Skip to content
2000
Volume 29, Issue 13
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

To improve the activity of isatin-1,2,3-triazole hybrids as anti-cancer agents, new derivatives of isatin-thiosemicarbazone-1,2,3-triazoles were designed and synthesized the condensation of isatin-1,2,3-triazole hybrids with thiosemicarbazide. Spectral and elemental analysis confirmed the structure of the prepared derivatives . Also, as anticancer agents, the latter derivatives were screened against three human cancerous cell lines: human lung fibroblast (WI38), colorectal carcinoma colon cancer (HCT-116), and mammary gland breast cancer (MCF-7). , a standard control, was used to compare viable cell percentages and IC values. In general, derivatives and revealed a higher potency against the three human cancerous cell lines. Finally, the molecular descriptors of compounds and were correlated with their observed cytotoxicity.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728332494240919044627
2024-10-28
2025-09-25
Loading full text...

Full text loading...

References

  1. PragathiY.J. SreenivasuluR. VeronicaD. RajuR.R. Design, synthesis, and biological evaluation of 1,2,4-thiadiazole-1,2,4-triazole derivatives bearing amide functionality as anticancer agents.Arab. J. Sci. Eng.20214622523210.1007/s13369‑020‑04626‑z
    [Google Scholar]
  2. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  3. ParkS.K. ChoL.Y. YangJ.J. ParkB. ChangS.H. LeeK.S. KimH. YooK.Y. LeeC.T. Lung cancer risk and cigarette smoking, lung tuberculosis according to histologic type and gender in a population based case – Control study.Lung Cancer2010681202610.1016/j.lungcan.2009.05.01719545930
    [Google Scholar]
  4. MeffertM.K. ChangJ.M. WiltgenB.J. FanselowM.S. BaltimoreD. NF-κB functions in synaptic signaling and behavior.Nat. Neurosci.20036101072107810.1038/nn111012947408
    [Google Scholar]
  5. ClemensM.R. Free radicals in chemical carcinogenesis.Klin. Wochenschr.19916921-231123113410.1007/BF016451721798290
    [Google Scholar]
  6. MantovaniA. AllavenaP. SicaA. BalkwillF. Cancer-related inflammation.Nature2008454720343644410.1038/nature0720518650914
    [Google Scholar]
  7. ClaytonP.E. BanerjeeI. MurrayP.G. RenehanA.G. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk.Nat. Rev. Endocrinol.201171112410.1038/nrendo.2010.17120956999
    [Google Scholar]
  8. PortaC. RiboldiE. SicaA. Mechanisms linking pathogens-associated inflammation and cancer.Cancer Lett.2011305225026210.1016/j.canlet.2010.10.01221093147
    [Google Scholar]
  9. KhanF.A. AkhtarS.S. SheikhM.K. Cancer treatment - Objectives and quality of life issues.Malays. J. Med. Sci.20051213522605940
    [Google Scholar]
  10. MentaE. PalumboM. Novel antineoplastic agents.Expert Opin. Ther. Pat.19977121401142610.1517/13543776.7.12.1401
    [Google Scholar]
  11. NussbaumerS. BonnabryP. VeutheyJ.L. Fleury-SouverainS. Analysis of anticancer drugs: A review.Talanta20118552265228910.1016/j.talanta.2011.08.03421962644
    [Google Scholar]
  12. RebucciM. MichielsC. Molecular aspects of cancer cell resistance to chemotherapy.Biochem. Pharmacol.20138591219122610.1016/j.bcp.2013.02.01723435357
    [Google Scholar]
  13. HolohanC. Van SchaeybroeckS. LongleyD.B. JohnstonP.G. Cancer drug resistance: An evolving paradigm.Nat. Rev. Cancer2013131071472610.1038/nrc359924060863
    [Google Scholar]
  14. RosaR. MonteleoneF. ZambranoN. BiancoR. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies.Curr. Med. Chem.201421141595160610.2174/0929867311320999022623992330
    [Google Scholar]
  15. Srinivas ReddyM. Swamy ThirukovelaN. NarsimhaS. RavinderM. Kumar NukalaS. Synthesis of fused 1,2,3-triazoles of Clioquinol via sequential CuAAC and C H arylation; in vitro anticancer activity, in silico DNA topoisomerase II inhibitory activity and ADMET.J. Mol. Struct.2022125013174710.1016/j.molstruc.2021.131747
    [Google Scholar]
  16. AmmarU.M. Abdel-MaksoudM.S. OhC.H. Recent advances of RAF (rapidly accelerated fibrosarcoma) inhibitors as anti-cancer agents.Eur. J. Med. Chem.201815814416610.1016/j.ejmech.2018.09.00530216849
    [Google Scholar]
  17. GaoF. ZhangX. WangT. XiaoJ. Quinolone hybrids and their anti-cancer activities: An overview.Eur. J. Med. Chem.2019165597910.1016/j.ejmech.2019.01.017
    [Google Scholar]
  18. ZhuangC. GuanX. MaH. CongH. ZhangW. MiaoZ. Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment.Eur. J. Med. Chem.201916388389510.1016/j.ejmech.2018.12.03530580240
    [Google Scholar]
  19. SadeghianZ. BayatM. Synthesis of heterocyclic compounds based on isatins.Curr. Org. Chem.202226875677010.2174/1385272826666220430145522
    [Google Scholar]
  20. ShulgaS.I. ShulgaO.S. Synthesis and some reactions of 6H-indolo[2,3-b]quinoxalines.Russ. J. Org. Chem.202056122104210810.1134/S107042802012009X
    [Google Scholar]
  21. NainS. MathurG. AnthwalT. SharmaS. PaliwalS. Synthesis, characterization, and antibacterial activity of new isatin derivatives.Pharm. Chem. J.202357219620310.1007/s11094‑023‑02867‑437313436
    [Google Scholar]
  22. Gowrivel VijayakumarB. RameshD. KumariS. MaityA. PinnakaA.K. KannanT. Enhancing antifungal properties of chitosan by attaching isatin-piperazine-sulfonyl-acetamide pendant groups via novel imidamide linkage.Int. J. Biol. Macromol.202324412542810.1016/j.ijbiomac.2023.12542837330090
    [Google Scholar]
  23. CahyanaA.H. SaputriY.L.I.D. YunartiR.T. WooS.K. Eco-friendly Cu/NiO nanoparticle synthesis: Catalytic potential in isatin-based chalcone synthesis for anticancer activity.MethodsX20231110247110.1016/j.mex.2023.10247138023319
    [Google Scholar]
  24. BogdanovA.V. NeganovaM. VoloshinaA. LyubinaA. AmerhanovaS. LitvinovI.A. TsivilevaO. AkylbekovN. ZhapparbergenovR. ValiullinaZ. SamorodovA.V. AlabuginI. Anticancer and antiphytopathogenic activity of fluorinated isatins and their water-soluble hydrazone derivatives.Int. J. Mol. Sci.202324201511910.3390/ijms24201511937894799
    [Google Scholar]
  25. ElsamanT. MohamedM.S. EltayibE.M. Abdel-azizH.A. AbdallaA.E. MunirM.U. MohamedM.A. Isatin derivatives as broad-spectrum antiviral agents: the current landscape.Med. Chem. Res.202231224427310.1007/s00044‑021‑02832‑435039740
    [Google Scholar]
  26. SolangiM. Kanwal KhanK.M. ChigurupatiS. SaleemF. QureshiU. Ul-HaqZ. JabeenA. FelembanS.G. ZafarF. PerveenS. TahaM. BhatiaS. Isatin thiazoles as antidiabetic: Synthesis, in vitro enzyme inhibitory activities, kinetics, and in silico studies.Arch. Pharm. (Weinheim)20223556210048110.1002/ardp.20210048135355329
    [Google Scholar]
  27. DantasL.L.S.F.R. FonsecaA.G. PereiraJ.R. FurtadoA.A. GomesP.A.T.M. Fernandes-PedrosaM.F. LeiteA.C.L. RêgoM.J.B.M. PittaM.G.R. LemosT.M.A.M. Anti-inflammatory and antinociceptive effects of the isatin derivative (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-phenyl-hydrazinecarbothioamide in mice.Braz. J. Med. Biol. Res.20205310e1020410.1590/1414‑431x20201020432901685
    [Google Scholar]
  28. KarthikK. PriyankaK.B. ManjulaS. SammaiahG. Synthesis and evaluation of new bis-isatin derivatives for antioxidant activity.Int. J. Pharm. Pharm. Sci.20135224227
    [Google Scholar]
  29. ThakurR.K. JoshiP. UpadhyayaK. SinghK. SharmaG. ShuklaS.K. TripathiR. TripathiR.P. Synthesis of isatin based N1-alkylated 3-β-C-glycoconjugated-oxopropylidene oxindoles as potent antiplasmodial agents.Eur. J. Med. Chem.201916244845410.1016/j.ejmech.2018.11.00830469040
    [Google Scholar]
  30. RajR. BiotC. Carrère-KremerS. KremerL. GuérardelY. GutJ. RosenthalP.J. ForgeD. KumarV. 7-chloroquinoline-isatin conjugates: Antimalarial, antitubercular, and cytotoxic evaluation.Chem. Biol. Drug Des.201483562262910.1111/cbdd.1227324341638
    [Google Scholar]
  31. SaravananG. AlagarsamyV. DineshkumarP. Anticonvulsant activity of novel 1-(morpholinomethyl)-3-substituted isatin derivatives.Bull. Fac. Pharm. Cairo Univ.201452111512410.1016/j.bfopcu.2014.02.001
    [Google Scholar]
  32. JiangD. WangG.Q. LiuX. ZhangZ. FengL.S. LiuM.L. Isatin derivatives with potential antitubercular activities.J. Heterocycl. Chem.20185561263127910.1002/jhet.3189
    [Google Scholar]
  33. KumarS. OhJ.M. PrabhakaranP. AwastiA. KimH. MathewB. Isatin-tethered halogen-containing acylhydrazone derivatives as monoamine oxidase inhibitor with neuroprotective effect.Sci. Rep.2024141126410.1038/s41598‑024‑51728‑x38218887
    [Google Scholar]
  34. JamilW. SolangiS. AliM. KhanK.M. TahaM. KhuhawarM.Y. Syntheses, characterization, in vitro antiglycation and DPPH radical scavenging activities of isatin salicylhydrazidehydrazone and its Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) metal complexes.Arab. J. Chem.20191282262226910.1016/j.arabjc.2015.02.015
    [Google Scholar]
  35. ChinnasamyR. SundararajanR. GovindarajS. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives.J. Adv. Pharm. Technol. Res.20101334234710.4103/0110‑5558.7242822247869
    [Google Scholar]
  36. MesripourA. JafariE. HajibeikiM.R. HassanzadehF. Design, synthesis, docking, and antidepressant activity evaluation of isatin derivatives bearing Schiff bases.Iran. J. Basic Med. Sci.202326443844410.22038/IJBMS.2023.68363.1491637009007
    [Google Scholar]
  37. SinghN.K. SrivastavaA. SodhiA. RanjanP. In vitro and in vivo antitumor studies of a new thiosemicarbazide derivative and its complexes with 3d-metal ions.Trans. Met. Chem. (Weinh.)200025213314010.1023/A:1007081218000
    [Google Scholar]
  38. ShahlaeiM. FassihiA. NezamiA. QSAR study of some 5-methyl/trifluoromethoxy- 1H-indole-2,3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents.Res. Pharm. Sci.20094212313121589807
    [Google Scholar]
  39. Haj Mohammad Ebrahim TehraniK. KobarfardF. AzerangP. MehravarM. SoleimaniZ. GhavamiG. SardariS. Synthesis and antimycobacterial activity of symmetric thiocarbohydrazone derivatives against mycobacterium bovis BCG.Iran. J. Pharm. Res.201312233134624250608
    [Google Scholar]
  40. AltıntopM.D. AtlıÖ. IlgınS. DemirelR. ÖzdemirA. KaplancıklıZ.A. Synthesis and biological evaluation of new naphthalene substituted thiosemicarbazone derivatives as potent antifungal and anticancer agents.Eur. J. Med. Chem.201610840641410.1016/j.ejmech.2015.11.04126706351
    [Google Scholar]
  41. AlyM.M. MohamedY.A. El-BayoukiK.A.M. BasyouniW.M. AbbasS.Y. Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities – Part-1.Eur. J. Med. Chem.20104583365337310.1016/j.ejmech.2010.04.02020510483
    [Google Scholar]
  42. YuY. KalinowskiD.S. KovacevicZ. SiafakasA.R. JanssonP.J. StefaniC. LovejoyD.B. SharpeP.C. BernhardtP.V. RichardsonD.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors.J. Med. Chem.200952175271529410.1021/jm900552r19601577
    [Google Scholar]
  43. Al-DooriL.A. IrzoqiA.A. JirjesH.M. AL-ObaidiA.H. AlheetyM.A. Zn(II)-isatin-3-thiosemicarbazone complexes with phosphines or diamines for hydrogen storage and anticancer studies.Inorg. Chem. Commun.202214010945410.1016/j.inoche.2022.109454
    [Google Scholar]
  44. IlyasM. MuhammadS. IqbalJ. AminS. Al-SehemiA.G. AlgarniH. AlarfajiS.S. AlshahraniM.Y. AyubK. Insighting isatin derivatives as potential antiviral agents against NSP3 of COVID-19.Chem. Zvesti202276106271628510.1007/s11696‑022‑02298‑735757111
    [Google Scholar]
  45. El MalahT. Abdel MageidR.E. AwadH.M. NourH.F. Copper(i)-catalysed azide–alkyne cycloaddition and antiproliferative activity of mono- and bis-1,2,3-triazole derivatives.New J. Chem.20204442182561826310.1039/D0NJ04308G
    [Google Scholar]
  46. El MalahT. NourH.F. DehbiO. Abdel-MegeidF.M.E. MahmoudA.E.E.D. AliM.M. SolimanS.M. Click synthesis, anticancer activity and molecular docking studies on pyridazinone scaffolds.Curr. Org. Chem.201822232300230710.2174/1385272822666181029111943
    [Google Scholar]
  47. El MalahT. NourH.F. NaylA.A. ElkhashabR.A. Abdel-MegeidF.M.E AliM.M. Anticancer evaluation of tris(triazolyl)triazine derivatives generated via click chemistry.Aust. J. Chem.201669890591010.1071/CH16006
    [Google Scholar]
  48. El MalahT. SolimanH.A. HemdanB.A. Abdel MageidR.E. NourH.F. Synthesis and antibiofilm activity of 1,2,3-triazole-pyridine hybrids against methicillin-resistant Staphylococcus aureus (MRSA).New J. Chem.20214524108221083010.1039/D1NJ00773D
    [Google Scholar]
  49. El MalahT. NourH.F. SattiA.A.E. HemdanB.A. El-SayedW.A. Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers.Molecules202025479010.3390/molecules2504079032059480
    [Google Scholar]
  50. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. An overview on biological activities of 1,2,3-triazole derivatives.Nanostructured BiomaterialsSingaporeSpringer Nature SwainB.P. 202240142310.1007/978‑981‑16‑8399‑2_11
    [Google Scholar]
  51. RaniA. SinghG. SinghA. MaqboolU. KaurG. SinghJ. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: Review.RSC Adv.202010105610563510.1039/C9RA09510A35497465
    [Google Scholar]
  52. PaulR. DuttaD. PaulR. DashJ. Target‐directed azide‐alkyne cycloaddition for assembling HIV‐1 TAR RNA binding ligands.Angew. Chem. Int. Ed.20205930124071241110.1002/anie.20200346132329147
    [Google Scholar]
  53. DharavathR. NagarajuN. ReddyM.R. AshokD. SarasijaM. VijjulathaM. TV. JyothiK. PrashanthiG. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1,2,3-triazoles.RSC Adv.20201020116151162310.1039/D0RA01052A35496603
    [Google Scholar]
  54. HanL. ShengW. LiX. SikA. LinH. LiuK. WangL. Novel carbohydrate modified berberine derivatives: Synthesis and in vitro anti-diabetic investigation.MedChemComm201910459860510.1039/C9MD00036D31057739
    [Google Scholar]
  55. IqbalS. KhanM.A. JavaidK. SadiqR. Fazal-ur-RehmanS. ChoudharyM.I. BashaF.Z. New carbazole linked 1,2,3-triazoles as highly potent non-sugar α-glucosidase inhibitors.Bioorg. Chem.201774728110.1016/j.bioorg.2017.07.00628756277
    [Google Scholar]
  56. SinghG. Diksha SinghA. SatijaP. Pawan Mohit González-SilveraD. Espinosa-RuízC. EstebanM.A. Organosilanes and their magnetic nanoparticles as naked eye red emissive sensors for Ag + ions and potent anti-oxidants.New J. Chem.202145125517552510.1039/D1NJ00242B
    [Google Scholar]
  57. KabiA.K. GujjarappaR. GargA. RoyA. SahooA. GuptaS. MalakarC. C. Overview on medicinal impacts of 1,2,4-triazole derivatives.Tailored Functional MaterialsSingaporeSpringer MukherjeeK. LayekR.K. DeD. 2022617910.1007/978‑981‑19‑2572‑6_5
    [Google Scholar]
  58. MalahT.E. NourH.F. Synthesis of dendronic triazolo-pyridazinones and their self-assembly into nanofibers and nanorods.J. Nanostructure Chem.20188215916910.1007/s40097‑018‑0262‑9
    [Google Scholar]
  59. El MalahT. NourH.F. Click synthesis of shape-persistent azodendrimers and their orthogonal self-assembly to nanofibres.Aust. J. Chem.201871646347210.1071/CH17644
    [Google Scholar]
  60. El MalahT. RolfS. WeidnerS.M. ThünemannA.F. HechtS. Amphiphilic folded dendrimer discs and their thermosensitive self-assembly in water.Chemistry201218195837584210.1002/chem.20120041422461207
    [Google Scholar]
  61. El MalahT. CiesielskiA. PiotL. TroyanovS.I. MuellerU. WeidnerS. SamorìP. HechtS. Conformationally pre-organized and pH-responsive flat dendrons: Synthesis and self-assembly at the liquid–solid interface.Nanoscale20124246747210.1039/C1NR11434D22139437
    [Google Scholar]
  62. ZornikD. MeudtnerR.M. El MalahT. ThieleC.M. HechtS. Designing structural motifs for clickamers: Exploiting the 1,2,3-triazole moiety to generate conformationally restricted molecular architectures.Chemistry20111751473148410.1002/chem.20100249121268150
    [Google Scholar]
  63. CadedduA. CiesielskiA. El MalahT. HechtS. SamorìP. Modulating the self-assembly of rigid “clicked” dendrimers at the solid–liquid interface by tuning non-covalent interactions between side groups.Chem. Commun. (Camb.)20114738105781058010.1039/c1cc13099d21869953
    [Google Scholar]
  64. PiotL. MeudtnerR.M. El MalahT. HechtS. SamorìP. Modulating large-area self-assembly at the solid-liquid interface by pH-mediated conformational switching.Chemistry200915194788479210.1002/chem.20080256619322772
    [Google Scholar]
  65. KumarS. MalakarC.C. SinghV. Cu(II)‐catalysed azide‐alkyne cycloaddition reaction towards synthesis of β‐carboline C1‐tethered 1,2,3‐triazole derivatives.ChemistrySelect20216164005401010.1002/slct.202100002
    [Google Scholar]
  66. JohanssonJ.R. Beke-SomfaiT. Said StålsmedenA. KannN. Ruthenium-catalyzed azide alkyne cycloaddition reaction: Scope, mechanism, and applications.Chem. Rev.201611623147261476810.1021/acs.chemrev.6b0046627960271
    [Google Scholar]
  67. BozorovK. ZhaoJ. AisaH.A. 1,2,3-triazole-containing hybrids as leads in medicinal chemistry: A recent overview.Bioorg. Med. Chem.201927163511353110.1016/j.bmc.2019.07.00531300317
    [Google Scholar]
  68. El MalahT. ShamroukhA.H. KotbE.R. SolimanH.A. MahmoudK. HegabM.I. Chemical and anticancer activity studies for some 3-chloro-3-chlorosulfenyl-4′-methylspiro[chroman-2,1′-cyclohexane]-4-ones.Phosphorus Sulfur Silicon Relat. Elem.20211961197097710.1080/10426507.2021.1947275
    [Google Scholar]
  69. El MalahT. FaragH. AwadH.M. AbdelrahmanM.T. ShamroukhA.H. Design and click synthesis of novel 1- substituted-4-(3,4-dimethoxyphenyl)-1 H -1,2,3-triazole hybrids for anticancer evaluation and molecular docking.Polycycl. Aromat. Compd.20234387547756410.1080/10406638.2022.2137205
    [Google Scholar]
  70. El MalahT. FaragH. AwadH.M. SolimanH.A. Click chemistry-based synthesis of new 1,2,3-triazolo-benzoquinoline-3-carbonitriles: Anticancer screening and DFT studies.New J. Chem.20244841567157710.1039/D3NJ05003C
    [Google Scholar]
  71. El MalahT. El-MageidR.E-S.A. ShamroukhA.H. RashadA.E. El-RashedyA.A. AwadH.M. Abdel-MegeidF.M.E. HegabM.I. Click synthesis, anticancer and molecular docking evaluation of some hexahydro-6H-indolo[2,3-b]quinoxalines incorporated triazole moiety.J. Mol. Struct.2024130313757310.1016/j.molstruc.2024.137573
    [Google Scholar]
  72. MalahT.E. FaragH. HemdanB.A. Abdel MageidR.E. AbdelrahmanM.T. El-ManawatyM.A. NourH.F. Synthesis, in vitro antimicrobial evaluation, and molecular docking studies of new isatin-1,2,3-triazole hybrids.J. Mol. Struct.2022125013185510.1016/j.molstruc.2021.131855
    [Google Scholar]
  73. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  74. DenizotF. LangR. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability.J. Immunol. Methods198689227127710.1016/0022‑1759(86)90368‑6
    [Google Scholar]
/content/journals/coc/10.2174/0113852728332494240919044627
Loading
/content/journals/coc/10.2174/0113852728332494240919044627
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test