Skip to content
2000
Volume 29, Issue 17
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Several studies have reported that aldol condensation of various cyclic and acyclic ketones with aromatic aldehydes leads to the formation of symmetrical bisarylidene derivatives, while efficient synthesis of mono- and dissymmetric bisarylidenes is not very common and only a limited number of related reports are available. In the present work, a new one-pot method is designed and performed to synthesize dissymmetric bisarylidene derivatives of tetrahydro-4-pyran-4-one heterocyclic system. Under the optimized conditions, the first aldehyde reacts with the starting ketone to give the corresponding monoarylidene. This monoarylidene can be either isolated as product or used as the intermediate for a subsequent condensation with the second aldehyde to produce the respective derivative of . Both steps can take place in one pot, and high yields of either the monoarylidene intermediates or the final dissymmetric bisarylidene products would be obtained in short time intervals. The method is amenable to the synthesis of both mono- and dissymmetric bisarylidenes of the target compounds. New products of the reaction are fully characterized based on their 1H NMR, 13C NMR, IR, and mass spectroscopic data. The purity of these products is confirmed by elemental analyses. The results are promising to expand the outcome by applying the conditions to the synthesis of the respective derivatives of other heterocyclic systems.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728354918250115180854
2025-02-10
2025-08-16
Loading full text...

Full text loading...

References

  1. MorsyN.M. HassanA.S. Synthesis, reactions, and applications of chalcones: A review.Eur. J. Chem.202213224125210.5155/eurjchem.13.2.241‑252.2245
    [Google Scholar]
  2. BorgeV.V. PatilR.M. Comparative study on synthesis and biological, pharmaceutical applications of aromatic substituted chalcones.Mini Rev. Org. Chem.202320326026910.2174/1570193X19666220420110928
    [Google Scholar]
  3. NagargojeA.A. DeshmukhT.R. ShaikhM.H. KhedkarV.M. ShingateB.B. Anticancer perspectives of monocarbonyl analogs of curcumin: A decade (2014–2024) review.Arch. Pharm.20243579240019710.1002/ardp.202400197 38895952
    [Google Scholar]
  4. PereiraR. SilvaA.M.S. RibeiroD. SilvaV.L.M. FernandesE. Bis-chalcones: A review of synthetic methodologies and anti-inflammatory effects.Eur. J. Med. Chem.202325211528011530110.1016/j.ejmech.2023.115280 36966653
    [Google Scholar]
  5. Banon-CaballeroA. GuillenaG. NajeraC. Solvent-free enantioselective organocatalyzed aldol reactions.Mini Rev. Org. Chem.201411211812810.2174/1570193X1102140609115452
    [Google Scholar]
  6. ZhangY. WangM. LiangJ. ShangZ.S. An environment-friendly and efficient method for aldol condensation catalyzed by L-Lysine in pure water.Lett. Org. Chem.201071273110.2174/157017810790533995
    [Google Scholar]
  7. YaoN. WuY.P. ZhengK.B. HuY.L. Recent advances in catalytic condensation reactions applications of supported ionic liquids.Curr. Org. Chem.201822546248410.2174/1385272821666171106144935
    [Google Scholar]
  8. MauryaA. AgrawalA. Recent advancement in bioactive chalcone hybrids as potential antimicrobial agents in medicinal chemistry.Mini Rev. Med. Chem.202424217619510.2174/1389557523666230727102606 37497710
    [Google Scholar]
  9. de OliveiraA.S. CenciA.R. GonçalvesL. ThedyM.E.C. JustinoA. BragaA.L. MeierL. Chalcone derivatives as antibacterial agents: An updated overview.Curr. Med. Chem.202431172314232910.2174/0929867330666230220140819 36803761
    [Google Scholar]
  10. Mahboubi-RabbaniM. ZareiR. BaradaranM. BayanatiM. ZarghiA. Chalcones as potential cyclooxygenase-2 inhibitors: A review.Anticancer. Agents Med. Chem.2024242779510.2174/0118715206267309231103053808 37962049
    [Google Scholar]
  11. KaratiD. KumarD. An insight into synthetic strategies, SAR study and anticancer mechanism of chalcone derivatives: Medicinal chemistry perspective.Curr. Drug Res. Rev.202416117
    [Google Scholar]
  12. BaleA.T. SalarU. KhanK.M. ChigurupatiS. FasinaT. AliF. AliM. NandaS.S. TahaM. PerveenS. Chalcones and Bis-chalcones analogs as DPPH and ABTS radical scavengers.Lett. Drug Des. Discov.202118324925710.2174/1570180817999201001155032
    [Google Scholar]
  13. YangJ. LvJ. ChengS. JingT. MengT. HuoD. MaX. WenR. Recent progresses in chalcone derivatives as potential anticancer agents.Anticancer. Agents Med. Chem.202323111265128310.2174/1871520623666230223112530 36825723
    [Google Scholar]
  14. RamadanS.K. RizkS.A. El-HelwE.A.E. Synthesis and biological applications of coumarinyl-chalcones.Curr. Org. Chem.2024281289790410.2174/0113852728248318240418092208
    [Google Scholar]
  15. PatelS. MishraS. Design, synthesis and characterization of deoxycholic acid-chalcone conjugates as antioxidant agents.Curr. Org. Chem.2024281323910.2174/0113852728280936231221110245
    [Google Scholar]
  16. OlenderD. Sowa-KasprzakK. PawełczykA. SkóraB. ZaprutkoL. SzychowskiK.A. Curcuminoid chalcones: Synthesis and biological activity against the human colon carcinoma (Caco-2) cell line.Curr. Med. Chem.202431335397541610.2174/0109298673257972230919055832 37779412
    [Google Scholar]
  17. MittalR. SharmaS. MittalA. KushwahA.S. Novel dual COX-2/5-LOX inhibitory activity by chalcone derivatives: A safe and efficacious anti-inflammatory agent.Antiinflamm. Antiallergy Agents Med. Chem.202423317418610.2174/0118715230301176240605072113 38939991
    [Google Scholar]
  18. ZouQ. ZhaoY. MakarovN.S. CampoJ. YuanH. FangD.C. PerryJ.W. WuF. Effect of alicyclic ring size on the photophysical and photochemical properties of bis(arylidene)cycloalkanone compounds.Phys. Chem. Chem. Phys.20121433117431175210.1039/c2cp41952a 22828583
    [Google Scholar]
  19. KenI. HiroshiK. KazuoT. YoshihiroO. Syntheses of novel planar metacyclophanes by Claisen-Schmidt condensation and thermal stabilities of their photoisomers.Lett. Org. Chem.20129701705
    [Google Scholar]
  20. AsiriA.M. Synthesis and absorption sectral properties of bis-methine dyes exemplified by 2,5-bis-arylidene-1-dicyanomethylenecyclopentanes.Bull. Korean Chem. Soc.200324442643010.5012/bkcs.2003.24.4.426
    [Google Scholar]
  21. BakrE.A. Al-JumailiM.H.A. Synthesis and liquid crystalline properties of new chalcone derivatives central linkages.Mol. Cryst. Liq. Cryst.20207101404810.1080/15421406.2020.1848254
    [Google Scholar]
  22. GallardoH. WestphalE. Importance of organic synthesis in the development of liquid crystals.Curr. Org. Synth.201512680682110.2174/157017941206150828113416
    [Google Scholar]
  23. StarostinR.O. FreidzonA.Y. GromovS.P. Theoretical study of structure and photophysics of homologous series of bis(arylydene)cycloalkanones.Int. J. Mol. Sci.20232417133621337310.3390/ijms241713362 37686167
    [Google Scholar]
  24. QueirozJ.E. DiasL.D. VerdeG.M.V. AquinoG.L.B. CamargoA.J. An update on the synthesis and pharmacological properties of pyrazoles obtained from chalcone.Curr. Org. Chem.2022262819010.2174/1385272826666220119110347
    [Google Scholar]
  25. SureshT. NachiappanD.M. KarthikeyanG. VijayakumarV. P JasinskiJ. SarveswariS. An efficient synthesis of novel aminothiazolylacetamido-substituted 3,5-bis(arylidene)-4-piperidone derivatives and their cytotoxicity studies.ACS Omega2024927292442925110.1021/acsomega.4c00039 39005779
    [Google Scholar]
  26. GirgisA.S. D’ArcyP. AboshoukD.R. BekheitM.S. Synthesis and bio-properties of 4-piperidone containing compounds as curcumin mimics.RSC Advances20221248311023112310.1039/D2RA05518J 36349009
    [Google Scholar]
  27. MohammadA.N. MehriS. Sulfuric acid-modified PEG-6000 (PEG-SO3H): An efficient, bio-degradable and reusable catalyst for synthesis of α,α′-bis(arylidene) cycloalkanones under solvent-free conditions.Lett. Org. Chem.20131016417010.2174/1570178611310030004
    [Google Scholar]
  28. MishraS. DasD. SahuA. PatilS. AgrawalR.K. GajbhiyeA. Phosphonate derivatives of 3,5-bis(arylidene)-4-piperidone: Synthesis and biological evaluation.Antiinfect. Agents202018324525410.2174/2211352517666190820143735
    [Google Scholar]
  29. MojtahediM.M. DarvishiK. AbaeeM.S. EghtedariM. HalvagarM.R. Multicomponent synthesis of a novel bicyclic pyran-2-one system.Monatsh. Chem.20221535-650150610.1007/s00706‑022‑02923‑x
    [Google Scholar]
  30. VermaD.K. DewanganY. VermaC. Reactions of Aldehydes and Ketones.In: Handbook of Organic Name Reactions, Reagents, Mechanism and Applications.CambridgeElsevier202315516310.1016/B978‑0‑323‑95948‑3.00002‑7
    [Google Scholar]
  31. GuthrieJ.P. GuoJ. Intramolecular aldol condensations:-Rate and equilibrium constants.J. Am. Chem. Soc.199611846114721148710.1021/ja954247l
    [Google Scholar]
  32. AliA. AshfaqM. DinZ.U. IbrahimM. KhalidM. AssiriM.A. RiazA. TahirM.N. Rodrigues-FilhoE. ImranM. KuznetsovA. Synthesis, structural, and intriguing electronic properties of symmetrical bis-aryl-α,β--unsaturated ketone derivatives.ACS Omega2022743392943930910.1021/acsomega.2c05441 36340158
    [Google Scholar]
  33. AliA. DinZ.U. IbrahimM. AshfaqM. MuhammadS. GullD. TahirM.N. Rodrigues-FilhoE. Al-SehemiA.G. SulemanM. Acid catalyzed one-pot approach towards the synthesis of curcuminoid systems: unsymmetrical diarylidene cycloalkanones, exploration of their single crystals, optical and nonlinear optical properties.RSC Advances20231374476449410.1039/D2RA07681K 36760294
    [Google Scholar]
  34. VermaA.K. KishorB.N. PrakashO. Recent advancement and novel application of organocatalyzed aldol condensation reactions: A comprehensive review.Mini Rev. Org. Chem.202219677979510.2174/1570193X19666220104093837
    [Google Scholar]
  35. LiuY-X. MaZ-W. LiY-X. TaoJ-C. New prolinamides with isosteviol skeleton as efficient organocatalysts for the direct asymmetric aldol reaction.Lett. Org. Chem.201815430731310.2174/1570178615666171226163338
    [Google Scholar]
  36. ZahimS. DelacroixK. CarlierA. BerrangerT. BergraserJ. EcheverriaP.G. PetitL. Tetrahydro-4H-pyran-4-one: from the laboratory scale to pilot plant manufacture.Org. Process Res. Dev.202226119920610.1021/acs.oprd.1c00403
    [Google Scholar]
  37. Saleh Mariziq Al-SarhaniM. Abdelgayed Ahmed ArafaW. Atef GhoneimA. AlthobaitiI.O. Farok HusseinM. Kamal MouradA. Efficient one-pot synthesis of 2-amino-4H pyran-3-carbonitriles using ionic liquid: Reactions, quantum-chemical calculations, and antiproliferative activity.ChemistrySelect202491e20230360710.1002/slct.202303607
    [Google Scholar]
  38. ZhengQ. TangS. XiongD.C. LiQ. YeX.S. Carbocyclic ring closure of aryl C-glycosides promoted by fluoroboric acid.J. Org. Chem.202085149339934610.1021/acs.joc.0c00784 32567318
    [Google Scholar]
  39. HashimotoH. IkemotoT. ItohT. MaruyamaH. HanaokaT. WakimasuM. MitsuderaH. TomimatsuK. Process development of 4-[N-methyl-N-(tetrahydropyran-4-yl)aminomethyl]aniline dihydrochloride:-A key intermediate for TAK-779, a small-molecule nonpeptide CCR5 antagonist.Org. Process Res. Dev.200261707310.1021/op010052o
    [Google Scholar]
  40. BoraS.K. ShitS. SahuA.K. SaikiaA.K. Diastereoselective synthesis of 2,6-disubstituted tetrahydropyranones via Prins cyclization of 3-bromobut-3-en-1-ols and aldehydes.J. Org. Chem.20238853012302110.1021/acs.joc.2c02715 36811615
    [Google Scholar]
  41. BeraN. SamantaS. SarkarD. Stereoselective synthesis of oxacycles via ruthenium-catalyzed atom-economic coupling of propargyl alcohols and michael acceptors.J. Org. Chem.20218623163691639510.1021/acs.joc.1c01758 34735155
    [Google Scholar]
  42. PrandiC. VenturelloP. 1,1-Diethoxybut-2-ene as a precursor of (2-hydroxyethyl)-substituted alkoxy dienes: Convenient intermediates for a new synthesis of 2-substituted and 2,6-disubstituted tetrahydro-4H-pyran-4-ones.J. Org. Chem.199459123494349610.1021/jo00091a048
    [Google Scholar]
  43. ChenJ.R. LiX.Y. XingX.N. XiaoW.J. Sterically and electronically tunable and bifunctional organocatalysts: Design and application in asymmetric aldol reaction of cyclic ketones with aldehydes.J. Org. Chem.200671218198820210.1021/jo0615089 17025312
    [Google Scholar]
  44. GuX. WangX. WangF. SunH. LiuJ. XieY. XiangM. Pyrrolidine-mediated direct preparation of (e)-monoarylidene derivatives of homo- and heterocyclic ketones with various aldehydes.Molecules20141921976198910.3390/molecules19021976 24526254
    [Google Scholar]
  45. FrolovA.I. ChuchveraY.O. OstapchukE.N. DruzhenkoT.V. VolochnyukD.M. RyabukhinS.V. Toward a chemical constructor: A lego-like approach for formal alpha-alkylation of cyclic ktones.J. Org. Chem.202489118208821910.1021/acs.joc.3c02628 38764429
    [Google Scholar]
  46. AshithaK.T. Praveen KumarV. Fathimath SalfeenaC.T. SasidharB.S. BF3·OEt2-mediated tandem annulation: A strategy to construct functionalized chromeno- and pyrano-fused pyridines.J. Org. Chem.201883111312410.1021/acs.joc.7b02463 29219308
    [Google Scholar]
  47. AliA. KhalidM. DinZ.U. AsifH.M. ImranM. TahirM.N. AshfaqM. Rodrigues-FilhoE. Exploration of structural, electronic and third order nonlinear optical properties of crystalline chalcone systems: Monoarylidene and unsymmetrical diarylidene cycloalkanones.J. Mol. Struct.2021124113068513069610.1016/j.molstruc.2021.130685
    [Google Scholar]
  48. ChenQ. ZhuM. XieJ. DongZ. KhushafahF. YunD. FuW. WangL. WeiT. LiuZ. QiuP. WuJ. LiW. Design and synthesis of novel nordihydroguaiaretic acid (NDGA) analogues as potential FGFR1 kinase inhibitors with anti-gastric activity and chemosensitizing effect.Front. Pharmacol.20201151806851808210.3389/fphar.2020.518068 33041789
    [Google Scholar]
  49. MoreiraJ. AlmeidaJ. LoureiroJ.B. RamosH. PalmeiraA. PintoM.M. SaraivaL. CidadeH. A diarylpentanoid with potential activation of the p53 pathway: Combination of in silico screening studies, synthesis, and biological activity evaluation.ChemMedChem202116192969298110.1002/cmdc.202100337 34170069
    [Google Scholar]
  50. WuJ. WuS. ShiL. ZhangS. RenJ. YaoS. YunD. HuangL. WangJ. LiW. WuX. QiuP. LiangG. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer.Eur. J. Med. Chem.20171251321133110.1016/j.ejmech.2016.10.027 27886548
    [Google Scholar]
  51. AlotaibiN.H. AlharbiK.S. AlzareaA.I. AlruwailiN.K. AlotaibiM.R. AlotaibiN.M. AlotaibiB.S. BukhariS.N.A. Pharmacological appraisal of ligustrazine based cyclohexanone analogs as inhibitors of inflammatory markers.Eur. J. Pharm. Sci.202014710529910530410.1016/j.ejps.2020.105299 32165315
    [Google Scholar]
  52. WangD.C. XieY.M. FanC. YaoS. SongH. Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity.Chin. Chem. Lett.20142571011101310.1016/j.cclet.2014.04.026
    [Google Scholar]
  53. KoraboinaC.P. MaddipatiV.C. AnnaduraiN. GurskáS. DžubákP. HajdúchM. DasV. GundlaR. Synthesis and biological evaluation of oxindole sulfonamide derivatives as bruton’s tyrosine kinase inhibitors.ChemMedChem2024191e20230051110.1002/cmdc.202300511 37916435
    [Google Scholar]
  54. LiR.P. ChenX. XuX. TangY. WangH. TangS. Stereoselective synthesis of highly substituted 1,3-dienes through dual 1,3-Sulfur rearrangement of dithianes with alkynylsilanes.Org. Lett.202426358158510.1021/acs.orglett.3c03348 38051762
    [Google Scholar]
  55. AbaeeM.S. AlizadehS. AzadiP. MojtahediM.M. HalvagarM.R. A Tandem aldol condensation/Diels-Alder sequence of reactions for one-pot synthesis of a new series of polysubstituted-decalines.ChemistrySelect202495e20230406010.1002/slct.202304060
    [Google Scholar]
  56. PoursharifiM.J. MojtahediM.M. AbaeeM.S. HashemiM.M. The first in situ synthesis of 1,3-dioxan-5-one derivatives and their direct use in Claisen-Schmidt reactions.Heterocycl. Commun.2019251859010.1515/hc‑2019‑0013
    [Google Scholar]
  57. MojtahediM.M. DarvishiK. AbaeeM.S. HalvagarM.R. Synthesis and fluorescence studies of novel bisarylmethylidene derivatives of 2-methoxy-2-methyl-1,3-dioxan-5-one.Can. J. Chem.201795778579110.1139/cjc‑2017‑0099
    [Google Scholar]
  58. MojtahediM.M. MehrabanM. DarvishiK. AbaeeM.S. Ultrasound mediated synthesis of dihydropyrano[3,2- d][1,3]dioxin-7-carbonitrile derivatives in H2O/EtOH medium.Heterocycl. Commun.2017232919510.1515/hc‑2017‑0014
    [Google Scholar]
  59. AbaeeM.S. MojtahediM.M. SharifiR. ZahediM.M. MesbahA.W. MassaW. Synthesis and X-ray crystallographic analysis of a bis(arylmethylidene) pyranone structure.J. Chem. Res.20082008738838910.3184/030823408785702472
    [Google Scholar]
  60. MojtahediM.M. AbaeeM.S. KhakbazM. AlishiriT. SamianifardM. MesbahA. HarmsK. An efficient procedure for the synthesis of α,β-unsaturated ketones and its application to heterocyclic systems.Synthesis20112011233821382610.1055/s‑0031‑1289571
    [Google Scholar]
  61. AbaeeM.S. ForghaniS. MojtahediM.M. HarmsK. Facile one-pot synthesis of novel dicyanoanilines fused to tetrahydro-4H-thiopyran-4-one ring via Et3N/H2O catalyzed pseudo four-component reaction.J. Sulfur Chem.201637668369110.1080/17415993.2016.1182170
    [Google Scholar]
  62. MojtahediM.M. AbaeeM.S. SamianifardM. ShamlooA. PadyabM. MesbahA.W. HarmsK. Ultrasound mediation for efficient synthesis of monoarylidene derivatives of homo- and heterocyclic ketones.Ultrason. Sonochem.201320392493010.1016/j.ultsonch.2012.11.004 23219616
    [Google Scholar]
  63. MojtahediM.M. DarvishiK. AbaeeM.S. HalvagarM.R. GhasemzadehM. Multicomponent synthesis of novel dihydropyrano-dioxine fused-bicyclic systems as a potentially new class of heterocyclic atropisomers.Tetrahedron Lett.20229815381015381310.1016/j.tetlet.2022.153810
    [Google Scholar]
  64. MojtahediM.M. AfshinpoorL. KarimiF. AbaeeM.S. Green synthesis of dissymmetric bisarylidene derivatives of cyclohexanone analogues under ultrasonic conditions.J. Indian Chem. Soc.201916220921710.1007/s13738‑018‑1498‑5
    [Google Scholar]
  65. QiuP. ZhangS. ZhouY. ZhuM. KangY. ChenD. WangJ. ZhouP. LiW. XuQ. JinR. WuJ. LiangG. Synthesis and evaluation of asymmetric curcuminoid analogs as potential anticancer agents that downregulate NF-κB activation and enhance the sensitivity of gastric cancer cell lines to irinotecan chemotherapy.Eur. J. Med. Chem.201713991792510.1016/j.ejmech.2017.08.022 28881286
    [Google Scholar]
/content/journals/coc/10.2174/0113852728354918250115180854
Loading
/content/journals/coc/10.2174/0113852728354918250115180854
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test