Skip to content
2000
Volume 29, Issue 15
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Molecular photoswitches represent a dynamic and ever-growing research area based on the ability of molecules to convert (switch) between () and -() isomers. Azobenzenes are the most popular and widely employed - photoswitchable molecules in the development of photoresponsive, multifunctional smart materials for various applications. The promising avenues in this field include molecular fine-tuning of azobenzene-based photoswitches and the creation of single or dual-functional probes. This short overview highlights recent advances in the design of molecular photoswitches, particularly the molecular design strategies of azobenzene-based photoswitches with their structural and electronic features. Particular attention is paid to azoquinolines, which seem to be a promising alternative to azobenzenes in the design of novel multifunctional photoswitches with improved photochromic properties. Here, we have also developed the novel star-shaped multiazoquinoline photoswitch comprising individual azoquinoline-based photochromes connected to a central trisubstituted 1,3,5-triformylphloroglucinol core by quantum chemical calculations. This unique structure is favorable for independent - isomerization of each azoquinoline-based photochrome within one macromolecule.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728344412241008083512
2024-10-21
2025-12-06
Loading full text...

Full text loading...

References

  1. DattlerD. FuksG. HeiserJ. MoulinE. PerrotA. YaoX. GiusepponeN. Design of collective motions from synthetic molecular switches, rotors, and motors.Chem. Rev.2020120131043310.1021/acs.chemrev.9b00288 31869214
    [Google Scholar]
  2. SzymańskiW. BeierleJ.M. KistemakerH.A.V. VelemaW.A. FeringaB.L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches.Chem. Rev.201311386114617810.1021/cr300179f 23614556
    [Google Scholar]
  3. KobauriP. DekkerF.J. SzymanskiW. FeringaB.L. Rational design in photopharmacology with molecular photoswitches.Angew. Chem. Int. Ed.20236230e20230068110.1002/anie.202300681 37026576
    [Google Scholar]
  4. YuS.H. HassanS.Z. SoC. KangM. ChungD.S. Molecular‐switch‐embedded solution‐processed semiconductors.Adv. Mater.2023354220340110.1002/adma.202203401 35929102
    [Google Scholar]
  5. SalthouseR.J. Moth-PoulsenK. Multichromophoric photoswitches for solar energy storage: From azobenzene to norbornadiene, and most things in between.J. Mater. Chem. A Mater. Energy Sustain.20241263180320810.1039/D3TA05972C 38327567
    [Google Scholar]
  6. SchultzT. QuennevilleJ. LevineB. TonioloA. MartínezT.J. LochbrunnerS. SchmittM. ShafferJ.P. ZgierskiM.Z. StolowA. Mechanism and dynamics of azobenzene photoisomerization.J. Am. Chem. Soc.2003125278098809910.1021/ja021363x 12837068
    [Google Scholar]
  7. VerwilstP. HanJ. LeeJ. MunS. KangH.G. KimJ.S. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study.Biomaterials201711510411410.1016/j.biomaterials.2016.11.023 27886551
    [Google Scholar]
  8. HuangC. TanW. ZhengJ. ZhuC. HuoJ. YangR. Azoreductase-responsive metal-organic framework-based nanodrug for enhanced cancer therapy via breaking hypoxia-induced chemoresistance.ACS Appl. Mater. Interfaces20191129257402574910.1021/acsami.9b08115 31251022
    [Google Scholar]
  9. SunC. YueL. ChengQ. WangZ. WangR. Macrocycle-based polymer nanocapsules for hypoxia-responsive payload delivery.ACS Mater. Lett.2020232627110.1021/acsmaterialslett.0c00002
    [Google Scholar]
  10. WongP.T. ChoiS.K. Mechanisms of drug release in nanotherapeutic delivery systems.Chem. Rev.201511593388343210.1021/cr5004634 25914945
    [Google Scholar]
  11. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  12. HagenR. BieringerT. Photoaddressable polymers for optical data storage.Adv. Mater.200113231805181010.1002/1521‑4095(200112)13:23<1805:AID‑ADMA1805>3.0.CO;2‑V
    [Google Scholar]
  13. WeisP. WuS. Light‐switchable azobenzene‐containing macromolecules: From UV to near infrared.Macromol. Rapid Commun.2018391170022010.1002/marc.201700220 28643895
    [Google Scholar]
  14. ZhuJ. LinH. KimY. YangM. SkakujK. DuJ.S. LeeB. SchatzG.C. Van DuyneR.P. MirkinC.A. Light‐responsive colloidal crystals engineered with DNA.Adv. Mater.2020328190660010.1002/adma.201906600 31944429
    [Google Scholar]
  15. LahikainenM. ZengH. PriimagiA. ZhangZ. BaoJ. ZhangL. YangH. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects.Nat. Commun.201891414810.1038/s41467‑018‑06647‑7 30297774
    [Google Scholar]
  16. LiuJ. ShangY. LiuJ. WangJ. IkedaT. JiangL. Janus photochemical/photothermal azobenzene inverse opal actuator with shape self-recovery toward sophisticated motion.ACS Appl. Mater. Interfaces20221411727173910.1021/acsami.1c19826 34962760
    [Google Scholar]
  17. WieJ.J. ShankarM.R. WhiteT.J. Photomotility of polymers.Nat. Commun.2016711326010.1038/ncomms13260 27830707
    [Google Scholar]
  18. MartinN. SharmaK.P. HarnimanR.L. RichardsonR.M. HutchingsR.J. AlibhaiD. LiM. MannS. Light-induced dynamic shaping and self-division of multipodal polyelectrolyte-surfactant microarchitectures via azobenzene photomechanics.Sci. Rep.2017714132710.1038/srep41327 28112266
    [Google Scholar]
  19. JeonJ. ChoiJ.C. LeeH. ChoW. LeeK. KimJ.G. LeeJ-W. JooK-I. ChoM. KimH-R. WieJ.J. Continuous and programmable photomechanical jumping of polymer monoliths.Mater. Today2021499710610.1016/j.mattod.2021.04.014
    [Google Scholar]
  20. MahimwallaZ. YagerK.G. MamiyaJ. ShishidoA. PriimagiA. BarrettC.J. Azobenzene photomechanics: Prospects and potential applications.Polym. Bull.2012698967100610.1007/s00289‑012‑0792‑0
    [Google Scholar]
  21. BeharryA.A. WoolleyG.A. Azobenzene photoswitches for biomolecules.Chem. Soc. Rev.20114084422443710.1039/c1cs15023e 21483974
    [Google Scholar]
  22. ChengH.B. ZhangS. QiJ. LiangX.J. YoonJ. Advances in application of azobenzene as a trigger in biomedicine: molecular design and spontaneous assembly.Adv. Mater.20213326200729010.1002/adma.202007290 34028901
    [Google Scholar]
  23. ZhuJ. GuoT. WangZ. ZhaoY. Triggered azobenzene-based prodrugs and drug delivery systems.J. Control. Release202234547549310.1016/j.jconrel.2022.03.041 35339578
    [Google Scholar]
  24. WellemanI.M. HoorensM.W.H. FeringaB.L. BoersmaH.H. SzymańskiW. Photoresponsive molecular tools for emerging applications of light in medicine.Chem. Sci. (Camb.)20201143116721169110.1039/D0SC04187D 34094410
    [Google Scholar]
  25. FedeleC. RuokoT.P. KuntzeK. VirkkiM. PriimagiA. New tricks and emerging applications from contemporary azobenzene research.Photochem. Photobiol. Sci.202221101719173410.1007/s43630‑022‑00262‑8 35896915
    [Google Scholar]
  26. QuD.H. WangQ.C. ZhangQ.W. MaX. TianH. Photoresponsive host-guest functional systems.Chem. Rev.2015115157543758810.1021/cr5006342 25697681
    [Google Scholar]
  27. BaronciniM. BergaminiG. Azobenzene: A photoactive building block for supramolecular architectures.Chem. Rec.201717770071210.1002/tcr.201600112 28054435
    [Google Scholar]
  28. OstroverkhovaO. Organic optoelectronic materials: mechanisms and applications.Chem. Rev.201611622132791341210.1021/acs.chemrev.6b00127 27723323
    [Google Scholar]
  29. ZouJ. LiaoJ. HeY. ZhangT. XiaoY. WangH. ShenM. YuT. HuangW. Recent development of photochromic polymer systems: mechanism, materials, and applications.Research (Wash D C)20247039210.34133/research.0392
    [Google Scholar]
  30. GulatiS. SinghR. SangwanS. A review on green synthesis and biological activities of medicinally important nitrogen and oxygen containing heterocycles.Curr. Org. Chem.202326201848189410.2174/1385272827666221227114713
    [Google Scholar]
  31. UtrejaD. SalotraR. KaurG. SharmaS. KaushalS. Chemistry of quinolines and their agrochemical potential.Curr. Org. Chem.202326201895191310.2174/1385272827666221219101902
    [Google Scholar]
  32. ReddyA.B. AvuthuV.S.R. KishoreP.V.V.N. AllakaT.R. NagarajaiahH. New triazole based oxadiazolo/thiadiazolo-phthalazines as potent antimycobacterial agents: Design, synthesis, molecular modelling and in silico ADMET profiles.ChemistrySelect202491e20230402010.1002/slct.202304020
    [Google Scholar]
  33. MezgebeK. MulugetaE. Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: A review.RSC Advances20221240259322594610.1039/D2RA04934A 36199603
    [Google Scholar]
  34. MatadaB.S. PattanashettarR. YernaleN.G. A comprehensive review on the biological interest of quinoline and its derivatives.Bioorg. Med. Chem.20213211597310.1016/j.bmc.2020.115973 33444846
    [Google Scholar]
  35. SnehiV. VermaH. SahaS. KumarS. PathakD. An Extensive Review on Biological Interest of Quinoline and Its Analogues.Int. J. Sci. Healthcare Res.202381456610.52403/ijshr.20230105
    [Google Scholar]
  36. KumarV. ChaudharyS. MathurM. SwamiA.K. MalakarC.C. SinghV. A Tandem approach towards diastereoselective synthesis of quinoline C‐3 tethered γ‐lactones.ChemistrySelect20183239940410.1002/slct.201702923
    [Google Scholar]
  37. SinghD. KumarV. MalakarC.C. SinghV. Structural diversity attributed by aza-diels-alder reaction in synthesis of diverse quinoline scaffolds.Curr. Org. Chem.201923892095810.2174/1385272823666190423140805
    [Google Scholar]
  38. KishoreP.S. GujjarappaR. PuttaV.P.R.K. PolinaS. SinghV. MalakarC.C. PujarP.P. Potassium tert‐butoxide‐mediated synthesis of 2‐aminoquinolines from alkylnitriles and 2‐aminobenzaldehyde derivatives.ChemistrySelect2022746e20220423810.1002/slct.202204238
    [Google Scholar]
  39. O’DonnellF. SmythT.J.P. RamachandranV.N. SmythW.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines.Int. J. Antimicrob. Agents2010351303810.1016/j.ijantimicag.2009.06.031
    [Google Scholar]
  40. ParisD. CottinM. DemonchauxP. AugertG. DupassieuxP. LenoirP. PeckM.J. JasserandD. Synthesis, structure-activity relationships, and pharmacological evaluation of pyrrolo[3,2,1-ij]quinoline derivatives: potent histamine and platelet activating factor antagonism and 5-lipoxygenase inhibitory properties. Potential therapeutic application in asthma.J. Med. Chem.199538466968510.1021/jm00004a013 7861415
    [Google Scholar]
  41. FahrniC.J. O’HalloranT.V. Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc.J. Am. Chem. Soc.199912149114481145810.1021/ja992709f
    [Google Scholar]
  42. GladisM.J. Prasada RaoT. Quinoline-8-ol-immobilized Amberlite XAD-4: Synthesis, characterization, and uranyl ion uptake properties suitable for analytical applications.Anal. Bioanal. Chem.2002373886787210.1007/s00216‑002‑1387‑7 12194052
    [Google Scholar]
  43. WeiL. BabichJ.W. OuelletteW. ZubietaJ. Developing the M(CO)3+ core for fluorescence applications: Rhenium tricarbonyl core complexes with benzimidazole, quinoline, and tryptophan derivatives.Inorg. Chem.20064573057306610.1021/ic0517319 16562962
    [Google Scholar]
  44. HassanK.M. ElKhabieryS.A.S. ElHaddadG.M. ShokairS.H. ElSayedI.E. Synthesis and applications of some new nitrogen-containing heterocyclic azo-disperse dyes bearing quinoline chromophore.J. Indian Chem. Soc.202219114715810.1007/s13738‑021‑02294‑w
    [Google Scholar]
  45. LvY. YeH. YouL. Multiple control of azoquinoline based molecular photoswitches.Chem. Sci. (Camb.)20241593290329910.1039/D3SC05879D 38425524
    [Google Scholar]
  46. CreccaC.R. RoitbergA.E. Theoretical study of the isomerization mechanism of azobenzene and disubstituted azobenzene derivatives.J. Phys. Chem. A2006110268188820310.1021/jp057413c 16805507
    [Google Scholar]
  47. BandaraH.M.D. BurdetteS.C. Photoisomerization in different classes of azobenzene.Chem. Soc. Rev.20124151809182510.1039/C1CS15179G 22008710
    [Google Scholar]
  48. HartleyG.S. The cis-form of azobenzene.Nature1937140353728110.1038/140281a0
    [Google Scholar]
  49. HorspoolW.M. LenciF. CRC Handbook of Organic Photochemistry and PhotobiologyCRC Press: Boca Rotan200310.1201/9780203495902
    [Google Scholar]
  50. TaharaT. Advances in Multi-Photon Processes and Spectroscopy LinS.H. VillaeysA.A. FujimuraY. World Scientific Publishing: Singapore20041617210.1142/9789812796585_0001
    [Google Scholar]
  51. JercaF.A. JercaV.V. HoogenboomR. Advances and opportunities in the exciting world of azobenzenes.Nat. Rev. Chem.202161516910.1038/s41570‑021‑00334‑w 37117615
    [Google Scholar]
  52. StaubitzA. WaltherM. KipkeW. SchultzkeS. GhoshS. Modification of azobenzenes by cross-coupling reactions.Synthesis20215371213122810.1055/s‑0040‑1705999
    [Google Scholar]
  53. Garcia-AmorósJ. NonellS. VelascoD. Photo-driven optical oscillators in the kHz range based on push-pull hydroxyazopyridines.Chem. Commun. (Camb.)201147134022402410.1039/c1cc10302d 21350741
    [Google Scholar]
  54. Garcia-AmorósJ. NonellS. VelascoD. Light-controlled real time information transmitting systems based on nanosecond thermally-isomerising amino-azopyridinium salts.Chem. Commun. (Camb.)201248283421342310.1039/c2cc17782j 22327562
    [Google Scholar]
  55. García-AmorósJ. Diaz-LoboM. NonellS. VelascoD. Fastest thermal isomerization of an azobenzene for nanosecond photoswitching applications under physiological conditions.Angew. Chem. Int. Ed. Engl.20125151128201282310.1002/anie.201207602
    [Google Scholar]
  56. VolarićJ. SzymanskiW. SimethN.A. FeringaB.L. Molecular photoswitches in aqueous environments.Chem. Soc. Rev.20215022123771244910.1039/D0CS00547A 34590636
    [Google Scholar]
  57. Garcia-AmorósJ. Sánchez-FerrerA. MassadW.A. NonellS. VelascoD. Kinetic study of the fast thermal cis-to-trans isomerisation of para-, ortho- and polyhydroxyazobenzenes.Phys. Chem. Chem. Phys.20101240132381324210.1039/c004340k 20820477
    [Google Scholar]
  58. WangL. YiC. ZouH. XuJ. XuW. Theoretical study on the isomerization mechanisms of phenylazopyridine on S0 and S1 states.J. Phys. Org. Chem.200922988889610.1002/poc.1538
    [Google Scholar]
  59. BujakK. OrlikowskaH. MałeckiJ.G. Schab-BalcerzakE. BartkiewiczS. BoguckiJ. SobolewskaA. KonieczkowskaJ. Fast dark cis-trans isomerization of azopyridine derivatives in comparison to their azobenzene analogues: Experimental and computational study.Dyes Pigments201916065466210.1016/j.dyepig.2018.09.006
    [Google Scholar]
  60. KonieczkowskaJ. WasiakA. SobolewskaA. BartkiewiczS. MałeckiJ.G. Schab-BalcerzakE. Kinetics of the dark cis-trans isomerization of azobenzene and azo pyridine derivatives in ethanol and chloroform solutions.J. Photochem. Photobiol. Chem.202344411497910.1016/j.jphotochem.2023.114979
    [Google Scholar]
  61. García-AmorósJ. VelascoD. Recent advances towards azobenzene-based light-driven real-time information-transmitting materials.Beilstein J. Org. Chem.201281003101710.3762/bjoc.8.113 23019428
    [Google Scholar]
  62. Di MartinoM. SessaL. Di MatteoM. PanunziB. PiottoS. ConcilioS. Azobenzene as antimicrobial molecules.Molecules20222717564310.3390/molecules27175643 36080413
    [Google Scholar]
  63. WegenerM. HansenM.J. DriessenA.J.M. SzymanskiW. FeringaB.L. Photocontrol of antibacterial activity: Shifting from UV to red light activation.J. Am. Chem. Soc.201713949179791798610.1021/jacs.7b09281 29136373
    [Google Scholar]
  64. WendlerT. SchüttC. NätherC. HergesR. Photoswitchable azoheterocycles via coupling of lithiated imidazoles with benzenediazonium salts.J. Org. Chem.20127773284328710.1021/jo202688x 22401292
    [Google Scholar]
  65. WestonC.E. RichardsonR.D. HaycockP.R. WhiteA.J.P. FuchterM.J. Arylazopyrazoles: Azoheteroarene photoswitches offering quantitative isomerization and long thermal half-lives.J. Am. Chem. Soc.201413634118781188110.1021/ja505444d 25099917
    [Google Scholar]
  66. CalboJ. WestonC.E. WhiteA.J.P. RzepaH.S. Contreras-GarcíaJ. FuchterM.J. Tuning azoheteroarene photoswitch performance through heteroaryl design.J. Am. Chem. Soc.201713931261127410.1021/jacs.6b11626 28009517
    [Google Scholar]
  67. HeindlA.H. WegnerH.A. Rational design of azothiophenes-substitution effects on the switching properties.Chemistry20202660137301373710.1002/chem.202001148 32330338
    [Google Scholar]
  68. RusuA. MogaI.M. UncuL. HancuG. The role of five-membered heterocycles in the molecular structure of antibacterial drugs used in therapy.Pharmaceutics20231511255410.3390/pharmaceutics15112554 38004534
    [Google Scholar]
  69. AxelrodS. ShakhnovichE. Gómez-BombarelliR. Thermal half-lives of azobenzene derivatives: Virtual screening based on intersystem crossing using a machine learning potential.ACS Cent. Sci.20239216617610.1021/acscentsci.2c00897 36844486
    [Google Scholar]
  70. ReuterR. WegnerH.A. Oligoazobenzenophanes-synthesis, photochemistry and properties.Chem. Commun. (Camb.)20114745122671227610.1039/c1cc13773e 21829825
    [Google Scholar]
  71. HeindlA.H. BeckerJ. WegnerH.A. Selective switching of multiple azobenzenes.Chem. Sci. (Camb.)201910317418742510.1039/C9SC02347J 31489164
    [Google Scholar]
  72. MorenoM. LluchJ.M. GelabertR. On the computational design of azobenzene-based multi-state photoswitches.Int. J. Mol. Sci.20222315869010.3390/ijms23158690 35955820
    [Google Scholar]
  73. YangC. SlavovC. WegnerH.A. WachtveitlJ. DreuwA. Computational design of a molecular triple photoswitch for wavelength-selective control.Chem. Sci. (Camb.)20189468665867210.1039/C8SC03379J 30627390
    [Google Scholar]
  74. GalantiA. SantoroJ. MannancherryR. DuezQ. Diez-CabanesV. ValášekM. De WinterJ. CornilJ. GerbauxP. MayorM. SamorìP. A New Class of rigid multi(azobenzene) switches featuring electronic decoupling: Unravelling the isomerization in individual photochromes.J. Am. Chem. Soc.2019141239273928310.1021/jacs.9b02544 31091876
    [Google Scholar]
  75. KochM. SaphiannikovaM. GuskovaO. Columnar aggregates of azobenzene stars: Exploring intermolecular interactions, structure, and stability in atomistic simulations.Molecules20212624759810.3390/molecules26247598 34946680
    [Google Scholar]
  76. SchulzeB. SchubertU.S. Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles.Chem. Soc. Rev.20144382522257110.1039/c3cs60386e 24492745
    [Google Scholar]
  77. Goulet-HanssensA. BarrettC.J. Modular assembly of azo photo-switches using click chemistry allows for predictable photo-behaviour.J. Photochem. Photobiol. Chem.2014294626710.1016/j.jphotochem.2014.07.013
    [Google Scholar]
  78. FangD. ZhangZ.Y. ShangguanZ. HeY. YuC. LiT. Arylazo-1,2,3-triazoles: “clicked” photoswitches for versatile functionalization and electronic decoupling.J. Am. Chem. Soc.202114336145021451010.1021/jacs.1c08704 34476949
    [Google Scholar]
  79. ChenH. TangZ. YangY. HaoY. ChenW. Recent advances in photoswitchable fluorescent and colorimetric probes.Molecules20242911252110.3390/molecules29112521 38893396
    [Google Scholar]
  80. SankarR. VijayalakshmiS. SubramanianS. RajagopanS. KaliyappanT. Synthesis and chelation properties of new polymeric ligand derived from 8-hydroxy-5-azoquinoline hydroxy benzene.Eur. Polym. J.200743114639464610.1016/j.eurpolymj.2007.08.015
    [Google Scholar]
  81. SaylamA. SeferoğluZ. ErtanN. Azo-8-hydroxyquinoline dyes: The synthesis, characterizations and determination of tautomeric properties of some new phenyl- and heteroarylazo-8-hydroxyquinolines.J. Mol. Liq.201419526727610.1016/j.molliq.2014.02.027
    [Google Scholar]
  82. SzalaM. NyczJ.E. MaleckiG.J. SokolovaR. RamesovaS. Switlicka-OlszewskaA. StrzelczykR. PodsiadlyR. MachuraB. Synthesis of 5-azo-8-hydroxy-2-methylquinoline dyes and relevant spectroscopic, electrochemical and computational studies.Dyes Pigments201714227729210.1016/j.dyepig.2017.03.043
    [Google Scholar]
  83. SmokalV. KrupkaA. KharchenkoO. KrupkaO. Derkowska-ZielinskaB. KolendoA. Synthesis and photophysical properties of new styrylquinoline-containing polymers.Mol. Cryst. Liq. Cryst. (Phila. Pa.)20186611384410.1080/15421406.2018.1460236
    [Google Scholar]
  84. Derkowska-ZielinskaB. MatczyszynK. DudekM. SamocM. CzaplickiR. Kaczmarek-KedzieraA. SmokalV. BiitsevaA. KrupkaO. All-optical poling and two-photon absorption in heterocyclic azo dyes with different side groups.J. Phys. Chem. C2019123172573410.1021/acs.jpcc.8b10621
    [Google Scholar]
  85. ChomickiD. KharchenkoO. SkowronskiL. KowalonekJ. Kozanecka-SzmigielA. SzmigielD. SmokalV. KrupkaO. Derkowska-ZielinskaB. Physico-chemical and light-induced properties of quinoline azo-dyes polymers.Int. J. Mol. Sci.20202116575510.3390/ijms21165755 32796673
    [Google Scholar]
  86. ShaalaL.A. YoussefD.T.A. Pseudoceratonic acid and Moloka’iamine derivatives from the red sea verongiid sponge Pseudoceratina arabica.Mar. Drugs2020181152510.3390/md18110525 33114230
    [Google Scholar]
  87. KraszewskiA. StawinskiJ. H-Phosphonates: Versatile synthetic precursors to biologically active phosphorus compounds.Pure Appl. Chem.200779122217222710.1351/pac200779122217
    [Google Scholar]
  88. MuchaA. KafarskiP. BerlickiŁ. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry.J. Med. Chem.201154175955598010.1021/jm200587f 21780776
    [Google Scholar]
  89. Van der JeughtS. StevensC.V. Direct phosphonylation of aromatic azaheterocycles.Chem. Rev.200910962672270210.1021/cr800315j 19449857
    [Google Scholar]
  90. HabrakenE.R.M. van der ZeeL.J.C. van de VrandeK.N.A. JuppA.R. NiegerM. EhlersA.W. SlootwegJ.C. Facile synthesis of tuneable azophosphonium salts.Eur. J. Inorg. Chem.2019201911-121594160310.1002/ejic.201801546
    [Google Scholar]
  91. WakedA.E. Ostadsharif MemarR. StephanD.W. Nitrogen‐based lewis acids derived from phosphonium diazo cations.Angew. Chem. Int. Ed.20185737119341193810.1002/anie.201804183 29806886
    [Google Scholar]
  92. AlderM.J. CrossW.I. FlowerK.R. PritchardR.G. Azo-containing tertiary phosphines: synthesis, reactivity and structural characterisation.J. Chem. Soc., Dalton Trans.1999152563257410.1039/a902885d
    [Google Scholar]
  93. CaoF. SiL. XuS. ZhuL. LiuY. XuW. TangK.W. XiongB. WongW.Y. Pyridine-promoted diazotization of P-H bonds with aryl diazonium tetrafluoroborates: Synthesis of azo organophosphorus compounds.Tetrahedron Lett.202211115420710.1016/j.tetlet.2022.154207
    [Google Scholar]
  94. SuckfüllF. HaubrichH. Über Azophosphonsäureester.Angew. Chem.195870823824010.1002/ange.19580700808
    [Google Scholar]
  95. ShenB-R. AnnamalaiP. BaiR. Singh. S.; Badsara, Lee, C.-F. Blue LED-mediated syntheses of arylazo phosphine oxides and phosphonates via N−P bond formation.Org. Lett.2022245988599310.1021/acs.orglett.2c02251 35926085
    [Google Scholar]
  96. Ghanadzadeh GilaniA. MoghadamM. ZakerhamidiM.S. MoradiE. Solvatochromism, tautomerism and dichroism of some azoquinoline dyes in liquids and liquid crystals.Dyes Pigments20129231320133010.1016/j.dyepig.2011.09.021
    [Google Scholar]
  97. YanZ. GuangS. XuH. LiuX.Y. Quinoline-based azo derivative assembly: Optical limiting property and enhancement mechanism.Dyes Pigments201399372072610.1016/j.dyepig.2013.07.007
    [Google Scholar]
  98. SarkarR. MondalP. RajakK.K. Synthesis, structure and spectroscopic properties of Re(I) complexes incorporating 5-arylazo-8-hydroxyquinoline: A density functional theory/time-dependent density functional theory investigation.Dalton Trans.20144372859287710.1039/C3DT52630E 24343365
    [Google Scholar]
  99. El-GhamazN.A. El-BindaryA.A. El-SonbatiA.Z. BeshryN.M. Geometrical structures, thermal, optical and electrical properties of azo quinoline derivatives.J. Mol. Liq.201521162863910.1016/j.molliq.2015.07.050
    [Google Scholar]
  100. ArslanÖ. AydınerB. YalçınE. BabürB. SeferoğluN. SeferoğluZ. 8-Hydroxyquinoline based push-pull azo dye: Novel colorimetric chemosensor for anion detection.J. Mol. Struct.2017114949950910.1016/j.molstruc.2017.08.001
    [Google Scholar]
  101. LygoO.N. ShvydkiiV.O. KhodotE.N. OgurtsovV.A. KurkovskayaL.N. LevinaI.I. NekipelovaT.D. Spectral and time-resolved properties of novel hetarylazo dyes containing hydrogenated quinolines and triazole moieties.High Energy Chem.201448426026510.1134/S0018143914040080
    [Google Scholar]
  102. Ghanadzadeh GilaniA. TaghvaeiV. Moradi RufchahiE. MirzaeiM. Photo-physical and structural studies of some synthesized arylazoquinoline dyes.Spectrochim. Acta A Mol. Biomol. Spectrosc.201718511112410.1016/j.saa.2017.05.035 28551448
    [Google Scholar]
  103. BujakK. WasiakA. SobolewskaA. BartkiewiczS. MaleckiJ.G. NyczJ.E. Schab-BalcerzakE. KonieczkowskaJ. A family of azoquinoline derivatives: Effect of the substituent at azo linkage on thermal cis-trans isomerization based on an experimental and computational approach.Dyes Pigments202017510815110.1016/j.dyepig.2019.108151
    [Google Scholar]
  104. NekipelovaT.D. KhodotE.N. DeevaY.S. LevinaI.I. TimokhinaE.N. KostyukovA.A. KuzminV.A. Dihydroquinolylazotetrazole dyes: Effect of a substituent at the tetrazole fragment on spectral properties and thermal ‒ isomerization in organic solvents.Dyes Pigments202119510967510.1016/j.dyepig.2021.109675
    [Google Scholar]
  105. BlégerD. DokićJ. PetersM.V. GrubertL. SaalfrankP. HechtS. Electronic decoupling approach to quantitative photoswitching in linear multiazobenzene architectures.J. Phys. Chem. B2011115339930994010.1021/jp2044114 21749103
    [Google Scholar]
  106. SinghV. JangS. VishwakarmaN.K. KimD.P. Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique.NPG Asia Mater.2018101e45610.1038/am.2017.209
    [Google Scholar]
  107. TroschkeE. OschatzM. IlicI.K. Schiff‐bases for sustainable battery and supercapacitor electrodes.Exploration2021132021012810.1002/EXP.20210128 37323689
    [Google Scholar]
  108. BeckeA.D. Density-functional thermochemistry. III. The role of exact exchange.J. Chem. Phys.19939875648565210.1063/1.464913
    [Google Scholar]
  109. LeeC. YangW. ParrR.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys. Rev. B Condens. Matter198837278578910.1103/PhysRevB.37.785 9944570
    [Google Scholar]
  110. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. MennucciB. PeterssonG.A. Gaussian 09, Revision B.01.WallingfordGaussian Inc.2009
    [Google Scholar]
  111. CrespiS. SimethN.A. KönigB. Heteroaryl azo dyes as molecular photoswitches.Nat. Rev. Chem.20193313314610.1038/s41570‑019‑0074‑6
    [Google Scholar]
  112. SiewertsenR. NeumannH. Buchheim-StehnB. HergesR. NätherC. RenthF. TempsF. Highly efficient reversible Z-E photoisomerization of a bridged azobenzene with visible light through resolved S(1)(n π*) absorption bands.J. Am. Chem. Soc.200913143155941559510.1021/ja906547d 19827776
    [Google Scholar]
  113. BeharryA.A. SadovskiO. WoolleyG.A. Azobenzene photoswitching without ultraviolet light.J. Am. Chem. Soc.201113349196841968710.1021/ja209239m 22082305
    [Google Scholar]
  114. KnieC. UtechtM. ZhaoF. KullaH. KovalenkoS. BrouwerA.M. SaalfrankP. HechtS. BlégerD. ortho-Fluoroazobenzenes: visible light switches with very long-Lived Z isomers.Chemistry20142050164921650110.1002/chem.201404649 25352421
    [Google Scholar]
  115. GavkusD.N. MaiorovaO.A. BorisovM.Y. EgorovaA.Y. Azo coupling of 5-substituted furan-2(3H)-ones and 1H-pyrrol-2(3H)-ones with arene(hetarene)diazonium salts.Russ. J. Org. Chem.20124891229123210.1134/S107042801209014X
    [Google Scholar]
  116. SherifS. EkladiousL. Abd ElmalekG. The Synthesis of some Azo Dyes containing the quinoxaline nucleus. I.J. Prakt. Chem.1970312575976610.1002/prac.19703120505
    [Google Scholar]
  117. RangnekarD.W. TagdiwalaP.V. Synthesis of azo dyes from 6-amino-2-methoxy-quinoxaline and their use as disperse dyes for polyester fibres.Dyes Pigments19878215115610.1016/0143‑7208(87)85013‑1
    [Google Scholar]
  118. HamamaW.S. IbrahimM.E. ZoorobH.H. Synthesis and biological evaluation of some novel isoxazole derivatives: Isoxazole with basic side chain.J. Heterocycl. Chem.201754134134610.1002/jhet.2589
    [Google Scholar]
  119. ZhouH. XueC. WeisP. SuzukiY. HuangS. KoynovK. AuernhammerG.K. BergerR. ButtH.J. WuS. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions.Nat. Chem.20179214515110.1038/nchem.2625 28282043
    [Google Scholar]
  120. AkiyamaH. FukataT. YamashitaA. YoshidaM. KiharaH. Reworkable adhesives composed of photoresponsive azobenzene polymer for glass substrates.J. Adhes.2017931082383010.1080/00218464.2016.1219255
    [Google Scholar]
  121. ImatoK. KanedaN. OoyamaY. Recent progress in photoinduced transitions between the solid, glass, and liquid states based on molecular photoswitches.Polym. J.202456426928210.1038/s41428‑023‑00873‑7
    [Google Scholar]
/content/journals/coc/10.2174/0113852728344412241008083512
Loading
/content/journals/coc/10.2174/0113852728344412241008083512
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test