Skip to content
2000
Volume 29, Issue 13
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

A series of asymmetrical spirohomo- and methanofullerenes were synthesized for the first time in reactions of selective cycloaddition of adamantane diazo compounds to C fullerene in the presence of the catalyst Pd(PPh)Cl. Adamantane diazoalkanes were obtained in the oxidation reactions of adamantane hydrazones with manganese oxide MnO. It has been established that the presence of adamantyl on the methylene bridge (in the case of symmetry of the spirocyclic fragment), methyl and ethyl substituents, or no substituents (in the case of asymmetry of the spirocyclic fragment) leads to the formation of exclusively [5,6]-open isomers (homofullerenes); when the hydrocarbon radical (butyl and nonyl radical) is extended on the methylene bridge of the asymmetric spirocyclic fragment, only [6,6]-closed isomers (methanofullerenes) are formed. All homofullerenes obtained in this work do not isomerize into the corresponding methanofullerenes under thermal conditions (180°C, 100 hours). Homofullerenes containing an adamantyl radical (in the case of symmetry of the spirocyclic fragment) or not containing substituents (in the case of asymmetry of the spirocyclic fragment) on the methylene bridge do not isomerize into the corresponding methanofullerenes under the influence of ultrasound (room temperature, 5 hours). For the first time, sonochemical isomerization of spirohomofullerenes containing electron-donating methyl and ethyl groups on the methylene bridge into methanofullerenes was carried out under mild conditions (1.5 hours, toluene, room temperature, air). Atmospheric oxygen does not affect the isomerization reaction. The presence of CCl, which forms CCl radicals during sonolysis, suppresses isomerization reactions, which indicates the participation of radical particles in the rearrangement process. A probable mechanism for the structural rearrangement of homofullerenes into methanofullerenes under the action of ultrasound is proposed.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728346078241011054350
2025-01-01
2025-09-25
Loading full text...

Full text loading...

References

  1. WankaL. IqbalK. SchreinerP.R. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives.Chem. Rev.201311353516360410.1021/cr100264t23432396
    [Google Scholar]
  2. ŠtimacA. ŠekutorM. Mlinarić-MajerskiK. FrkanecL. FrkanecR. Adamantane in drug delivery systems and surface recognition.Molecules201722229731010.3390/molecules2202029728212339
    [Google Scholar]
  3. ShokovaÉ.A. KovalevV.V. Biological activity of adamantane-containing mono- and polycyclic pyrimidine derivatives* (A review).Pharm. Chem. J.2016502637510.1007/s11094‑016‑1400‑7
    [Google Scholar]
  4. StockdaleT.P. WilliamsC.M. Pharmaceuticals that contain polycyclic hydrocarbon scaffolds.Chem. Soc. Rev.201544217737776310.1039/C4CS00477A26171466
    [Google Scholar]
  5. IvlevaE.A. ZaborskayaM.S. ShiryaevV.A. KlimochkinY.N. One pot synthesis of bridgehead amino alcohols from diamantoid hydrocarbons.Synth. Commun.202353647649110.1080/00397911.2023.2177173
    [Google Scholar]
  6. ClaramuntR.M. SanzD. ElgueroJ. Alvarez-BuillaJ. GagoF. Farmaco, The PI-value of 1-adamantyl substituent-an HPLC study.Ed. Sci198742915919
    [Google Scholar]
  7. ShvekhgeimerM-G.A. Adamantane derivatives containing heterocyclic substituents in the bridgehead positions. Synthesis and properties.Russ. Chem. Rev.199665755559810.1070/RC1996v065n07ABEH000272
    [Google Scholar]
  8. BasarićN. SohoraM. CindroN. Mlinarić-MajerskiK. De ClercqE. BalzariniJ. Antiproliferative and antiviral activity of three libraries of adamantane derivatives.Arch. Pharm. (Weinheim)2014347533434010.1002/ardp.20130034524532384
    [Google Scholar]
  9. HassanG.S. El-EmamA.A. GadL.M. BarghashA.E.M. Synthesis, antimicrobial and antiviral testing of some new 1-adamantyl analogues.Saudi Pharm. J.201018312312810.1016/j.jsps.2010.05.00423964171
    [Google Scholar]
  10. GöktaşF. VanderlindenE. NaesensL. CesurN. CesurZ. Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide derivatives.Bioorg. Med. Chem.201220247155715910.1016/j.bmc.2012.09.06423117173
    [Google Scholar]
  11. El-EmamA.A. Al-DeebO.A. Al-OmarM. LehmannJ. Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones.Bioorg. Med. Chem.200412195107511310.1016/j.bmc.2004.07.03315351394
    [Google Scholar]
  12. Al-WahaibiL. HassanH. Abo-KamarA. GhabbourH. El-EmamA. Adamantane-isothiourea hybrid derivatives: Synthesis, characterization, in vitro antimicrobial, and in vivo hypoglycemic activities.Molecules201722571072210.3390/molecules2205071028468231
    [Google Scholar]
  13. BalajiG.L. SarveswariS. VijayakumarV. Synthesis of diversely substituted adamantanes as a new class of antimicrobial agent.Res. Chem. Intermed.20154196765677610.1007/s11164‑014‑1775‑6
    [Google Scholar]
  14. FesatidouM. ZagaliotisP. CamoutsisC. PetrouA. EleftheriouP. TratratC. HarounM. GeronikakiA. CiricA. SokovicM. 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation.Bioorg. Med. Chem.201826164664467610.1016/j.bmc.2018.08.00430107969
    [Google Scholar]
  15. AguiarD.F. DutraL.L.A. DantasW.M. Camelo de CarvalhoG.G. Gonçalves LemesR.P. do Ó PessoaC. Koscky PaierC.R. Barros AraujoP.L. AraujoE.S. PenaL.J. de OliveiraR.N. Synthesis, antitumor and cytotoxic activity of new adamantyl O ‐acylamidoximes and 3‐aryl‐5‐adamantane‐1,2,4‐oxadiazole derivatives.ChemistrySelect20194319112911810.1002/slct.201901285
    [Google Scholar]
  16. AnushaS. MohanC.D. AnandaH. BaburajeevC.P. RangappaS. MathaiJ. FuchsJ.E. LiF. ShanmugamM.K. BenderA. SethiG. Basappa RangappaK.S. Adamantyl-tethered-biphenylic compounds induce apoptosis in cancer cells by targeting BCL homologs.Bioorg. Med. Chem. Lett.20162631056106010.1016/j.bmcl.2015.12.02626725030
    [Google Scholar]
  17. ZhuX. SunJ. WangS. BuW. YaoM. GaoK. SongY. ZhaoJ. LuC. ZhangE. YangZ. WenA. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives.J. Mol. Struct.2016110861161710.1016/j.molstruc.2015.12.048
    [Google Scholar]
  18. KadiA.A. Al-AbdullahE.S. ShehataI.A. HabibE.E. IbrahimT.M. El-EmamA.A. Synthesis, antimicrobial and anti-inflammatory activities of novel 5-(1-adamantyl)-1,3,4-thiadiazole derivatives.Eur. J. Med. Chem.201045115006501110.1016/j.ejmech.2010.08.00720801553
    [Google Scholar]
  19. FortR.C. SchleyerP.R. Adamantane: Consequences of the diamondoid structure.Chem. Rev.196464327730010.1021/cr60229a004
    [Google Scholar]
  20. HirschA. Addition reactions of buckminsterfullerene (C60).Synthesis19951995889591310.1055/s‑1995‑4046
    [Google Scholar]
  21. BosiS. Da RosT. SpallutoG. PratoM. Fullerene derivatives: An attractive tool for biological applications.Eur. J. Med. Chem.20033811-1291392310.1016/j.ejmech.2003.09.00514642323
    [Google Scholar]
  22. RosT.D. PratoM. Medicinal chemistry with fullerenes and fullerene derivatives.Chem. Commun. (Camb.)19998866366910.1039/a809495k
    [Google Scholar]
  23. LiY. MaoZ. XuJ. YangJ. GuoZ. ZhuD. LiJ. YinB. Preparation of a novel stable nitroxide based on [60]fulleropyrrolidine and its magnetic properties.Chem. Phys. Lett.19972653-536136410.1016/S0009‑2614(96)01454‑6
    [Google Scholar]
  24. LuB. ZhangJ. LiJ. YaoJ. WangM. ZouY. ZhuS. Synthesis, electrochemistry, and photophysical properties of pyrazolino[60]fullerene–1,8-naphthalimide fluorescent derivatives.Tetrahedron201268438924893010.1016/j.tet.2012.08.031
    [Google Scholar]
  25. JakšićJ. MilinkovićE. CvetanovićK. VujoševićZ.T. JovanovV. MitrovićA. MaslakV. Exploring fullerene derivatives for optoelectronic applications: Synthesis and characterization study.Phys. Chem. Chem. Phys.202326151752310.1039/D3CP04322C
    [Google Scholar]
  26. LiuJ. QiuL. ShaoS. Emerging electronic applications of fullerene derivatives: An era beyond OPV.J. Mater. Chem. C Mater. Opt. Electron. Devices2021945161431616310.1039/D1TC04038C
    [Google Scholar]
  27. AkasakaT. LiuM.T.H. NiinoY. MaedaY. WakaharaT. OkamuraM. KobayashiK. NagaseS. Photolysis of diazirines in the presence of C60: A chemical probe for carbene/diazomethane partitioning.J. Am. Chem. Soc.2000122297134713510.1021/ja994242e
    [Google Scholar]
  28. LiuM.T.H. ChoeY.K. KimuraM. KobayashiK. NagaseS. WakaharaT. NiinoY. IshitsukaM.O. MaedaY. AkasakaT. Effect of substituents on the thermal decomposition of diazirines: Experimental and computational studies.J. Org. Chem.200368197471747810.1021/jo034949q12968902
    [Google Scholar]
  29. TuktarovA.R. KhuzinA.A. KorolevV.V. DzhemilevU.M. Catalytic cycloaddition of diazoalkanes with heterocyclic substituents to fullerene C60.Russ. J. Org. Chem.20124819910310.1134/S1070428012010150
    [Google Scholar]
  30. TuktarovA.R. KorolevV.V. TulyabaevA.R. YanybinV.M. KhalilovL.M. DzhemilevU.M. Cycloaddition of diazocycloalkanes to [60]fullerene in the presence of Pd-containing complex catalyst.Russ. Chem. Bull.201059597798310.1007/s11172‑010‑0193‑1
    [Google Scholar]
  31. DzhemilevU.M. TuktarovA.R. KorolevV.V. KhalilovL.M. Cycloaddition of cage and polycyclic diazo compounds to C60 fullerene catalyzed by Pd(acac)2-2PPh3-4Et3Al.Pet. Chem.20115112312710.1134/S0965544111020034.
    [Google Scholar]
  32. DzhemilevU.M. PopodkoN.R. KozlovaE.V. Metal complex catalysis in organic synthesis alicyclic compounds.Thesis, Academy of sciences of the republic of Bashkortostan1999
    [Google Scholar]
  33. TuktarovA.R. AkhmetovA.R. KamalovR.F. KhalilovL.M. PudasM. IbragimovA.G. DzhemilevU.M. Catalytic [2+1]-cycloaddition of ethyl diazoacetate to fullerene.Russ. J. Org. Chem.2009451168117410.1134/S1070428009080090
    [Google Scholar]
  34. SchickG. HirschA. Highly diastereoselective formation of stable fulleroids.Tetrahedron199854174283429610.1016/S0040‑4020(98)00125‑2
    [Google Scholar]
  35. SuzukiT. LiQ. KhemaniK.C. WudlF. Dihydrofulleroid H3C61: Synthesis and properties of the parent fulleroid.J. Am. Chem. Soc.1992114187301730210.1021/ja00044a055
    [Google Scholar]
  36. SanzD. Alejandra PonceM. María ClaramuntR. Fernández-CastañoC. Foces-FocesC. ElgueroJ. Synthesis and structural studies of symmetric and unsymmetric adamantylmethyleneazines.J. Phys. Org. Chem.1999126455469
    [Google Scholar]
  37. VíchaR. NečasM. PotáčekM. Preparation of 1-adamantyl ketones: Structure, mechanism of formation and biological activity of potential by-products.Collect. Czech. Chem. Commun.200671570972210.1135/cccc20060709
    [Google Scholar]
  38. InamotoY. NakayamaH. Synthesis of adamantyl alkyl ketones.J. Chem. Eng. Data197116448348410.1021/je60051a001
    [Google Scholar]
  39. ElemesY. SilvermanS.K. SheuC. KaoM. FooteC.S. AlvarezM.M. WhettenR.L. Reaction of C60 with dimethyldioxirane—Formation of an epoxide and a 1,3‐dioxolane derivative.Angew. Chem. Int. Ed. Engl.199231335135310.1002/anie.199203511
    [Google Scholar]
  40. KinzyabaevaZ.S. SabirovD.S. Sonochemical synthesis of novel C60 fullerene 1,4-oxathiane derivative through the intermediate fullerene radical anion.Ultrason. Sonochem.20206710516910.1016/j.ultsonch.2020.10516932417624
    [Google Scholar]
  41. YamadaM. AkasakaT. NagaseS. Carbene additions to fullerenes.Chem. Rev.201311397209726410.1021/cr300495523773169
    [Google Scholar]
  42. ReinovM.V. YurovskayaM.A. The formation of [5,6]- and [6,6]-open fulleroid structures.Russ. Chem. Rev.200776871573010.1070/RC2007v076n08ABEH003695
    [Google Scholar]
  43. PratoM. LucchiniV. MagginiM. StimpflE. ScorranoG. EiermannM. SuzukiT. WudlF. Energetic preference in 5,6 and 6,6 ring junction adducts of C60: Fulleroids and methanofullerenes.J. Am. Chem. Soc.1993115188479848010.1021/ja00071a080
    [Google Scholar]
  44. IsaacsL. WehrsigA. DiederichF. Improved purification of C60 and formation of σ‐ and π‐homoaromatic methano‐bridged fullerenes by reaction with alkyl diazoacetates.Helv. Chim. Acta19937631231125010.1002/hlca.19930760310
    [Google Scholar]
  45. DiederichF. IsaacsL. PhilpD. Valence isomerism and rearrangements in methanofullerenes.J. Chem. Soc., Perkin Trans. 21994339139410.1039/p29940000391
    [Google Scholar]
  46. OsterodtJ. ZettA. VögtleF. Fullerenes by pyrolysis of hydrocarbons and synthesis of isomeric methanofullerenes.Tetrahedron199652144949496210.1016/0040‑4020(96)00103‑2
    [Google Scholar]
  47. EiermannM. WudlF. PratoM. MagginiM. Electrochemically induced isomerization of a fulleroid to a methanofullerene.J. Am. Chem. Soc.1994116188364836510.1021/ja00097a053
    [Google Scholar]
  48. EchegoyenL. EchegoyenL.E. Electrochemistry of fullerenes and their derivatives.Acc. Chem. Res.199831959360110.1021/ar970138v
    [Google Scholar]
  49. CeroniP. ContiF. CorvajaC. MagginiM. PaolucciF. RoffiaS. ScorranoG. ToffolettiA. Tempo-C61: An unusual example of fulleroid to methanofullerene conversion.J. Phys. Chem. A2000104115616310.1021/jp9929014
    [Google Scholar]
  50. JanssenR.A.J. HummelenJ.C. WudlF. Photochemical fulleroid to methanofullerene conversion via the di-.pi.-methane (Zimmerman) rearrangement.J. Am. Chem. Soc.1995117154454510.1021/ja00106a068
    [Google Scholar]
  51. GonzalezR. HummelenJ.C. WudlF. The specific acid-catalyzed and photochemical isomerization of a robust fulleroid to a methanofullerene.J. Org. Chem.19956082618262010.1021/jo00113a049
    [Google Scholar]
  52. HummelenJ.C. KnightB.W. LePeqF. WudlF. YaoJ. WilkinsC.L. Preparation and characterization of fulleroid and methanofullerene derivatives.J. Org. Chem.199560353253810.1021/jo00108a012
    [Google Scholar]
  53. KoW.B. NamJ.H. HwangS.H. The oxidation of fullerene[C60] with various amine N-oxides under ultrasonic irradiation.Ultrasonics2004421-961161510.1016/j.ultras.2004.01.08315047355
    [Google Scholar]
  54. Safaei-GhomiJ. MasoomiR. An efficient comparison of methods involving conventional, grinding and ultrasound conditions for the synthesis of fulleroisoxazolines.Ultrason. Sonochem.20152321221810.1016/j.ultsonch.2014.08.00425224855
    [Google Scholar]
  55. MandrusD. KeleM. HettichR.L. GuiochonG. SalesB.C. BoatnerL.A. Sonochemical synthesis of C60 H2.J. Phys. Chem. B1997101212312810.1021/jp962056e
    [Google Scholar]
  56. CataldoF. UrsiniO. RagniP. Ultrasound-assisted bromination. Part 1: Bromination of C60 and C70.Fullerenes, Nanotubes Carbon Nanostruc.20132134635610.1080/1536383X.2011.613544.
    [Google Scholar]
  57. CataldoF. UrsiniO. RagniP. Fullerene C60 trichloromethylation through CCl4 plasmalysis or sonolysis.Plasma Chem. Plasma Process.201333135536510.1007/s11090‑012‑9417‑5
    [Google Scholar]
  58. YinghuaiZ. BahnmuellerS. ChibunC. CarpenterK. HosmaneN.S. MaguireJ.A. An effective system to synthesize methanofullerenes: Substrate–ionic liquid–ultrasonic irradiation.Tetrahedron Lett.200344295473547610.1016/S0040‑4039(03)01299‑1
    [Google Scholar]
  59. YinghuaiZ. Application of ultrasound technique in the synthesis of methanofullerene derivatives.J. Phys. Chem. Solids2004652-334935310.1016/j.jpcs.2003.08.027
    [Google Scholar]
  60. YoonS. HwangS.H. KoW.B. Cycloaddition of 20-azidoethyl glycosides to fullerene[C60] under ultrasonic irradiation.Curr. Appl. Phys.20088774777
    [Google Scholar]
  61. ZhangX. GanL. HuangS. ShiY. Iodo-controlled selective formation of pyrrolidino[60]fullerene and aziridino[60]fullerene from the reaction between C6) and amino acid esters.J. Org. Chem.200469175800580210.1021/jo049336815307764
    [Google Scholar]
  62. CataldoF. Garcia-HernandezD.A. ManchadoA. A sonochemical synthesis of fullerene C60/anthracene diels-alder mono and bis-adducts.Fullerenes, Nanotubes Carbon Nanostruc.20142256557410.1080/1536383X.2012.702160.
    [Google Scholar]
  63. KinzyabaevaZ.S. SharipovG.L. A selective synthesis of the fullerene-fused dioxane adduct via heterogeneous reaction of C60 with α-diols and NaOH under ultrasonication.Ultrason. Sonochem.20184211912310.1016/j.ultsonch.2017.11.01229429652
    [Google Scholar]
  64. KinzyabaevaZ.S. DmitrievA.M. SabirovD.Sh. A sonochemical synthesis of the piperazine-containing adducts of the C60 fullerene.Fullerenes, Nanotubes Carbon Nanostruc.20212960160710.1080/1536383X.2021.1873782.
    [Google Scholar]
  65. KinzyabaevaZ.S. Sonochemical synthesis of 1',4'-dialkyl-1',4',5',6'-tetrahydropyrazino[2',3':1,9](C60-Ih)[5,6]fullerenes.Chem. Heterocyc. Compd.202157560260510.1007/s10593‑021‑02950‑2.
    [Google Scholar]
  66. KinzyabaevaZ.S. SabirovD.Sh. New sonochemical reactions of the C60 fullerene with amino alcohols yielding morpholine–C60 adducts.Fullerenes, Nanotubes and Carbon Nanostruc.2022301134114110.1080/1536383X.2022.20783.
    [Google Scholar]
  67. KinzyabaevaZ.S. SabirovD.S. Synthesis of fullerene C60 hybrids with catecholamines under ultrasonic irradiation.Russ. J. Org. Chem.202258121915191910.1134/S1070428022120223
    [Google Scholar]
  68. AndrievskyG.V. KosevichM.V. VovkO.M. ShelkovskyV.S. VashchenkoL.A. On the production of an aqueous colloidal solution of fullerenes.J. Chem. Soc. Chem. Commun.1995121281128210.1039/c39950001281
    [Google Scholar]
  69. KoW.B. HeoJ.Y. NamJ.H. LeeK.B. Synthesis of a water-soluble fullerene [C60] under ultrasonication.Ultrasonics200441972773010.1016/j.ultras.2003.12.02914996532
    [Google Scholar]
  70. AfreenS. MuthoosamyK. ManickamS. HashimU. Functionalized fullerene (C 60 ) as a potential nanomediator in the fabrication of highly sensitive biosensors.Biosens. Bioelectron.20156335436410.1016/j.bios.2014.07.04425125029
    [Google Scholar]
  71. AfreenS. KokuboK. MuthoosamyK. ManickamS. Hydration or hydroxylation: Direct synthesis of fullerenol from pristine fullerene [C60 ] via acoustic cavitation in the presence of hydrogen peroxide.RSC Advances2017751319303193910.1039/C7RA03799F
    [Google Scholar]
  72. WeisslerA. CooperH.W. SnyderS. Chemical effect of ultrasonic waves: Oxidation of potassium iodide solution by carbon tetrachloride.J. Am. Chem. Soc.19507241769177510.1021/ja01160a102
    [Google Scholar]
  73. ChendkeP.K. FoglerH.S. Sonoluminescence and sonochemical reactions of aqueous carbon tetrachloride solutions.J. Phys. Chem.19838781362136910.1021/j100231a019
    [Google Scholar]
  74. HungH.M. HoffmannM.R. Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons: Frequency effects.J. Phys. Chem. A1999103152734273910.1021/jp9845930
    [Google Scholar]
  75. FranconyA. PétrierC. Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies: 20 kHz and 500 kHz.Ultrason. Sonochem.199632S77S8210.1016/1350‑1477(96)00010‑1
    [Google Scholar]
  76. KinzyabaevaZ.S. SadykovR.A. SharipovG.L. Free-radical mechanism of the sonochemical reaction of fullerenes C60 and C70 with ethylene glycol in the presence of NaOH.Fullerenes, Nanotubes Carbon Nanostruc.20192787888610.1080/1536383X.2019.1653857.
    [Google Scholar]
  77. HallM.H. LuH. ShevlinP.B. Observation of both thermal first-order and photochemical zero-order kinetics in the rearrangement of [6,5] Open fulleroids to [6,6] closed fullerenes.J. Am. Chem. Soc.200112371349135410.1021/ja003042w
    [Google Scholar]
/content/journals/coc/10.2174/0113852728346078241011054350
Loading
/content/journals/coc/10.2174/0113852728346078241011054350
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test