Skip to content
2000
Volume 29, Issue 13
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Although a number of Lewis acids based on boron have been identified thus far, tris(pentafluorophenyl) borane [B(CF)] (henceforth, BCF) has drawn the greatest interest from the synthetic chemistry community. Due to its commercial availability and thermal stability, BCF has been thoroughly investigated in organic and materials chemistry for its potential as a Lewis acid catalyst. The last two decades have witnessed the majority of BCF chemistry research in organic synthesis, and numerous novel catalytic reactivities are presently being studied. In this triennial update, which covers the period from 2021 to the present, we have thoroughly and critically reviewed the most representative applications of tris(pentafluorophenyl)borane in organic synthesis. Mechanistic studies are presented together with the scope of the catalyst.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728342903241115171334
2025-01-22
2025-09-26
Loading full text...

Full text loading...

References

  1. LégaréM.A. PranckeviciusC. BraunschweigH. Metallomimetic chemistry of boron.Chem. Rev.2019119148231826110.1021/acs.chemrev.8b00561
    [Google Scholar]
  2. LiuS.Y. StephanD.W. Contemporary research in boron chemistry.Chem. Soc. Rev.201948133434343510.1039/C9CS90053E
    [Google Scholar]
  3. ZhaoQ. DewhurstR.D. BraunschweigH. ChenX. A new perspective on borane chemistry: The nucleophilicity of the B-H bonding pair electrons.Angew. Chem. Int. Ed.201958113268327810.1002/anie.201809733
    [Google Scholar]
  4. KabalkaG.W. Herbert C. Brown (1912–2004): Organoboranes.Angew. Chem. Int. Ed.20054410143810.1002/anie.200500286
    [Google Scholar]
  5. CardenJ.L. DasguptaA. MelenR.L. Halogenated triarylboranes: Synthesis, properties and applications in catalysis.Chem. Soc. Rev.20204961706172510.1039/C9CS00769E
    [Google Scholar]
  6. NoriV. PesciaioliF. SinibaldiA. GiorgianniG. CarloneA. Boron-based Lewis acid catalysis: Challenges and perspectives.Catalysts2021121510.3390/catal12010005
    [Google Scholar]
  7. ShojiY. KashidaJ. FukushimaT. Bringing out the potential of organoboron compounds by designing the chemical bonds and spaces around boron.Chem. Commun. (Camb.)202258284420443410.1039/D2CC00653G
    [Google Scholar]
  8. MummadiS. KrempnerC. Triphenylborane in metal-free catalysis.Molecules2023283134010.3390/molecules28031340
    [Google Scholar]
  9. HeC. DongJ. XuC. PanX. N-Coordinated organoboron in polymer synthesis and material science.ACS Polymers Au20233152710.1021/acspolymersau.2c00046
    [Google Scholar]
  10. CoghiP.S. ZhuY. XieH. HosmaneN.S. ZhangY. Organoboron compounds: Effective antibacterial and antiparasitic agents.Molecules20212611330910.3390/molecules26113309
    [Google Scholar]
  11. MasseyA.G. ParkA.J. StoneF.G.A. Tris(pentafluorophenyl)borane.Proc. Chem. Soc.1963212
    [Google Scholar]
  12. DöringS. ErkerG. FröhlichR. MeyerO. BerganderK. Reaction of the Lewis acid tris(pentafluorophenyl)borane with a phosphorus ylide: Competition between adduct formation and electrophilic and nucleophilic aromatic substitution pathways.Organometallics199817112183218710.1021/om9709953
    [Google Scholar]
  13. ChildsR.F. MulhollandD.L. NixonA. The Lewis acid complexes of α,β-unsaturated carbonyl and nitrile compounds. A nuclear magnetic resonance study.Can. J. Chem.198260680180810.1139/v82‑117
    [Google Scholar]
  14. BochmannM. LancasterS.J. HannantM.D. RodriguezA. SchormannM. WalkerD.A. WoodmanT.J. Role of B(C6F5)3 in catalyst activation, anion formation, and as C6F5 transfer agent.Pure Appl. Chem.20037591183119510.1351/pac200375091183
    [Google Scholar]
  15. YangX. SternC.L. MarksT.J. Cation-like homogeneous olefin polymerization catalysts based upon zirconocene alkyls and tris(pentafluorophenyl)borane.J. Am. Chem. Soc.199111393623362510.1021/ja00009a076
    [Google Scholar]
  16. ParksD.J. PiersW.E. Tris(pentafluorophenyl)boroncatalyzed hydrosilation of aromatic aldehydes, ketones, and esters.J. Am. Chem. Soc.1996118399440944110.1021/ja961536g
    [Google Scholar]
  17. WelchG.C. JuanR.R.S. MasudaJ.D. StephanD.W. Reversible, metal-free hydrogen activation.Science200631458021124112610.1126/science.1134230
    [Google Scholar]
  18. FyfeJ.W.B. WatsonA.J.B. Recent developments in organoboron chemistry: Old dogs, new tricks.Chem201731315510.1016/j.chempr.2017.05.008
    [Google Scholar]
  19. MaX. KuangZ. SongQ. Recent advances in the construction of fluorinated organoboron compounds.JACS Au20222226127910.1021/jacsau.1c00129
    [Google Scholar]
  20. PiersW.E. ChiversT. Pentafluorophenylboranes: From obscurity to applications.Chem. Soc. Rev.199726534535410.1039/cs9972600345
    [Google Scholar]
  21. ErkerG. Tris(pentafluorophenyl)borane: A special boron Lewis acid for special reactions.Dalton Trans.2005111883189010.1039/b503688g
    [Google Scholar]
  22. HackelT. McGrathN.A. Tris(pentafluorophenyl)borane-catalyzed reactions using silanes.Molecules201924343210.3390/molecules24030432
    [Google Scholar]
  23. KumarG. RoyS. ChatterjeeI. Tris(pentafluorophenyl)borane catalyzed C–C and C–heteroatom bond formation.Org. Biomol. Chem.20211961230126710.1039/D0OB02478C
    [Google Scholar]
  24. LawsonJ.R. MelenR.L. Tris(pentafluorophenyl)borane and beyond: Modern advances in borylation chemistry.Inorg. Chem.201756158627864310.1021/acs.inorgchem.6b02911
    [Google Scholar]
  25. MelenR.L. PramanikM. Activation of diazo compounds by fluorinated triarylborane catalysts.Synthesis202355233906391810.1055/a‑2118‑3046
    [Google Scholar]
  26. ZhanZ. YanJ. YuZ. ShiL. Recent advances in asymmetric catalysis associated with B(C6F5)3.Molecules202328264210.3390/molecules28020642
    [Google Scholar]
  27. RubinsztajnS. ChojnowskiJ. MizerskaU. Tris(pentafluorophenyl)borane-catalyzed hydride transfer reactions in polysiloxane chemistry-Piers-Rubinsztajn reaction and related processes.Molecules20232816594110.3390/molecules28165941
    [Google Scholar]
  28. (a VaralaR. SeemaV. AlamM.M. AmanullahM. PrasadB.D. 1,4-Diazabicyclo[2.2.2]octane (DABCO) in organic synthesis and catalysis: A quinquennial report (2019-to date).Curr. Org. Chem.202428171307134510.2174/0113852728313865240528073519
    [Google Scholar]
  29. (b VaralaR. SeemaV. Recent applications of TEMPO in organic synthesis and catalysis.SynOpen20237340841310.1055/a‑2155‑2950
    [Google Scholar]
  30. (c VaralaR. SeemaV. AlamM.M. DubasiN. VummadiR.D. Iodoxybenzoic acid (IBX) in organic synthesis: A septennial review.Curr. Org. Synth.202421560766410.2174/0115701794263252230924074035
    [Google Scholar]
  31. (d AlamM.M. HussienM. BollikollaH.B. SeemaV. DubasiN. AmanullahM. VaralaR. Applications of phenyliodine( III ) diacetate in heterocyclic ring formations: An update from 2015 to date.J. Heterocycl. Chem.20236081326135510.1002/jhet.4627
    [Google Scholar]
  32. (e AlamM.M. SeemaV. DubasiN. KurraM. VaralaR. Applications of polymethylhydrosiloxane (PMHS) in organic synthesis-Covering up to march 2022.Mini Rev. Org. Chem.202320770873410.2174/1570193X20666221021104906
    [Google Scholar]
  33. (f VittalS. Mujahid AlamM. HussienM. AmanullahM. PisalP.M. RaviV. Applications of phenyliodine(III)diacetate in C-H functionalization and hetero-hetero bond formations: A septennial update.ChemistrySelect202381e20220424010.1002/slct.202204240
    [Google Scholar]
  34. (g VaralaR. SeemaV. DubasiN. Phenyliodine(III)diacetate (PIDA): Applications in organic synthesis.Organics20224114010.3390/org4010001
    [Google Scholar]
  35. (h AlamM.M. BollikollaH.B. AmanullahM. HusseinM. VaralaR. Phenyliodine(III)diacetate (PIDA): Applications in rearrangement/migration reactions.Curr. Org. Chem.20232729310710.2174/1385272827666230330105241
    [Google Scholar]
  36. (a VaralaR. DubasiN. SeemaV. KotraV. Sodium periodate (NaIO4) in organic synthesis.SynOpen20237454855410.1055/a‑2183‑3678
    [Google Scholar]
  37. (b VaralaR. SeemaV. AlamM.M. AmanullahM. DubasiN. Dess-martin periodinane (DMP) in organic synthesis-A septennial update (2015-till date).Curr. Org. Chem.202327171504153010.2174/0113852728262311231012060626
    [Google Scholar]
  38. (c AlamM.M. VaralaR. SeemaV. Zinc acetate in organic synthesis and catalysis: A review.Mini Rev. Org. Chem.202421555558710.2174/1570193X20666230507213511
    [Google Scholar]
  39. (d AlamM.M. VaralaR. SeemaV. A decennial update on the applications of trifluroacetic acid.Mini Rev. Org. Chem.202421445547010.2174/1570193X20666230511121812
    [Google Scholar]
  40. (e DubasiN. VaralaR. BollikollaH.B. KotraV. Applications of alum (KAl(SO4)2.12H2O) in organic synthesis & catalysis: A quinquennial update (2017-2022).J. Chem. Rev.20235326328010.22034/JCR.2023.390191.1217
    [Google Scholar]
  41. (f VaralaR. DubasiN. Applications of sulfated tin oxide (STO) in organic synthesis-Update from 2016 to 2021.Heterocycles2022104584385310.3987/REV‑22‑978
    [Google Scholar]
  42. (g VaralaR. SeemaV. AmanullahM. RamanaiahS. AlamM.M. Recent advances in hypervalent iodine reagents and m-CPBA mediated oxidative transformations.Curr. Org. Chem.202428748950910.2174/0113852728296345240215111730
    [Google Scholar]
  43. (h VaralaR. DhaddaS. SeemaV. AmanullahM. HusseinM. AlamM.M. Recent advances in metal-mediated oxidations with mCPBA.Transit. Met. Chem.202499839542810.1007/s11243‑024‑00593‑8
    [Google Scholar]
  44. (i VaralaR. SeemaV. AmanullahM. AlamM.M. Recent advances in TBHP ‐promoted heterocyclic ring construction via annulation/cyclization.J. Heterocycl. Chem.20246181269129810.1002/jhet.4852
    [Google Scholar]
  45. (j VaralaR. SeemaV. HusseinM. IsmailM.A. AlamM.M. Metal-free oxidations with m-CPBA: An octennial update.Mini Rev. Org. Chem.202529427930010.2174/0118756298299464240402045438
    [Google Scholar]
  46. (k VaralaR. AchariK.M.M. HusseinM. AlamM.M. RamanaiahS. Cesium Carbonate (Cs2CO3) in Organic Synthesis: A Sexennial Update (2018 to Date).Curr. Org. Chem.202529121810.2174/0113852728325969240711105055
    [Google Scholar]
  47. BouhaouiA. EddahmiM. DibM. KhouiliM. AiresA. CattoM. BouissaneL. Synthesis and biological properties of coumarin derivatives. A review.ChemistrySelect20216245848587010.1002/slct.202101346
    [Google Scholar]
  48. Safavi-MirmahallehS.A. GolshanM. GheitaraniB. Salami HosseiniM. Salami-KalajahiM. A review on applications of coumarin and its derivatives in preparation of photo-responsive polymers.Eur. Polym. J.202319811243010.1016/j.eurpolymj.2023.112430
    [Google Scholar]
  49. PrajaptiS.K. RaoS.P. B(C6F5)3-catalyzed synthesis of coumarins via Pechmann condensation under solvent-free conditions.Monatsh Chem202115246947310.1007/s00706‑021‑02747‑1
    [Google Scholar]
  50. GalanicsC. SintárV. SzalaiI. Autocatalytic flow chemistry.Sci. Rep.2023131921110.1038/s41598‑023‑36360‑5
    [Google Scholar]
  51. HanopolskyiA.I. SmaliakV.A. NovichkovA.I. SemenovS.N. Autocatalysis: Kinetics, mechanisms and design.ChemSystemsChem202131e200002610.1002/syst.202000026
    [Google Scholar]
  52. EbenezerO. ShapiM. TuszynskiJ.A. A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives.Biomedicines2022105112410.3390/biomedicines10051124
    [Google Scholar]
  53. DasguptaA. BabaahmadiR. PaharS. StefkovaK. GierlichsL. YatesB.F. AriafardA. MelenR.L. Tris(pentafluorophenyl)borane-catalyzed carbenium ion generation and autocatalytic pyrazole synthesis-A computational and experimental study.Angew. Chem. Int. Ed.20216046243952439924395-24399.doi.org/10.1002/anie.20210974410.1002/anie.202109744
    [Google Scholar]
  54. ZhuD. ChenL. FanH. YaoQ. ZhuS. Recent progress on donor and donor–donor carbenes.Chem. Soc. Rev.202049390895010.1039/C9CS00542K
    [Google Scholar]
  55. BergstromB.D. NickersonL.A. ShawJ.T. SouzaL.W. Transition metal catalyzed insertion reactions with donor/donor carbenes.Angew. Chem. Int. Ed.202160136864687810.1002/anie.202007001
    [Google Scholar]
  56. EgorovaK.S. AnanikovV.P. Toxicity of metal compounds: Knowledge and myths.Organometallics201736214071409010.1021/acs.organomet.7b00605
    [Google Scholar]
  57. DasguptaA. RichardsE. MelenR.L. Triarylborane catalyzed carbene transfer reactions using diazo precursors.ACS Catal.202212144245210.1021/acscatal.1c04746
    [Google Scholar]
  58. DasguptaA. PaharS. BabaahmadiR. GierlichsL. YatesB.F. AriafardA. MelenR.L. Borane catalyzed selective diazo cross-coupling towards pyrazoles.Adv. Synth. Catal.2022364477378010.1002/adsc.202101312
    [Google Scholar]
  59. MuthukrishnanI. SridharanV. MenéndezJ.C. Progress in the chemistry of tetrahydroquinolines.Chem. Rev.201911985057519110.1021/acs.chemrev.8b00567
    [Google Scholar]
  60. ZhangB.B. PengS. WangF. LuC. NieJ. ChenZ. YangG. MaC. Borane-catalyzed cascade Friedel–Crafts alkylation/[1,5]-hydride transfer/Mannich cyclization to afford tetrahydroquinolines.Chem. Sci. (Camb.)202213377578010.1039/D1SC05629H
    [Google Scholar]
  61. TaoY. GuoK. ChenH. YanG. GuoM. Site-selective C(sp3)–H functionalization of primary aliphatic amines.Org. Chem. Front.202411113270328010.1039/D4QO00324A
    [Google Scholar]
  62. (a BasakS. WinfreyL. KustianaB.A. MelenR.L. MorrillL.C. PulisA.P. Electron deficient borane-mediated hydride abstraction in amines: stoichiometric and catalytic processes.Chem. Soc. Rev.20215063720373710.1039/D0CS00531B
    [Google Scholar]
  63. (b MaY. LouS.J. HouZ. Electron-deficient boron-based catalysts for C–H bond functionalisation.Chem. Soc. Rev.20215031945196710.1039/D0CS00380H
    [Google Scholar]
  64. ChanJ.Z. YesilcimenA. CaoM. ZhangY. ZhangB. WasaM. Direct conversion of N-alkylamines to N-propargylamines through C-H activation promoted by Lewis acid/organocopper catalysis: Application to late-stage functionalization of bioactive molecules.J. Am. Chem. Soc.202014238164931650510.1021/jacs.0c08599
    [Google Scholar]
  65. TianJ.J. SunW. LiR.R. TianG.X. WangX.C. Borane/gold(I)-catalyzed C-H functionalization reactions and cycloaddition reactions of amines and α-alkynylenones.Angew. Chem. Int. Ed.20226135e20220842710.1002/anie.202208427
    [Google Scholar]
  66. (a PirenneV. MurielB. WaserJ. Catalytic enantioselective ring-opening reactions of cyclopropanes.Chem. Rev.2021121122726310.1021/acs.chemrev.0c00109
    [Google Scholar]
  67. (b XuanJ. HeX.K. XiaoW.J. Visible light-promoted ring-opening functionalization of three-membered carbo- and heterocycles.Chem. Soc. Rev.20204992546255610.1039/C9CS00523D
    [Google Scholar]
  68. WerzD.B. BijuA.T. Uncovering the neglected similarities of arynes and donor-acceptor cyclopropanes.Angew. Chem. Int. Ed.20205993385339810.1002/anie.201909213
    [Google Scholar]
  69. (a SuB. LiY. LiZ.H. HouJ.L. WangH. Activation of C-C bonds via σ-bond metathesis: Hydroborenium catalyzed hydrogenolysis of cyclopropanes.Organometallics202039234159416310.1021/acs.organomet.0c00099
    [Google Scholar]
  70. (b RoyA. BonettiV. WangG. WuQ. KlareH.F.T. OestreichM. Silylium-ion-promoted ring-opening hydrosilylation and disilylation of unactivated cyclopropanes.Org. Lett.20202231213121610.1021/acs.orglett.0c00173
    [Google Scholar]
  71. ZhangZ.Y. RenJ. ZhangM. XuX.F. WangX.C. Divergent synthesis of N-heterocycles by merging borane mediated cyclopropane ring-opening and hydride abstraction.Chin. J. Chem.20213961641164510.1002/cjoc.202100056
    [Google Scholar]
  72. WickerG. SchochR. ParadiesJ. Diastereoselective synthesis of dihydro-quinolin-4-ones by a borane-catalyzed redox-neutral endo-1,7-hydride shift.Org. Lett.20212393626363010.1021/acs.orglett.1c01018
    [Google Scholar]
  73. WangJ. Diazo compounds: Recent applications in synthetic organic chemistry and beyond.Tetrahedron Lett.202210815413510.1016/j.tetlet.2022.154135
    [Google Scholar]
  74. MixK.A. AronoffM.R. RainesR.T. Diazo compounds: Versatile tools for chemical biology.ACS Chem. Biol.201611123233324410.1021/acschembio.6b00810
    [Google Scholar]
  75. RaoS. KapanaiahR. PrabhuK.R. Boron-catalyzed C-C functionalization of allyl alcohols.Adv. Synth. Catal.201936161301130610.1002/adsc.201801389
    [Google Scholar]
  76. SongW. GuoJ. StephanD.W. B(C6F5)3-catalyzed Wolff rearrangement/[2 + 2] and [4 + 2] cascade cyclization of α-diazoketones with imines.Org. Chem. Front.20231071754175810.1039/D3QO00054K
    [Google Scholar]
  77. PenteadoF. LopesE.F. AlvesD. PerinG. JacobR.G. LenardãoE.J. α-Keto acids: Acylating agents in organic synthesis.Chem. Rev.2019119127113727810.1021/acs.chemrev.8b00782
    [Google Scholar]
  78. ZhengY. BianR. ZhangX. YaoR. QiuL. BaoX. XuX. Catalyst-free S-S bond insertion reaction of a donor/acceptor-free carbene by a radical process: A combined experimental and computational study.Eur. J. Org. Chem.20162016223872387710.1002/ejoc.201600664
    [Google Scholar]
  79. WuX.Y. GaoW.X. ZhouY.B. LiuM.C. WuH.Y. Tris(pentafluorophenyl)borane-catalyzed oxygen insertion reaction of α-diazoesters (α-diazoamides) with dimethyl sulfoxide.Adv. Synth. Catal.2022364475075410.1002/adsc.202101336
    [Google Scholar]
  80. O’ConnorN.R. BolgarP. StoltzB.M. Development of a simple system for the oxidation of electron-rich diazo compounds to ketones.Tetrahedron Lett.201657884985110.1016/j.tetlet.2016.01.020
    [Google Scholar]
  81. LoukopoulosE. KostakisG.E. Recent advances in the coordination chemistry of benzotriazole-based ligands.Coord. Chem. Rev.201939519322910.1016/j.ccr.2019.06.003
    [Google Scholar]
  82. StivaninM.L. FernandesA.A.G. da SilvaA.F. OkadaC.Y.Jr JurbergI.D. Blue light-promoted N-H insertion of carbazoles, pyrazoles and 1,2,3-triazoles into aryldiazoacetates.Adv. Synth. Catal.202036251106111110.1002/adsc.201901343
    [Google Scholar]
  83. ZhaoY. MandalD. GuoJ. WuY. StephanD.W. B(C6F5)3-catalyzed site-selective N 1 -alkylation of benzotriazoles with diazoalkanes.Chem. Commun. (Camb.)202157637758776110.1039/D1CC03048E
    [Google Scholar]
  84. ModakA. Alegre-RequenaJ.V. de LescureL. RyndersK.J. PatonR.S. RaceN.J. Homologation of electron-rich benzyl bromide derivatives via diazo C-C Bond insertion.J. Am. Chem. Soc.20221441869210.1021/jacs.1c11503
    [Google Scholar]
  85. HeY. HuangZ. WuK. MaJ. ZhouY.G. YuZ. Recent advances in transition-metal-catalyzed carbene insertion to C–H bonds.Chem. Soc. Rev.20225172759285210.1039/D1CS00895A
    [Google Scholar]
  86. van der ZeeL.J.C. PaharS. RichardsE. MelenR.L. SlootwegJ.C. Insights into single-electron-transfer processes in Frustrated Lewis Pair chemistry and related donor-acceptor systems in main group chemistry.Chem. Rev.2023123159653967510.1021/acs.chemrev.3c00217
    [Google Scholar]
  87. DingY. WangH. ZhangL. LiL. ZhangH. Albumin-binding difference caused by hydroxy and bromo on position-2 of benzothiazole.J. Mol. Liq.202133711657010.1016/j.molliq.2021.116570
    [Google Scholar]
  88. JinL. ZhouX. ZhaoY. GuoJ. StephanD.W. Catalyst-dependent chemoselective insertion of diazoalkanes into the N–H/C–H/O–H/C–O bonds of 2-hydroxybenzothiazoles.Org. Biomol. Chem.202220397781778610.1039/D2OB01048H
    [Google Scholar]
  89. DongS. LiuX. FengX. Asymmetric catalytic rearrangements with α-diazocarbonyl compounds.Acc. Chem. Res.202255341542810.1021/acs.accounts.1c00664
    [Google Scholar]
  90. ChengQ.Q. YuY. YedoyanJ. DoyleM.P. Vinyldiazo reagents and metal catalysts: A versatile toolkit for heterocycle and carbocycle construction.ChemCatChem201810348849610.1002/cctc.201701346
    [Google Scholar]
  91. DongK. XuX. DoyleM.P. Copper(I)-catalyzed highly enantioselective [3 + 3]-cycloaddition of γ-alkyl enoldiazoacetates with nitrones.Org. Chem. Front.20207131653165710.1039/D0QO00539H
    [Google Scholar]
  92. StefkovaK. GuerzoniM.G. van IngenY. RichardsE. MelenR.L. (C6F5)3-catalyzed diastereoselective and divergent reactions of vinyldiazo esters with nitrones: Synthesis of highly functionalized diazo compounds.Org. Lett.202325350050510.1021/acs.orglett.2c04198
    [Google Scholar]
  93. HeF. KoenigsR.M. Borane-catalyzed carbazolation reactions of aryldiazoacetates.Org. Lett.202123155831583510.1021/acs.orglett.1c01982
    [Google Scholar]
  94. HuangZ. LinJ. MaJ. WangL. ZhouY.G. YuZ. Borane-catalyzed, HFIP-assisted carbene insertion into internal alkenyl C-H bonds under metal-free conditions.Adv. Synth. Catal.2022364244333434610.1002/adsc.202200903
    [Google Scholar]
  95. DongK. HumeidiA. GriffithW. ArmanH. XuX. DoyleM.P. AgI-Catalyzed reaction of enol diazoacetates and imino ethers: Synthesis of highly functionalized pyrroles.Angew. Chem. Int. Ed.20216024133941340010.1002/anie.202101641
    [Google Scholar]
  96. WangM. WangC. JiangX. Recent progress in the sulfur-containing perfume & flavors construction.Chinese J. Org. Chem.20193982139214710.6023/cjoc201903069
    [Google Scholar]
  97. QiJ. WeiF. HuangS. TungC.H. XuZ. Copper(I)-catalyzed asymmetric interrupted Kinugasa reaction: Synthesis of α-thiofunctional chiral β-lctams.Angew. Chem. Int. Ed.20216094561456510.1002/anie.202013450
    [Google Scholar]
  98. DongK. LiuX.S. WeiX. ZhaoY. LiuL. Borane-catalysed S–H insertion reaction of thiophenols and thiols with α-aryl-α-diazoesters.Green Synthesis and Catalysis20212438538810.1016/j.gresc.2021.10.001
    [Google Scholar]
  99. WangP. GongY. WangX. RenY. WangL. ZhaiL. LiH. SheX. Solvent-free, B(C6F5)3-catalyzed S-H insertion of thiophenols and thiols with α-diazoesters.Chem. Asian J.20221716e20220046510.1002/asia.202200465
    [Google Scholar]
  100. PalombaM. RossiL. SancinetoL. TramontanoE. CoronaA. BagnoliL. SantiC. PannecouqueC. TabarriniO. MariniF. A new vinyl selenone-based domino approach to spirocyclopropyl oxindoles endowed with anti-HIV RT activity.Org. Biomol. Chem.20161462015202410.1039/C5OB02451J
    [Google Scholar]
  101. ReddyC.N. NayakV.L. ManiG.S. KapureJ.S. AdiyalaP.R. MauryaR.A. KamalA. Synthesis and biological evaluation of spiro[cyclopropane-1,3′-indolin]-2′-ones as potential anticancer agents.Bioorg. Med. Chem. Lett.201525204580458610.1016/j.bmcl.2015.08.056
    [Google Scholar]
  102. XiaoL. JinL. ZhaoY. GuoJ. StephanD.W. B(C6F5)3-catalyzed cyclopropanation of 3-alkenyl-oxindoles with diazomethanes.Chem. Commun. (Camb.)202359131833183610.1039/D2CC06744G
    [Google Scholar]
  103. WanF. TangW. Phosphorus ligands from the Zhang lab: Design, asymmetric hydrogenation, and industrial applications.Chin. J. Chem.202139495496810.1002/cjoc.202000605
    [Google Scholar]
  104. LiS.Z. VigourouxA. AhmarM. El SahiliA. SoulèreL. SagoL. CornuD. MoréraS. QueneauY. Synthesis of a non-natural glucose-2-phosphate ester able to dupe the acc system of Agrobacterium fabrum.Org. Biomol. Chem.20191751090109610.1039/C8OB03086C
    [Google Scholar]
  105. ZhangY. ZhangX. ZhaoJ. JiangJ. B(C6F5)3-catalyzed O–H insertion reactions of diazoalkanes with phosphinic acids.Org. Biomol. Chem.202119265772577610.1039/D1OB01035B
    [Google Scholar]
  106. YangZ. StivaninM.L. JurbergI.D. KoenigsR.M. Visible light-promoted reactions with diazo compounds: A mild and practical strategy towards free carbene intermediates.Chem. Soc. Rev.202049196833684710.1039/D0CS00224K
    [Google Scholar]
  107. YeL.W. ZhuX.Q. SahaniR.L. XuY. QianP.C. LiuR.S. Nitrene transfer and carbene transfer in gold catalysis.Chem. Rev.2021121149039911210.1021/acs.chemrev.0c00348
    [Google Scholar]
  108. BabaahmadiR. DasguptaA. HylandC.J.T. YatesB.F. MelenR.L. AriafardA. Understanding the influence of donor-acceptor diazo compounds on the catalyst efficiency of B(C6F5)3 towards carbene formation.Chemistry20222811e20210437610.1002/chem.202104376
    [Google Scholar]
  109. StefkovaK. HeardM.J. DasguptaA. MelenR.L. Borane catalysed cyclopropenation of arylacetylenes.Chem. Commun. (Camb.)202157556736673910.1039/D1CC01856F
    [Google Scholar]
  110. HeY. ZhengZ. YangJ. ZhangX. FanX. Recent advances in the functionalization of saturated cyclic amines.Org. Chem. Front.20218164582460610.1039/D1QO00171J
    [Google Scholar]
  111. SmolobochkinA.V. GazizovA.S. BurilovA.R. PudovikM.A. SinyashinO.G. Ring opening reactions of nitrogen heterocycles.Russ. Chem. Rev.201988111104112710.1070/RCR4891
    [Google Scholar]
  112. PengY. OestreichM. (C6F5)3-catalyzed regioselective ring opening of cyclic amines with hydrosilanes.Chemistry20232913e20220372110.1002/chem.202203721
    [Google Scholar]
  113. FlemingF.F. YaoL. RavikumarP.C. FunkL. ShookB.C. Nitrile-containing pharmaceuticals: Efficacious roles of the nitrile pharmacophore.J. Med. Chem.201053227902791710.1021/jm100762r
    [Google Scholar]
  114. TakahashiY. TaharaA. TakaoT. Intramolecular nitrene transfer via the C≡N bond cleavage of acetonitrile to a μ3-alkylidyne ligand on a cationic triruthenium plane.Organometallics202039152888289910.1021/acs.organomet.0c00393
    [Google Scholar]
  115. PengY. OestreichM. (C6F5)3-catalyzed reductive denitrogenation of benzonitrile derivatives.Org. Lett.202224152940294310.1021/acs.orglett.2c01003
    [Google Scholar]
  116. MolloyJ.J. MorackT. GilmourR. Positional and geometrical isomerisation of alkenes: The pinnacle of atom economy.Angew. Chem. Int. Ed.20195839136541366410.1002/anie.201906124
    [Google Scholar]
  117. KustianaB.A. ElsherbeniS.A. Linford-WoodT.G. MelenR.L. GraysonM.N. MorrillL.C. (C6F5)3-catalyzed (E)-selective isomerization of alkenes.Chemistry20222863e20220245410.1002/chem.202202454
    [Google Scholar]
  118. XieK. KemperS. OestreichM. Dehydrative coupling of 1,1-diarylalkenes and cyclohexa-2,5-diene-1-carbaldehyde derivatives induced by a B(C6F5)3-initiated [1,2]-alkyl migration.J. Org. Chem.20238814103101031310.1021/acs.joc.3c00966
    [Google Scholar]
  119. TiwariA. KhanamA. KumarA. LalM. Kumar MandalP. L‐Proline derived thioamide small organic molecule for the α‐stereoselective synthesis of 2‐deoxyglycosides.Adv. Synth. Catal.2023365172949295810.1002/adsc.202300455
    [Google Scholar]
  120. ParidaS.P. DasT. AhemadM.A. PatiT. MohapatraS. NayakS. Recent advances on synthesis of C-glycosides.Carbohydr. Res.202353010885610.1016/j.carres.2023.108856
    [Google Scholar]
  121. MandalP.K. GauravA. AzeemZ. Tris(pentafluorophenyl)borane-catalyzed stereoselective C-glycosylation of glycals: A facile synthesis of allyl and alkynyl glycosides.Synthesis20245661026103410.1055/a‑2186‑7116
    [Google Scholar]
  122. YangY. YuB. Recent advances in the chemical synthesis of C-glycosides.Chem. Rev.201711719122811235610.1021/acs.chemrev.7b00234
    [Google Scholar]
  123. De ClercqE. C-nucleosides to be revisited.J. Med. Chem.20165962301231110.1021/acs.jmedchem.5b01157
    [Google Scholar]
  124. KitamuraK. AndoY. MatsumotoT. SuzukiK. Total synthesis of aryl C-glycoside natural products: Strategies and tactics.Chem. Rev.201811841495159810.1021/acs.chemrev.7b00380
    [Google Scholar]
  125. LiaoH. MaJ. YaoH. LiuX.W. Recent progress of C -glycosylation methods in the total synthesis of natural products and pharmaceuticals.Org. Biomol. Chem.201816111791180610.1039/C8OB00032H
    [Google Scholar]
  126. BokorÉ. KunS. GoyardD. TóthM. PralyJ.P. VidalS. SomsákL. C-Glycopyranosyl arenes and hetarenes: Synthetic methods and bioactivity focused on antidiabetic potential.Chem. Rev.201711731687176410.1021/acs.chemrev.6b00475
    [Google Scholar]
  127. DubeyA. TiwariA. MandalP.K. Tris(pentafluorophenyl)borane-catalyzed stereoselective C-glycosylation of indoles with glycosyl trichloroacetimidates: Access to 3-indolyl-C-glycosides.J. Org. Chem.202186128516852610.1021/acs.joc.1c00698
    [Google Scholar]
  128. MaganoJ. DunetzJ.R. Large-scale carbonyl reductions in the pharmaceutical industry.Org. Process Res. Dev.20121661156118410.1021/op2003826
    [Google Scholar]
  129. MatsunamiA. KayakiY. Upgrading and expanding the scope of homogeneous transfer hydrogenation.Tetrahedron Lett.201859650451310.1016/j.tetlet.2017.12.078
    [Google Scholar]
  130. GuoX. UnglaubeF. KraglU. MejíaE. B(C6F5)3-Catalyzed transfer hydrogenation of esters and organic carbonates towards alcohols with ammonia borane.Chem. Commun. (Camb.)202258416144614710.1039/D2CC01442D
    [Google Scholar]
  131. DryzhakovM. MoranJ. Autocatalytic friedel-crafts reactions of tertiary aliphatic fluorides initiated by B(C6F5)3.H2O.ACS Catal.2016663670367310.1021/acscatal.6b00866
    [Google Scholar]
  132. DryzhakovM. RichmondE. LiG. MoranJ. CatalyticB. Catalytic B(C6F5)3H2O-promoted defluorinative functionalization of tertiary aliphatic fluorides.J. Fluor. Chem.2017193455110.1016/j.jfluchem.2016.11.005
    [Google Scholar]
  133. WangS.J. WangL. TangX.Y. Synergistic effect of hydrogen bonds and π-π interactions of B(C6F5)3·H2O/amides complex: Application in photoredox catalysis.iScience202326410652810.1016/j.isci.2023.106528
    [Google Scholar]
  134. AramakiY. UchidaY. IshikawaR. OoiT. Excited-state tris(pentafluorophenyl)borane as a strong single-electron oxidant: Photophysical properties and catalysis.J. Photochem. Photobiol.20231810020610.1016/j.jpap.2023.100206
    [Google Scholar]
  135. CohenY. CohenA. MarekI. Creating stereocenters within acyclic systems by C-C bond cleavage of cyclopropanes.Chem. Rev.2021121114016110.1021/acs.chemrev.0c00167
    [Google Scholar]
  136. KitanosonoT. MasudaK. XuP. KobayashiS. Catalytic organic reactions in water toward sustainable society.Chem. Rev.2018118267974610.1021/acs.chemrev.7b00417
    [Google Scholar]
  137. ChenX. PatelK. MarekI. Stereoselective construction of tertiary homoallyl alcohols and ethers by nucleophilic substitution at quaternary carbon stereocenter.Angew. Chem. Int. Ed.2023623e20221242510.1002/anie.202212425
    [Google Scholar]
  138. RodríguezH.A. CruzD.A. PadrónJ.I. FernándezI. Lewis Acid-catalyzed carbonyl-ene reaction: Interplay between aromaticity, synchronicity, and Pauli repulsion.J. Org. Chem.20238815111021111010.1021/acs.joc.3c01059
    [Google Scholar]
  139. IshiharaH. HuangJ. MochizukiT. HatanoM. IshiharaK. Enantio- and diastereoselective carbonyl-ene cyclization-acetalization tandem reaction catalyzed by tris(pentafluorophenyl)borane-assisted chiral phosphoric acids.ACS Catal.202111106121612710.1021/acscatal.1c01242
    [Google Scholar]
  140. MoZ. SzilvásiT. ZhouY.P. YaoS. DriessM. An intramolecular silylene borane capable of facile activation of small molecules, including metal-free dehydrogenation of water.Angew. Chem. Int. Ed.201756133699370210.1002/anie.201700625
    [Google Scholar]
  141. ChiaC.C. LiY. XiaoL. YangM.C. SuM.D. SoC.W. Lewis pair polymerization of alkyl methacrylate by amidinato silicon compounds and tris(pentafluorophenyl)borane.Eur. J. Org. Chem.2022202213e20220000310.1002/ejoc.202200003
    [Google Scholar]
  142. ShearerJ. CastroJ.L. LawsonA.D.G. MacCossM. TaylorR.D. Rings in clinical trials and drugs: Present and future.J. Med. Chem.202265138699871210.1021/acs.jmedchem.2c00473
    [Google Scholar]
  143. AllaisC. ConnorC.G. DoN.M. KulkarniS. LeeJ.W. LeeT. McInturffE. PiperJ. PlaceD.W. RaganJ.A. WeeklyR.M. Development of the commercial manufacturing process for nirmatrelvir in 17 months.ACS Cent. Sci.20239584985710.1021/acscentsci.3c00145
    [Google Scholar]
  144. MancinelliJ.P. KongW.Y. GuoW. TantilloD.J. Wilkerson-HillS.M. Borane-catalyzed C-F bond functionalization of gem-difluorocyclopropenes enables the synthesis of orphaned cyclopropanes.J. Am. Chem. Soc.202314531173891739710.1021/jacs.3c05278
    [Google Scholar]
  145. LennoxA.J.J. Lloyd-JonesG.C. Selection of boron reagents for Suzuki–Miyaura coupling.Chem. Soc. Rev.201443141244310.1039/C3CS60197H
    [Google Scholar]
  146. NeeveE.C. GeierS.J. MkhalidI.A.I. WestcottS.A. MarderT.B. Diboron(4) compounds: From structural curiosity to synthetic workhorse.Chem. Rev.2016116169091916110.1021/acs.chemrev.6b00193
    [Google Scholar]
  147. BismutoA. NicholG.S. DuarteF. CowleyM.J. ThomasS.P. Characterization of the zwitterionic intermediate in 1,1-carboboration of alkynes.Angew. Chem.202013231128311283510.1002/ange.202003468
    [Google Scholar]
  148. BismutoA. CowleyM.J. ThomasS.P. Zwitterion-initiated hydroboration of alkynes and styrene.Adv. Synth. Catal.202136392382238510.1002/adsc.202001323
    [Google Scholar]
  149. FangH. XieK. KemperS. OestreichM. Consecutive β,β′-Selective C(sp3)-H silylation of tertiary amines with dihydrosilanes catalyzed by B(C6F5)3.Angew. Chem. Int. Ed.202160158542854610.1002/anie.202016664
    [Google Scholar]
  150. VinogradovM.G. TurovaO.V. ZlotinS.G. Catalytic asymmetric aza-Diels-Alder reaction: Pivotal milestones and recent applications to synthesis of nitrogen-containing heterocycles.Adv. Synth. Catal.202136361466152610.1002/adsc.202001307
    [Google Scholar]
  151. ZhaoQ. LiY. ZhangQ.X. ChengJ.P. LiX. Catalytic asymmetric aza-Diels-Alder reaction of ketimines and unactivated dienes.Angew. Chem. Int. Ed.20216032176081761410.1002/anie.202104788
    [Google Scholar]
  152. ZhangM. TangZ.L. LuoH. WangX.C. β-C-H Allylation of trialkylamines with allenes promoted by synergistic borane/palladium ctalysis.Angew. Chem. Int. Ed.2024635e20231761010.1002/anie.202317610
    [Google Scholar]
  153. TrowbridgeA. WaltonS.M. GauntM.J. New strategies for the transition-metal catalyzed synthesis of aliphatic amines.Chem. Rev.202012052613269210.1021/acs.chemrev.9b00462
    [Google Scholar]
  154. HeC. WhitehurstW.G. GauntM.J. Palladium-catalyzed C(sp3)-H bond functionalization of aliphatic amines.Chem2019551031105810.1016/j.chempr.2018.12.017
    [Google Scholar]
  155. SuB. LeeT. HartwigJ.F. Iridium-catalyzed, β-selective C(sp3)-H silylation of aliphatic amines to form silapyrrolidines and 1,2-amino alcohols.J. Am. Chem. Soc.201814051180321803810.1021/jacs.8b10428
    [Google Scholar]
  156. LinW. ZhangK.F. BaudoinO. Regiodivergent enantioselective C–H functionalization of Boc-1,3-oxazinanes for the synthesis of β2- and β3-amino acids.Nat. Catal.201921088288810.1038/s41929‑019‑0336‑1
    [Google Scholar]
  157. ChangY. CaoM. ChanJ.Z. ZhaoC. WangY. YangR. WasaM. Enantioselective synthesis of N-alkylamines through β-amino C-H functionalization promoted by cooperative actions of B(C6F5)3 and a chiral Lewis acid co-catalyst.J. Am. Chem. Soc.202114352441245510.1021/jacs.0c13200
    [Google Scholar]
  158. YeJ.J. YanB.X. WangJ.P. WenJ.H. ZhangY. QiuM.R. LiQ. ZhaoC.Q. The construction of three C–P bonds of P -stereogenic tertiary phosphines containing ( l )-menthyl.Org. Chem. Front.20207152063206810.1039/D0QO00453G
    [Google Scholar]
  159. NeogK. GogoiP. Recent advances in the synthesis of organophosphorus compounds via Kobayashi’s aryne precursor: A review.Org. Biomol. Chem.202018479549956110.1039/D0OB01988G
    [Google Scholar]
  160. YangX. LiB. XingH. QiuJ. LohT.P. XieP. Dehydrative allylation of P–H species under metal-free conditions.Green Chem.20212341633163710.1039/D1GC00191D
    [Google Scholar]
  161. JuppA.R. StephanD.W. New directions for frustrated Lewis pair chemistry.Trends Chem.201911354810.1016/j.trechm.2019.01.006
    [Google Scholar]
  162. LamJ. SzkopK.M. MosaferiE. StephanD.W. FLP catalysis: Main group hydrogenations of organic unsaturated substrates.Chem. Soc. Rev.201948133592361210.1039/C8CS00277K
    [Google Scholar]
  163. ZurakowskiJ.A. AustenB.J.H. DroverM.W. Exterior decorating: Lewis acid secondary coordination spheres for cooperative reactivity.Trends Chem.20224433134610.1016/j.trechm.2022.01.007
    [Google Scholar]
  164. DasguptaA. StefkovaK. BabaahmadiR. YatesB.F. BuurmaN.J. AriafardA. RichardsE. MelenR.L. Site-selective Csp3-Csp/Csp3-Csp2 cross-coupling reactions using frustrated Lewis pairs.J. Am. Chem. Soc.20211434451446410.1021/jacs.1c01622
    [Google Scholar]
  165. CostaM. DiasT.A. BritoA. ProençaF. Biological importance of structurally diversified chromenes.Eur. J. Med. Chem.201612348750710.1016/j.ejmech.2016.07.057
    [Google Scholar]
  166. LiangX.S. LiR.D. SunW. LiuZ. WangX.C. Coupling of 2H-chromenes with silyl ketene acetals enabled by borane catalysis.ACS Catal.202212159153915810.1021/acscatal.2c02774
    [Google Scholar]
  167. VitakuE. SmithD.T. NjardarsonJ.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.J. Med. Chem.20145724102571027410.1021/jm501100b
    [Google Scholar]
  168. FrolovN.A. VereshchaginA.N. Piperidine derivatives: Recent advances in synthesis and pharmacological applications.Int. J. Mol. Sci.2023243293710.3390/ijms24032937
    [Google Scholar]
  169. YangZ.Y. LuoH. ZhangM. WangX.C. Borane-catalyzed reduction of pyridines via a hydroboration/hydrogenation cascade.ACS Catal.20211117108241082910.1021/acscatal.1c02876
    [Google Scholar]
  170. SetoyamaT. Acid–base bifunctional catalysis: An industrial viewpoint.Catal. Today2006116225026210.1016/j.cattod.2006.01.031
    [Google Scholar]
  171. ZhangQ. LiY. ZhangL. LuoS. Catalytic asymmetric disulfuration by a chiral bulky three component Lewis acid-base.Angew. Chem. Int. Ed.20216019109711097610.1002/anie.202101569
    [Google Scholar]
  172. JiaL. WangT. ChenJ. ZhaoH. YaoP. FanB. (C6F5)3/Chiral phosphoric acid promoted asymmetric C-3 gem-difluoroalkylation of quinoxalin-2-ones with difluoroenoxysilanes.Org. Lett.202426316551655510.1021/acs.orglett.4c01958
    [Google Scholar]
  173. NishijimaS. SugayaK. KadekawaK. AshitomiK. UedaT. YamamotoH. Mechanisms underlying the effects of propiverine on bladder activity in rats with pelvic venous congestion and urinary frequency.Biomed. Res.201940414515210.2220/biomedres.40.145
    [Google Scholar]
  174. Eftekhari-SisB. ZirakM. Maryam Zirak. α-Imino esters in organic synthesis: Recent advances.Chem. Rev.2017117128326841910.1021/acs.chemrev.7b00064
    [Google Scholar]
  175. (a ZhaoQ. MengG. NolanS.P. SzostakM. N-Heterocyclic carbene complexes in C-H activation reactions.Chem. Rev.202012041981204810.1021/acs.chemrev.9b00634
    [Google Scholar]
  176. (b LiuZ. YangY. SongQ. LiL. ZanoniG. LiuS. XiangM. AndersonE.A. BiX. Chemoselective carbene insertion into the N−H bonds of NH3·H2O.Nat. Commun.2022131764910.1038/s41467‑022‑35394‑z
    [Google Scholar]
  177. YanS. HaoY. XuS. HaiL. LvG. WuY. (C6F5)3·H2O-Catalyzed N-H and C-H functionalization of aromatic amines with sulfoxonium ylides under metal-free conditions.J. Org. Chem.20248918134011341110.1021/acs.joc.4c01558
    [Google Scholar]
  178. ZhouX.Y. ShaoY.B. GuoR.T. ZhangY.L. XueX.S. WangX.C. (C6F5)3-Catalyzed C(sp3)-H alkylation of tertiary amines with electron-deficient olefins: Determinants of site selectivity.ACS Catal.202414108041804910.1021/acscatal.4c01160
    [Google Scholar]
/content/journals/coc/10.2174/0113852728342903241115171334
Loading
/content/journals/coc/10.2174/0113852728342903241115171334
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test