Iran. J. Basic Med. Sci.2015188758763 26557964
    [Google Scholar]
  47. AliA. ElsheshtawyN. FouadN. IbrahimW. In vitro activity of EDTA, Kojic Acid and their combination against biofilm forming microorganisms causing catheter associated urinary tract infections 2019.Egypt. J. Med. Microbiol.201928112713310.21608/ejmm.2023.282449
    [Google Scholar]
  48. AzharS.S.N.A. AshariS.E. AhmadS. SalimN. In vitro kinetic release study, antimicrobial activity and in vivo toxicity profile of a kojic acid ester-based nanoemulsion for topical application.RSC Advances20201071438944390310.1039/D0RA04807K 35519703
    [Google Scholar]
  49. WangX.R. ChengH.M. GaoX.W. ZhouW. LiS.J. CaoX.L. YanD. Intercalation assembly of kojic acid into Zn-Ti layered double hydroxide with antibacterial and whitening performances.Chin. Chem. Lett.201930491992310.1016/j.cclet.2019.03.050
    [Google Scholar]
  50. AytemirM.D. ÖzçelikB. A study of cytotoxicity of novel chlorokojic acid derivatives with their antimicrobial and antiviral activities.Eur. J. Med. Chem.20104594089409510.1016/j.ejmech.2010.05.069 20591538
    [Google Scholar]
  51. ZillesJ.C. Santosd.F.L. GuerreiroK.I.C. ContriR.V. Biological activities and safety data of kojic acid and its derivatives: A review.Exp. Dermatol.202231101500152110.1111/exd.14662 35960194
    [Google Scholar]
  52. SiddhardhaB. MurtyU.S.N. NarasimhuluM. VenkateswarluY. Isolation, characterization and biological evaluation of secondary metabolite from Aspergillus funiculosus.Indian J. Microbiol.201050222522810.1007/s12088‑010‑0044‑7 23100833
    [Google Scholar]
  53. RajamanikyamM. GadeS. VadlapudiV. ParvathaneniS.P. KoudeD. DommatiK.A. TiwariK.A. MisraS. SripadiP. AmanchyR. UpadhyayulaS.M. Biophysical and biochemical characterization of active secondary metabolites from Aspergillus allahabadii.Process Biochem.201756455610.1016/j.procbio.2017.02.010
    [Google Scholar]
  54. WuY. ShiY. ZengL. PanY. HuangX. BianL. ZhuY. ZhangR. ZhangJ. Evaluation of antibacterial and anti-biofilm properties of kojic acid against five food-related bacteria and related subcellular mechanisms of bacterial inactivation.Food Sci. Technol. Int.201925131510.1177/1082013218793075 30111175
    [Google Scholar]
  55. XieW. ZhangH. HeJ. ZhangJ. YuQ. LuoC. LiS. Synthesis and biological evaluation of novel hydroxybenzaldehyde-based kojic acid analogues as inhibitors of mushroom tyrosinase.Bioorg. Med. Chem. Lett.201727353053210.1016/j.bmcl.2016.12.027 28011217
    [Google Scholar]
  56. RadhakrishnanS. ShimmonR. ConnC. BakerA. Integrated kinetic studies and computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors.Bioorg. Med. Chem. Lett.201525194085409110.1016/j.bmcl.2015.08.033 26318997
    [Google Scholar]
  57. FerrerS.Á. LópezN.R.J. CánovasG.F. CarmonaG.F. Tyrosinase: A comprehensive review of its mechanism.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.19951247111110.1016/0167‑4838(94)00204‑T
    [Google Scholar]
  58. TarantoF. PasqualoneA. ManginiG. TripodiP. MiazziM. PavanS. MontemurroC. Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects.Int. J. Mol. Sci.201718237710.3390/ijms18020377 28208645
    [Google Scholar]
  59. MohaniaD. ChandelS. KumarP. VermaV. DigvijayK. TripathiD. ChoudhuryK. MittenS.K. ShahD. Ultraviolet radiations: Skin defense-damage mechanism.Ultraviolet Light in Human Health, Diseases and Environment20177187
    [Google Scholar]
  60. KumariS. ThngS. VermaN. GautamH. Melanogenesis inhibitors.Acta Derm. Venereol.2018981092493110.2340/00015555‑3002 29972222
    [Google Scholar]
  61. EmamiS. HosseinimehrS.J. ShahrbandiK. EnayatiA.A. EsmaeeliZ. Synthesis and evaluation of 2(3H)-thiazole thiones as tyrosinase inhibitors.Arch. Pharm.2012345862963710.1002/ardp.201200028 22532401
    [Google Scholar]
  62. AshoorihaM. KhoshneviszadehM. KhoshneviszadehM. MoradiS.E. RafieiA. KardanM. EmamiS. 1,2,3-Triazole-based kojic acid analogs as potent tyrosinase inhibitors: Design, synthesis and biological evaluation.Bioorg. Chem.20198241442210.1016/j.bioorg.2018.10.069 30428420
    [Google Scholar]
  63. LeeM. ParkH.Y. JungK.H. KimD.H. RhoH.S. ChoiK. Anti-melanogenic effects of kojic acid and hydroxycinnamic acid derivatives.Biotechnol. Bioprocess Eng.202025219019610.1007/s12257‑019‑0421‑y
    [Google Scholar]
  64. SaghaieL. PourfarzamM. FassihiA. SartippourB. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid.Res. Pharm. Sci.201384233242 24082892
    [Google Scholar]
  65. KolbeL. MannT. GerwatW. BatzerJ. AhlheitS. SchernerC. WenckH. StäbF. 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation.J. Eur. Acad. Dermatol. Venereol.201327S1192310.1111/jdv.12051 23205541
    [Google Scholar]
  66. KaiH. MatsunoK. Assessment of the effect of arbutin isomers and kojic acid on melanin production, tyrosinase activity, and tyrosinase expression in B16-4A5 and HMV-II melanoma cells.Planta Medica Letters201521e39e4110.1055/s‑0035‑1557833
    [Google Scholar]
  67. LajisA.F.B. HamidM. AriffA.B. Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells.J. Biomed. Biotechnol.2012201295245210.1155/2012/952452
    [Google Scholar]
  68. AshariS.E. MohamadR. AriffA. BasriM. SallehA.B. Optimization of enzymatic synthesis of palm-based kojic acid ester using response surface methodology.J. Oleo Sci.2009581050351010.5650/jos.58.503 19745577
    [Google Scholar]
  69. KhamaruddinN.H. BasriM. LianG.C. SallehA.B. RahmanA.R. AriffA. MohamadR. AwangR. Enzymatic synthesis and characterization of palm-based kojic acid ester.J. Oil Palm Res.200820461469
    [Google Scholar]
  70. ChenY.M. SuW.C. LiC. ShiY. ChenQ.X. ZhengJ. TangD.L. ChenS.M. WangQ. Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish.Int. J. Biol. Macromol.201912372373110.1016/j.ijbiomac.2018.11.031 30414415
    [Google Scholar]
  71. HeM. FanM. LiuW. LiY. WangG. Design, synthesis, molecular modeling, and biological evaluation of novel kojic acid derivatives containing bioactive heterocycle moiety as inhibitors of tyrosinase and antibrowning agents.Food Chem.202136213024110.1016/j.foodchem.2021.130241 34118508
    [Google Scholar]
  72. LeeY.S. ParkJ.H. KimM.H. SeoS.H. KimH.J. Synthesis of tyrosinase inhibitory kojic acid derivative.Arch. Pharm.2006339311111410.1002/ardp.200500213 16511808
    [Google Scholar]
  73. NiriR.D. SayahiM.H. BehrouzS. MoazzamA. RasekhF. TanidehN. IrajieC. NezhadS.M. LarijaniB. IrajiA. MahdaviM. Design, synthesis, in vitro, and in silico evaluations of kojic acid derivatives linked to amino pyridine moiety as potent tyrosinase inhibitors.Heliyon2023911e2200910.1016/j.heliyon.2023.e22009 38034733
    [Google Scholar]
  74. KhezriK. SaeediM. SemnaniM.K. AkbariJ. OmranH.A. A promising and effective platform for delivering hydrophilic depigmenting agents in the treatment of cutaneous hyperpigmentation: Kojic acid nanostructured lipid carrier.Artif. Cells Nanomed. Biotechnol.2021491384710.1080/21691401.2020.1865993 33438443
    [Google Scholar]
  75. KhanA. ParkT.J. IkramM. AhmadS. AhmadR. JoM.G. KimM.O. Antioxidative and anti-inflammatory effects of kojic acid in Aβ-induced mouse model of Alzheimer’s disease.Mol. Neurobiol.202158105127514010.1007/s12035‑021‑02460‑4 34255249
    [Google Scholar]
  76. AsadzadehA. SirousH. PourfarzamM. YaghmaeiP. AfshinF. In vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme.Iran. J. Basic Med. Sci.2016192132144 27081457
    [Google Scholar]
  77. ChenY.M. LiC. ZhangW.J. ShiY. WenZ.J. ChenQ.X. WangQ. Kinetic and computational molecular docking simulation study of novel kojic acid derivatives as anti-tyrosinase and antioxidant agents.J. Enzyme Inhib. Med. Chem.201934199099810.1080/14756366.2019.1609467 31072148
    [Google Scholar]
  78. GonçalezM.L. MarcussiD.G. CalixtoG.M.F. CorrêaM.A. ChorilliM. Structural characterization and in vitro antioxidant activity of kojic dipalmitate loaded W/O/W multiple emulsions intended for skin disorders.BioMed Res. Int.201520151304591
    [Google Scholar]
  79. LobatoC.C. OrdoñezM.E. QueirozR.L. SantosC.B.R. BorgesR.S. A comparative study between kojic acid and its methylated derivatives as antioxidant related to maltol and alomaltol.Chem. Data Collect.20202810046410.1016/j.cdc.2020.100464
    [Google Scholar]
  80. MomoC.H.K. MboussaahA.D.K. ZambouF.N. ShaiqM.A. New pyran derivative with antioxidant and anticancer properties isolated from the probiotic Lactobacillus plantarum H24 strain.Nat. Prod. Res.202236490991710.1080/14786419.2020.1849201 33225751
    [Google Scholar]
  81. RodriguesA.P.D. CarvalhoA.S.C. SantosA.S. AlvesC.N. NascimentoJ.L.M. SilvaE.O. Kojic acid, a secondary metabolite from Aspergillus sp., acts as an inducer of macrophage activation.Cell Biol. Int.201135433534310.1042/CBI20100083 21044044
    [Google Scholar]
  82. RodriguesA.P.D. FariasL.H.S. CarvalhoA.S.C. SantosA.S. Nascimentod.J.L.M. SilvaE.O. A novel function for kojic acid, a secondary metabolite from Aspergillus fungi, as antileishmanial agent.PLoS One201493e9125910.1371/journal.pone.0091259 24621481
    [Google Scholar]
  83. RhoH.S. AhnS.M. YooD.S. KimM.K. ChoD.H. ChoJ.Y. Kojyl thioether derivatives having both tyrosinase inhibitory and anti-inflammatory properties.Bioorg. Med. Chem. Lett.201020226569657110.1016/j.bmcl.2010.09.042 20934336
    [Google Scholar]
  84. KarakayaG. ErcanA. OnculS. AytemirM.D. Synthesis and cytotoxic evaluation of kojic acid derivatives with inhibitory activity on melanogenesis in human melanoma cells. Anti-Canc.Agents Med. Chem.2018181521372148
    [Google Scholar]
  85. AnnanN.A. ButlerI.S. TitiH.M. LazeikE.Y. ClaudeJ.B.J. MostafaS.I. DNA interaction and anticancer evaluation of new zinc(II), ruthenium(II), rhodium(III), palladium(II), silver(I) and platinum(II) complexes based on kojic acid; X-ray crystal structure of [Ag(ka)(PPh3)]·H2O.Inorg. Chim. Acta201948743344710.1016/j.ica.2018.12.031
    [Google Scholar]
  86. ErcanA. OnculS. KarakayaG. AytemirM. An allomaltol derivative triggers distinct death pathways in luminal a and triple-negative breast cancer subtypes.Bioorg. Chem.202010510440310.1016/j.bioorg.2020.104403 33166845
    [Google Scholar]
  87. OnculS. KarakayaG. AytemirD.M. ErcanA. A kojic acid derivative promotes intrinsic apoptotic pathway of hepatocellular carcinoma cells without incurring drug resistance.Chem. Biol. Drug Des.20199462084209310.1111/cbdd.13615 31495064
    [Google Scholar]
  88. WeiX. LuoD. YanY. YuH. SunL. WangC. SongF. GeH. QianH. LiX. TangX. LiuP. Kojic acid inhibits senescence of human corneal endothelial cells via NF-κB and p21 signaling pathways.Exp. Eye Res.201918017418310.1016/j.exer.2018.12.020 30597146
    [Google Scholar]
  89. AytemirM.D. ÇalışÜ. Anticonvulsant and neurotoxicity evaluation of some novel kojic acids and allomaltol derivatives.Arch. Pharm.2010343317318110.1002/ardp.200900236 20108269
    [Google Scholar]
  90. NurchiV.M. CrisponiG. ArcaM. AlonsoC.M. LachowiczJ.I. MansooriD. TosoL. PichiriG. SantosA.M. MarquesS.M. GutiérrezN.J. PérezG.J.M. MartínD.A. LazarteC.D. SzewczukZ. ZorodduA.M. PeanaM. A new bis-3-hydroxy-4-pyrone as a potential therapeutic iron chelating agent. Effect of connecting and side chains on the complex structures and metal ion selectivity.J. Inorg. Biochem.201414113214310.1016/j.jinorgbio.2014.09.002 25260149
    [Google Scholar]
  91. DesaiS. AyresE. BakH. MancoM. LynchS. RaabS. DuA. GreenD. SkobowiatC. TalbotW.J. ZhengQ. Effect of a tranexamic acid, kojic acid, and niacinamide containing serum on facial dyschromia: A clinical evaluation.J. Drugs Dermatol.2019185454459 31141852
    [Google Scholar]
  92. NohJ.M. KwakS.Y. SeoH.S. SeoJ.H. KimB.G. LeeY.S. Kojic acid–amino acid conjugates as tyrosinase inhibitors.Bioorg. Med. Chem. Lett.200919195586558910.1016/j.bmcl.2009.08.041 19700313
    [Google Scholar]
  93. ChoY.H. KimJ.H. ParkS.M. LeeB.C. PyoH.B. ParkH.D. New cosmetic agents for skin whitening from Angelica dahurica.J. Cosmet. Sci.20065711121 16676120
    [Google Scholar]
  94. ChibS. DograA. NandiU. SaranS. Consistent production of kojic acid from Aspergillus sojae SSC-3 isolated from rice husk.Mol. Biol. Rep.20194665995600210.1007/s11033‑019‑05035‑8 31432358
    [Google Scholar]
  95. JiangZ. LiS. LiuY. DengP. HuangJ. HeG. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway.Acta Biochim. Biophys. Sin.2011431076377010.1093/abbs/gmr078 21896570
    [Google Scholar]
  96. SongX. NiM. ZhangY. ZhangG. PanJ. GongD. Comparing the inhibitory abilities of epigallocatechin-3-gallate and gallocatechin gallate against tyrosinase and their combined effects with kojic acid.Food Chem.202134912917210.1016/j.foodchem.2021.129172 33545599
    [Google Scholar]
  97. OyedejiF.O. HassanG.O. AdelekeB.B. Hydroquinone and heavy metals levels in cosmetics marketed in Nigeria.Trends Appl. Sci. Res.20116762263910.3923/tasr.2011.622.639
    [Google Scholar]
  98. HouW. YueQ. LiuW. WuJ. YiY. WangH. Characterization of spoilage bacterial communities in chilled duck meat treated by kojic acid.Food Sci. Hum. Wellness2021101727710.1016/j.fshw.2020.05.015
    [Google Scholar]
  99. WehnerF. ThielP. RensburgV.S. DemasiusI.P. Mutagenicity to Salmonella typhimurium of some Aspergillus and penicillium mycotoxins. Mutation Res./Gene.Toxicol.1978582-3193203
    [Google Scholar]
  100. ChenJ.S. WeiC.I. MarshallM.R. Inhibition mechanism of kojic acid on polyphenol oxidase.J. Agric. Food Chem.199139111897190110.1021/jf00011a001
    [Google Scholar]
  101. LiuX. XuY. ZhanX. XieW. YangX. CuiS.W. XiaW. Development and properties of new kojic acid and chitosan composite biodegradable films for active packaging materials.Int. J. Biol. Macromol.202014448349010.1016/j.ijbiomac.2019.12.126 31857176
    [Google Scholar]
  102. SheikhshoaieM. SheikhshoaieI. RanjbarM. Analysis of kojic acid in food samples uses an amplified electrochemical sensor employing V2O5 nanoparticle and room temperature ionic liquid.J. Mol. Liq.201723159760110.1016/j.molliq.2017.02.039
    [Google Scholar]
  103. ChochkovaM. StoykovaB. GlombN.L. PhilipovS. MilkovaT. Synthesis of 3-aminomethylglaucine derivatives and in vitro evaluation of their anti-tyrosinase, antiviral and radical scavenging activities.J. Chem. Technol. Metal.2020552261271
    [Google Scholar]
  104. UchinoK. NagawaM. TonosakiY. OdaM. FukuchiA. Kojic acid as an anti-speck agent.Agric. Biol. Chem.1988521026092610
    [Google Scholar]
  105. AriffA.B. SallehM.S. GhaniB. HassanM.A. RusulG. KarimM.I.A. Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus link.Enzyme Microb. Technol.199619754555010.1016/S0141‑0229(96)00065‑8
    [Google Scholar]
  106. AmmarH.A. EzzatS.M. HousenyA.M. Improved production of kojic acid by mutagenesis of Aspergillus flavus HAk1 and Aspergillus oryzae HAk2 and their potential antioxidant activity.3 Biotech20177113
    [Google Scholar]
  107. PerokovićV.P. CarŽ. UsenikA. BernardiO.T. JurićA. TomićS. Adamantyl pyran-4-one derivatives and their in vitro antiproliferative activity.Mol. Divers.202024125326310.1007/s11030‑019‑09948‑1 30953295
    [Google Scholar]
  108. SalehR.M. KabliS.A. GarniA.S.M. MohamedS.A. Screening and production of antibacterial compound from Trichoderma spp. against human-pathogenic bacteria.Afr. J. Microbiol. Res.201151316191628
    [Google Scholar]
  109. ZhangH.Y. HaoX.P. MoL.P. LiuS.S. ZhangW.B. ZhangZ.H. A magnetic metal–organic framework as a highly active heterogeneous catalyst for one-pot synthesis of 2-substituted alkyl and aryl(indolyl)kojic acid derivatives.New J. Chem.201741157108711510.1039/C7NJ01592E
    [Google Scholar]
  110. YuS.W. ZhaoS.H. ChenH. XuX.Y. YuanW.C. ZhangX.M. Construction of novel kojic acid fused furans by domino reactions of a kojic acid derivative with (Z)-bromonitroalkenes.ChemistrySelect20183174827483010.1002/slct.201800396
    [Google Scholar]
  111. LiuJ.M. YuT.C. LinS.P. HsuR.J. HsuK.D. ChengK.C. Evaluation of kojic acid production in a repeated-batch PCS biofilm reactor.J. Biotechnol.2016218414810.1016/j.jbiotec.2015.11.023 26657710
    [Google Scholar]
  112. MaruiJ. YamaneN. KunihiroO.S. AndoT. TerabayashiY. SanoM. OhashiS. OhshimaE. TachibanaK. HigaY. NishimuraM. KoikeH. MachidaM. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)2Cys6 transcriptional activator and induced by kojic acid at the transcriptional level.J. Biosci. Bioeng.20111121404310.1016/j.jbiosc.2011.03.010 21514215
    [Google Scholar]
/content/journals/coc/10.2174/0113852728350999241230080328
Loading
/content/journals/coc/10.2174/0113852728350999241230080328
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test