Skip to content
2000
Volume 29, Issue 15
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The review describes the oxidative addition of sulfonamides to allylic derivatives. The direction of the sulfonamidation reaction depends on various factors, such as the type of allylic substrate, solvent, oxidant, and the reactivity of the sulfonamide. Intramolecular cyclization of allyl sulfonamides is a simple method for obtaining nitrogen-containing heterocyclic compounds with diverse structures. Reactions between O-allylic substrates and sulfonamides in the presence of oxidizing agents can produce cyclic or linear amino ethers, which are valuable for the synthesis of heterocyclic biologically active compounds. -allylic substances are excellent starting materials for the synthesis of -heterocyclic compounds and linear products with two or three amino groups, providing ample opportunities for further functionalization. When allylsilanes are exposed to oxidizing conditions, they undergo desilylation, allowing for the introduction of an allylic group into reactions with sulfonamides, resulting in products free from Si-heteroatoms, based on a C3-allylic scaffold and sulfonamide nitrogen. The choice of reaction medium and oxidizing agent can significantly affect the course of the reaction, leading to the formation of different products. The main products include aziridines, pyrrolidines, piperazines, lactams, oxazolidines, amino ethers, amidines (imidazoline precursors), and products of aminohalogenetation. This review provides a comparative analysis of the reactivity of sulfonamides in oxidative addition reactions and considers the advantages and disadvantages of synthetic methods.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728348072250113115434
2025-02-27
2025-09-25
Loading full text...

Full text loading...

References

  1. SinghG.S. D’hoogheM. De KimpeN. Synthesis and reactivity of C-heteroatom-substituted aziridines.Chem. Rev.200710752080213510.1021/cr0680033 17488062
    [Google Scholar]
  2. OhnoH. Synthesis and applications of vinylaziridines and ethynylaziridines.Chem. Rev.2014114167784781410.1021/cr400543u 24678905
    [Google Scholar]
  3. CardosoA.L. Pinho e MeloT.M.V.D. Aziridines in formal [3+2] cycloadditions: Synthesis of five‐membered heterocycles.Eur. J. Org. Chem.20122012336479650110.1002/ejoc.201200406
    [Google Scholar]
  4. ShainyanB.A. TolstikovaL.L. Trifluoromethanesulfonamides and related compounds.Chem. Rev.2013113169973310.1021/cr300220h 23167801
    [Google Scholar]
  5. LachiaM. MoodyC.J. The synthetic challenge of diazonamide A, a macrocyclic indole bis-oxazole marine natural product.Nat. Prod. Rep.200825222725310.1039/b705663j 18389137
    [Google Scholar]
  6. MondalS. Sulfonamide synthesis under green conditions.Synth. Commun.20215171023104410.1080/00397911.2020.1870238
    [Google Scholar]
  7. ScozzafavaA. OwaT. MastrolorenzoA. SupuranC. Anticancer and antiviral sulfonamides.Curr. Med. Chem.2003101192595310.2174/0929867033457647 12678681
    [Google Scholar]
  8. BrownE.D. WrightG.D. New targets and screening approaches in antimicrobial drug discovery.Chem. Rev.2005105275977410.1021/cr030116o 15700964
    [Google Scholar]
  9. SupuranC. InnocentiA. MastrolorenzoA. ScozzafavaA. Antiviral sulfonamide derivatives.Mini Rev. Med. Chem.20044218920010.2174/1389557043487402 14965291
    [Google Scholar]
  10. ChenL. AoZ. JayappaK.D. KobingerG. LiuS. WuG. WainbergM.A. YaoX. Characterization of antiviral activity of benzamide derivative AH0109 against HIV-1 infection.Antimicrob. Agents Chemother.20135783547355410.1128/AAC.00100‑13 23669388
    [Google Scholar]
  11. DebbabiK.F. BashandyM.S. Al-HarbiS.A. AljuhaniE.H. Al-SaidiH.M. Synthesis and molecular docking against dihydrofolate reductase of novel pyridin-N-ethyl-N-methylbenzenesulfonamides as efficient anticancer and antimicrobial agents.J. Mol. Struct.2017113112413510.1016/j.molstruc.2016.11.048
    [Google Scholar]
  12. GoodellJ.R. OugolkovA.V. HiasaH. KaurH. RemmelR. BilladeauD.D. FergusonD.M. Acridine-based agents with topoisomerase II activity inhibit pancreatic cancer cell proliferation and induce apoptosis.J. Med. Chem.200851217918210.1021/jm701228e 18163538
    [Google Scholar]
  13. SupuranC.T. CasiniA. ScozzafavaA. Protease inhibitors of the sulfonamide type: Anticancer, antiinflammatory, and antiviral agents.Med. Res. Rev.200323553555810.1002/med.10047 12789686
    [Google Scholar]
  14. OzawaY. KusanoK. OwaT. YokoiA. AsadaM. YoshimatsuK. Therapeutic potential and molecular mechanism of a novel sulfonamide anticancer drug, indisulam (E7070) in combination with CPT-11 for cancer treatment.Cancer Chemother. Pharmacol.20126951353136210.1007/s00280‑012‑1844‑8 22349812
    [Google Scholar]
  15. WangW. ZhangL. MorlockL. WilliamsN.S. ShayJ.W. De BrabanderJ.K. Design and synthesis of TASIN analogues specifically targeting colorectal cancer cell lines with mutant adenomatous polyposis coli (APC).J. Med. Chem.201962105217524110.1021/acs.jmedchem.9b00532 31070915
    [Google Scholar]
  16. HuangQ. RuiE.Y. CobbsM. DinhD.M. GukasyanH.J. LafontaineJ.A. MehtaS. PattersonB.D. RewolinskiD.A. RichardsonP.F. EdwardsM.P. Design, synthesis, and evaluation of NO-donor containing carbonic anhydrase inhibitors to lower intraocular pressure.J. Med. Chem.20155862821283310.1021/acs.jmedchem.5b00043 25728019
    [Google Scholar]
  17. MaryanoffB.E. CostanzoM.J. NorteyS.O. GrecoM.N. ShankR.P. SchupskyJ.J. OrtegonM.P. VaughtJ.L. Structure-activity studies on anticonvulsant sugar sulfamates related to topiramate. Enhanced potency with cyclic sulfate derivatives.J. Med. Chem.19984181315134310.1021/jm970790w 9548821
    [Google Scholar]
  18. MishraC.B. KumariS. AngeliA. MontiS.M. BuonannoM. TiwariM. SupuranC.T. Discovery of benzenesulfonamides with potent human carbonic anhydrase inhibitory and effective anticonvulsant action: Design, synthesis, and pharmacological assessment.J. Med. Chem.20176062456246910.1021/acs.jmedchem.6b01804 28253618
    [Google Scholar]
  19. CunninghamR.F. IsrailiZ.H. DaytonP.G. Clinical pharmacokinetics of probenecid.Clin. Pharmacokinet.19816213515110.2165/00003088‑198106020‑00004 7011657
    [Google Scholar]
  20. NicholsD.E. NicholsC.D. Serotonin receptors.Chem. Rev.200810851614164110.1021/cr078224o 18476671
    [Google Scholar]
  21. WeberA. CasiniA. HeineA. KuhnD. SupuranC.T. ScozzafavaA. KlebeG. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: New pharmacological opportunities due to related binding site recognition.J. Med. Chem.200447355055710.1021/jm030912m 14736236
    [Google Scholar]
  22. NocentiniA. MoiD. DeplanoA. OsmanS.M. AlOthmanZ.A. BalboniG. SupuranC.T. OnnisV. Sulfonamide/sulfamate switch with a series of piperazinylureido derivatives: Synthesis, kinetic and in silico evaluation as carbonic anhydrase isoforms I, II, IV, and IX inhibitors.Eur. J. Med. Chem.202018611189610.1016/j.ejmech.2019.111896 31784185
    [Google Scholar]
  23. AbasM. RafiqueH. ShamasS. RoshanS. AshrafZ. IqbalZ. RazaH. HassanM. AfzalK. RizvanovA.A. AsadM.H.H.B. Sulfonamide-based azaheterocyclic schiff base derivatives as potential carbonic anhydrase inhibitors: Synthesis, cytotoxicity, and enzyme inhibitory kinetics.BioMed Res. Int.202020201910.1155/2020/8104107 32149140
    [Google Scholar]
  24. IrfanA. RubabL. RehmanM.U. AnjumR. UllahS. MarjanaM. QadeerS. SanaS. Coumarin sulfonamide derivatives: An emerging class of therapeutic agents.Heterocycl. Commun.2020261465910.1515/hc‑2020‑0008
    [Google Scholar]
  25. SkepperC.K. QuachT. MolinskiT.F. Total synthesis of enigmazole A from Cinachyrella enigmatica. Bidirectional bond constructions with an ambident 2,4-disubstituted oxazole synthon.J. Am. Chem. Soc.201013230102861029210.1021/ja1016975 20590095
    [Google Scholar]
  26. DevendarP. YangG.F. Sulfur-containing agrochemicals.Top. Curr. Chem. (Cham)201737568210.1007/s41061‑017‑0169‑9 28993992
    [Google Scholar]
  27. HuangL. ArndtM. GooßenK. HeydtH. GooßenL.J. Late transition metal-catalyzed hydroamination and hydroamidation.Chem. Rev.201511572596269710.1021/cr300389u 25721762
    [Google Scholar]
  28. HuangD. LiuX. LiL. CaiY. LiuW. ShiY. Enantioselective bromoaminocyclization of allyl N-tosylcarbamates catalyzed by a chiral phosphine-Sc(OTf)3 complex.J. Am. Chem. Soc.2013135228101810410.1021/ja4010877 23659658
    [Google Scholar]
  29. MinakataS. MorinoY. OderaotoshiY. KomatsuM. Novel aziridination of olefins: Direct synthesis from sulfonamides using t-BuOI.Chem. Commun. (Camb.)2006313337333910.1039/b606499j 16883429
    [Google Scholar]
  30. MoriyamaK. IzumisawaY. TogoH. Oxidative intramolecular bromo-amination of N-alkenyl sulfonamides via umpolung of alkali metal bromides.J. Org. Chem.201176177249725510.1021/jo201113r 21823624
    [Google Scholar]
  31. ShainyanB.A. MoskalikM.Y. StarkeI. SchildeU. Formation of unexpected products in the attempted aziridination of styrene with trifluoromethanesulfonyl nitrene.Tetrahedron201066438383838610.1016/j.tet.2010.08.070
    [Google Scholar]
  32. FanR. WenF. QinL. PuD. WangB.PhI. (OAc)2 induced intramolecular oxidative bromocyclization of homoallylic sulfonamides with KBr as the bromine source.Tetrahedron Lett.200748427444744710.1016/j.tetlet.2007.08.085
    [Google Scholar]
  33. ChengY.A. YuW.Z. YeungY.Y. Carbamate-catalyzed enantioselective bromolactamization.Angew. Chem. Int. Ed.20155441121021210610.1002/anie.201504724 26314397
    [Google Scholar]
  34. BrogginiG. BeccalliE.M. BorelliT. BrusaF. GazzolaS. MazzaA. Intra‐intermolecular palladium‐catalyzed domino reactions of glycine allylamides for the synthesis of diversely functionalized piperazinones.Eur. J. Org. Chem.20152015194261426810.1002/ejoc.201500386
    [Google Scholar]
  35. BerhalF. PrestatG. ManickA-D. Synthesis of six- and seven-membered chloromethyl-substituted heterocycles via palladium-catalyzed amino- and oxychlorination.Synthesis201648213719372910.1055/s‑0035‑1561671
    [Google Scholar]
  36. EgartB. LentzD. CzekeliusC. Diastereoselective bromocyclization of O-allyl-N-tosyl-hydroxylamines.J. Org. Chem.20137862490249910.1021/jo3026725 23351033
    [Google Scholar]
  37. KawatoY. KubotaA. OnoH. EgamiH. HamashimaY. Enantioselective bromocyclization of allylic amides catalyzed by BINAP derivatives.Org. Lett.20151751244124710.1021/acs.orglett.5b00220 25699577
    [Google Scholar]
  38. TsuritaniT. ShinokuboH. OshimaK. Radical [3+2] annulation of N-allyl-N-chlorotosylamide with alkenes via atom-transfer process.Org. Lett.20013172709271110.1021/ol016310j 11506615
    [Google Scholar]
  39. BusaccaC.A. DongY. A facile synthesis of 4-aryl-2,3-dihydropyrroles.Tetrahedron Lett.199637233947395010.1016/0040‑4039(96)00749‑6
    [Google Scholar]
  40. ShermanE.S. ChemlerS.R. TanT.B. GerlitsO. Copper(II) acetate promoted oxidative cyclization of arylsulfonyl-o-allylanilines.Org. Lett.20046101573157510.1021/ol049702+ 15128239
    [Google Scholar]
  41. ThakurV.V. TalluriS.K. SudalaiA. Transition metal-catalyzed regio- and stereoselective aminobromination of olefins with TsNH2 and NBS as nitrogen and bromine sources.Org. Lett.20035686186410.1021/ol027530f 12633091
    [Google Scholar]
  42. FroidevauxV. NegrellC. CaillolS. PascaultJ.P. BoutevinB. Biobased amines: From synthesis to polymers; Present and future.Chem. Rev.201611622141811422410.1021/acs.chemrev.6b00486 27809503
    [Google Scholar]
  43. WangM.X. Enantioselective biotransformations of nitriles in organic synthesis.Top. Catal.2005351-211713010.1007/s11244‑005‑3817‑1
    [Google Scholar]
  44. MarcosC.F. PoloC. RakitinO.A. ReesC.W. TorrobaT. One-pot synthesis and chemistry of bis[1,2]dithiolopyrroles.Chem. Commun. (Camb.)1997987988010.1039/a701340j
    [Google Scholar]
  45. MarcosC.F. TorrobaT. RakitinO.A. SouvorovaL.I. ReesC.W. WhiteA.J.P. WilliamsD.J. Tertiary amine-S2Cl2 chemistry: Interception of reaction intermediates.Chem. Commun. (Camb.)1998445345410.1039/a708396c
    [Google Scholar]
  46. MarcosF. Bis[1,2]dithiolo[3,4-b][4′,3′-e][1,4]thiazine-3,5-dione, a planar 1,4-thiazine.Chem. Commun.19991999293010.1039/a808192a
    [Google Scholar]
  47. ZhengW.Q. GuoY. LiW.M. MaH.M. LiuX.Q. ChenH.Y. Bioassay of Rongbao (Active Ingredients of Calcium Cyanamide) Against Housefly Maggots.New Horizons in Insect Science: Towards Sustainable Pest Management. ChakravarthyA.K. Springer India201510111210.1007/978‑81‑322‑2089‑3_11
    [Google Scholar]
  48. KamoT. SakuraiS. YamanashiT. TodorokiY. Cyanamide is biosynthesized from l-canavanine in plants.Sci. Rep.2015511052710.1038/srep10527 26013398
    [Google Scholar]
  49. GallouI. Unsymmetrical ureas. synthetic methodologies and application in drug design.Org. Prep. Proced. Int.200739435538310.1080/00304940709458592
    [Google Scholar]
  50. ZhangJ. ZhouJ. RenX. DiaoY. LiH. JiangH. DingK. PeiD. A new diaryl urea compound, D181, induces cell cycle arrest in the G1 and M phases by targeting receptor tyrosine kinases and the microtubule skeleton.Invest. New Drugs201230249050710.1007/s10637‑010‑9577‑1 21080210
    [Google Scholar]
  51. AnandanS-K. WebbH.K. DoZ.N. GlessR.D. Unsymmetrical non-adamantyl N,N′-diaryl urea and amide inhibitors of soluble expoxide hydrolase.Bioorganic Med. Chem. Lett.200919154259426310.1016/j.bmcl.2009.05.102
    [Google Scholar]
  52. WuT.T. HuangJ. ArringtonN.D. DillG.M. Synthesis and herbicidal activity of. alpha.-heterocyclic carbinol carbamates.J. Agric. Food Chem.198735581782310.1021/jf00077a044
    [Google Scholar]
  53. ChaturvediD. MishraN. MishraV. Various approaches for the synthesis of organic carbamates.Curr. Org. Synth.20074330832010.2174/157017907781369298
    [Google Scholar]
  54. QiJ. FanG.T. ChenJ. SunM.H. DongY.T. ZhouL. Catalytic enantioselective bromoamination of allylic alcohols.Chem. Commun. (Camb.)20145089138411384410.1039/C4CC05772D 25259372
    [Google Scholar]
  55. HajraS. AkhtarS.M.S. AzizS.M. Catalytic asymmetric aminolactonization of 1,2-disubstituted alkenoic acid esters: Efficient construction of aminolactones with an all-carbon quaternary stereo-centre.Chem. Commun.201450691310.1039/C4CC01944J
    [Google Scholar]
  56. GaninA.S. MoskalikM.Y. AstakhovaV.V. SterkhovaI.V. ShainyanB.A. Heterocyclization and solvent interception upon oxidative triflamidation of allyl ethers, amines and silanes.Tetrahedron2020763313137410.1016/j.tet.2020.131374
    [Google Scholar]
  57. ShainyanB.A. AstakhovaV.V. GaninA.S. MoskalikM.Y. SterkhovaI.V. Oxidative addition/cycloaddition of arenesulfonamides and triflamide to N-allyltriflamide and N,N-diallyltriflamide.RSC Advances2017762389513895510.1039/C7RA05831D
    [Google Scholar]
  58. MoskalikM.Y. AstakhovaV.V. ShainyanB.A. Reaction of trifluoromethanesulfonamide with heterodienes under oxidation conditions.Russ. J. Org. Chem.201349111567157110.1134/S107042801311002X
    [Google Scholar]
  59. GaninA.S. MoskalikM.Y. GaraganI.A. AstakhovaV.V. ShainyanB.A. Triflamidation of allyl-containing substances:unusual dehydrobromination vs. intramolecular heterocyclization.Molecules20222720691010.3390/molecules27206910 36296503
    [Google Scholar]
  60. HodgsonD.M. HumphreysP.G. WardJ.G. Substituted aziridines by lithiation-electrophile trapping of terminal aziridines.Org. Lett.2005761153115610.1021/ol050060f 15760162
    [Google Scholar]
  61. TannerD. Chiral aziridines—their synthesis and use in stereoselective transformations.Angew. Chem. Int. Ed. Engl.199433659961910.1002/anie.199405991
    [Google Scholar]
  62. AmetsetorE. FobiK. BunceR.A. Synthesis and elimination pathways of 1-methanesulfonyl-1,2-dihydroquinoline sulfonamides.Molecules2023287325610.3390/molecules28073256 37050020
    [Google Scholar]
  63. ShimataniT. InoueM. KuroiwaT. XuJ. NakamuraM. TazumaS. IkawaK. MorikawaN. Lafutidine, a newly developed antiulcer drug, elevates postprandial intragastric pH and increases plasma calcitonin gene-related peptide and somatostatin concentrations in humans: Comparisons with famotidine.Dig. Dis. Sci.200651111412010.1007/s10620‑006‑3094‑2 16416222
    [Google Scholar]
  64. BabaevE.V. KovalY.I. RybakovV.B. ParonikyanE.G. StepanyanG.M. ParonikyanR.G. DashyanS.S. RzhevskiiS.A. ShadrinI.A. 2-Allyloxy/propargyloxypyridines: Synthesis, structure, and biological activity.Russ. Chem. Bull.201867231332010.1007/s11172‑018‑2076‑9
    [Google Scholar]
  65. McDevittD.G. Comparison of pharmacokinetic properties of beta-adrenoceptor blocking drugs.Eur. Heart J.19878Suppl. M91410.1093/eurheartj/8.suppl_M.9 2897304
    [Google Scholar]
  66. YoshiokaK. NakashitaH. KlessigD.F. YamaguchiI. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action.Plant J.200125214915710.1111/j.1365‑313X.2001.00952.x 11169191
    [Google Scholar]
  67. PedrazzoliA. Dall’astaL. MaffiG. GiudiceA. FerreroE. Parsalmide: A new anti-inflammatory agent. I. Synthesis and preliminary pharmacological activity of a series of 2-alkyloxy-5-amino-N-alkylbenzamides.Boll. Chim. Farm.19761152125134 949355
    [Google Scholar]
  68. LaursenJ.B. JørgensenC.G. NielsenJ. First synthesis of racemic saphenamycin and its enantiomers. investigation of biological activity.Bioorg. Med. Chem.200311572373110.1016/S0968‑0896(02)00472‑8 12538002
    [Google Scholar]
  69. LinY.Y. RiskM. RayS.M. Van EngenD. ClardyJ. GolikJ. JamesJ.C. NakanishiK. Isolation and structure of brevetoxin B from the “red tide” dinoflagellate Ptychodiscus brevis (Gymnodinium breve).J. Am. Chem. Soc.1981103226773677510.1021/ja00412a053
    [Google Scholar]
  70. LeeM.S. RepetaD.J. NakanishiK. ZagorskiM.G. Biosynthetic origins and assignments of carbon 13 NMR peaks of brevetoxin B.J. Am. Chem. Soc.1986108247855785610.1021/ja00284a072 22283310
    [Google Scholar]
  71. OguriH. HishiyamaS. SatoO. OishiT. HiramaM. MurataM. YasumotoT. HaradaN. Synthetic study of ciguatoxin. Absolute configuration of the C2 hydroxy group.Tetrahedron19975393057307210.1016/S0040‑4020(97)00071‑9
    [Google Scholar]
  72. LewisR.J. Wong HoyA.W. McGiffinD.C. Action of ciguatoxin on human atrial trabeculae.Toxicon199230890791410.1016/0041‑0101(92)90389‑M 1523682
    [Google Scholar]
  73. DeshpandeS.S. AdlerM. SheridanR.E. Differential actions of brevetoxin on phrenic nerve and diaphragm muscle in the rat.Toxicon199331445947010.1016/0041‑0101(93)90181‑H 8503134
    [Google Scholar]
  74. CollinsP.M. AshwoodM.S. EderH. WrightS.H.B. KennedyD.J. Intramolecular 1,3-dipolar additions in 4-O-allyl pyranoside 6-nitrones: An approach to chiral pyrano-pyrans and pyrano-oxepans.Tetrahedron Lett.199031142055205810.1016/S0040‑4039(00)88914‑5
    [Google Scholar]
  75. DattaS. ChattopadhyayP. MukhopadhyayR. BhattacharjyaA. An expeditious enantiodivergent synthesis of chiral oxepanes from D-glucose by the application of intramolecular 1,3-dipolar nitrone cycloaddition.Tetrahedron Lett.199334223585358810.1016/S0040‑4039(00)73642‑2
    [Google Scholar]
  76. ShingT.K.M. WongC.H. An enantiospecific approach to an oxepane related to zoapatanol via a 1,3-dipolar cycloaddition.Tetrahedron Asymmetry1994571151115410.1016/0957‑4166(94)80143‑6
    [Google Scholar]
  77. ShingT.K.M. WongC.H. Ting Yip, Synthetic studies on zoapatanol: Construction of oxepanes via an intramolecular 1,3-dipolar cycloaddition strategy.Tetrahedron Asymmetry1996751323134010.1016/0957‑4166(96)00149‑8
    [Google Scholar]
  78. El-DesokyE.S.I. Al-ShihryS.S. Synthesis and reactions of some new benzopyranone derivatives with potential biological activities.J. Heterocycl. Chem.20084561855186410.1002/jhet.5570450648
    [Google Scholar]
  79. CharlierR. Pharmacological and clinical features of antianginal drugs.Antianginal Drugs: Pathophysiological, Haemodynamic, Methodological, Pharmacological, Biochemical and Clinical Basis for Their Use in Human Therapeutics. CharlierR. Springer Berlin Heidelberg197111832210.1007/978‑3‑642‑65165‑6_7
    [Google Scholar]
  80. MüllerT. JohannL. JannackB. BrücknerM. LanfranchiD.A. BauerH. SanchezC. YardleyV. DeregnaucourtC. SchrévelJ. LanzerM. SchirmerR.H. Davioud-CharvetE. Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones--a new strategy to combat malarial parasites.J. Am. Chem. Soc.201113330115571157110.1021/ja201729z 21682307
    [Google Scholar]
  81. Pérez-SacauE. Estévez-BraunA. RaveloÁ.G. Gutiérrez YapuD. Giménez TurbaA. Antiplasmodial activity of naphthoquinones related to lapachol and β-lapachone.Chem. Biodivers.20052226427410.1002/cbdv.200590009 17191979
    [Google Scholar]
  82. GuimarãesT.T. PintoM.C.F.R. LanzaJ.S. MeloM.N. do Monte-NetoR.L. de MeloI.M.M. DiogoE.B.T. FerreiraV.F. CamaraC.A. ValençaW.O. de OliveiraR.N. FrézardF. da Silva JúniorE.N. Potent naphthoquinones against antimony-sensitive and -resistant Leishmania parasites: Synthesis of novel α- and nor-α-lapachone-based 1,2,3-triazoles by copper-catalyzed azide-alkyne cycloaddition.Eur. J. Med. Chem.20136352353010.1016/j.ejmech.2013.02.038 23535320
    [Google Scholar]
  83. NicolettiC.D. dos Santos GalvãoR.M. de Sá Haddad QueirozM. BarboclherL. FariaA.F.M. TeixeiraG.P. SouzaA.L.A. de Carvalho da SilvaF. FerreiraV.F. da Silva LimaC.H. Borba-SantosL.P. RozentalS. FuturoD.O. FariaR.X. Inclusion complex of O-allyl-lawsone with 2-hydroxypropyl-β-cyclodextrin: Preparation, physical characterization, antiparasitic and antifungal activity.J. Bioenerg. Biomembr.202355323324810.1007/s10863‑023‑09970‑x 37442875
    [Google Scholar]
  84. ChenH. KagaA. ChibaS. Diastereoselective aminooxygenation and diamination of alkenes with amidines by hypervalent iodine(III) reagents.Org. Lett.201416236136613910.1021/ol503000c 25422848
    [Google Scholar]
  85. ParkS.H. BaeG. ChoiA. ShinS. ShinK. ChoiC.H. KimH. Electrocatalytic access to azetidines via intramolecular allylic hydroamination: Scrutinizing key oxidation steps through electrochemical kinetic analysis.J. Am. Chem. Soc.202314528153601536910.1021/jacs.3c03172 37428820
    [Google Scholar]
  86. MaetaniM. ZollerJ. MelilloB. VerhoO. KatoN. PuJ. ComerE. SchreiberS.L. Synthesis of a bicyclic azetidine with in vivo antimalarial activity enabled by stereospecific, directed C(sp3)-H arylation.J. Am. Chem. Soc.201713932113001130610.1021/jacs.7b06994 28732448
    [Google Scholar]
  87. VitakuE. SmithD.T. NjardarsonJ.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.J. Med. Chem.20145724102571027410.1021/jm501100b 25255204
    [Google Scholar]
  88. AntermiteD. DegennaroL. LuisiR. Recent advances in the chemistry of metallated azetidines.Org. Biomol. Chem.2017151345010.1039/C6OB01665K 27827503
    [Google Scholar]
  89. PanC. YangZ. WuX. YuJ.T. ZhuC. Substituent-controlled regioselective photoinduced cyclization of N -Allylbenzamides with N -Sulfonylaminopyridinium salts.Org. Lett.202325349449910.1021/acs.orglett.2c04190 36634986
    [Google Scholar]
  90. AstakhovaV.V. MoskalikM.Y. GaninA.S. ShainyanB.A. Reactions of N-allyl- and N,N-Diallyltrifluoromethanesulfonamides with carboxylic acid amides under oxidizing conditions.Russ. J. Org. Chem.201854685586010.1134/S1070428018060052
    [Google Scholar]
  91. MinakataS. MorinoY. OderaotoshiY. KomatsuM. Practical and convenient synthesis of N-heterocycles: Stereoselective cyclization of N-alkenylamides with t-BuOI under neutral conditions.Org. Lett.20068153335333710.1021/ol061182q 16836399
    [Google Scholar]
  92. SongD. MaS. Recent development of benzimidazole‐containing antibacterial agents.ChemMedChem201611764665910.1002/cmdc.201600041 26970352
    [Google Scholar]
  93. ChangH. ChenX. HuQ. ShiY. ZhengR. FanJ. GuQ. ZhangY. Synthesis, characterization and properties of poly(N-allyl-tetrasubstituted imidazole).Polym. Bull.201976115683569910.1007/s00289‑019‑02680‑8
    [Google Scholar]
  94. XuK. GillesT. BreitB. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines.Nat. Commun.201561761610.1038/ncomms8616 26137886
    [Google Scholar]
  95. BritoA.F. MoreiraL.K.S. MenegattiR. CostaE.A. Piperazine derivatives with central pharmacological activity used as therapeutic tools.Fundam. Clin. Pharmacol.2019331132410.1111/fcp.12408 30151922
    [Google Scholar]
  96. AdamovichS.N. Prokop’evV.Y. RakhlinV.I. MirskovR.G. ShterenbergB.Z. VoronkovM.G. Addition of N,N-dichloroarylsulfamides to l-alkenylsilatranes.Bull. Acad. Sci. USSR, Div. Chem. Sci.198938122603260410.1007/BF00962454
    [Google Scholar]
  97. UshakovaI.V. ShainyanB.A. Unusual transformations of allylsilanes in the reaction with N,N-Dichloroarenesulfonamides.Russ. J. Org. Chem.20235971144114810.1134/S1070428023070047
    [Google Scholar]
  98. MirskovaA.N. DrozdovaT.I. LevkovskayaG.G. VoronkovM.G. Reactions of N -chloramines and N -haloamides with unsaturated compounds.Russ. Chem. Rev.198958325027110.1070/RC1989v058n03ABEH003438
    [Google Scholar]
  99. LevkovskayaG.G. DrozdovaT.I. RozentsveigI.B. MirskovaA.N. N -functionally substituted imines of polychlorinated (brominated) aldehydes and ketones.Russ. Chem. Rev.199968758160410.1070/RC1999v068n07ABEH000476
    [Google Scholar]
  100. AdamovichS.N. UshakovI.A. OborinaE.N. VashchenkoA.V. Silatrane-sulfonamide hybrids: Synthesis, characterization, and evaluation of biological activity.J. Organomet. Chem.202295712215010.1016/j.jorganchem.2021.122150
    [Google Scholar]
  101. MoskalikM.Y. AstakhovaV.V. ShainyanB.A. Unususal reaction of trifluoromethanesulfonamide with diallyl sulfide.Russ. J. Org. Chem.201349576176210.1134/S1070428013050242
    [Google Scholar]
  102. CetinerS. KarakasH. CiobanuR. OlariuM. KayaN.U. UnsalC. KalaogluF. SaracA.S. Polymerization of pyrrole derivatives on polyacrylonitrile matrix, FTIR-ATR and dielectric spectroscopic characterization of composite thin films.Synth. Met.201016011-121189119610.1016/j.synthmet.2010.03.007
    [Google Scholar]
  103. MoskalikM.Y. ShainyanB.A. UshakovI.A. SterkhovaI.V. AstakhovaV.V. Oxidant effect, skeletal rearrangements and solvent interception in oxidative triflamidation of norbornene and 2,5-norbornadiene.Tetrahedron2020761113101810.1016/j.tet.2020.131018
    [Google Scholar]
  104. GaninA.S. SobyaninaM.M. MoskalikM.Y. ShainyanB.A. Oxidative triflamidation of allyl cyanide in nitrile solutions.Russ. J. Org. Chem.202359111851185710.1134/S1070428023110027
    [Google Scholar]
  105. AstakhovaV.V. MoskalikM.Y. ShainyanB.A. Solvent interception, heterocyclization and desilylation upon NBS-induced sulfamidation of trimethyl(vinyl)silane.Org. Biomol. Chem.201917347927793710.1039/C9OB01689A 31418436
    [Google Scholar]
  106. MoskalikM.Y. AstakhovaV.V. ShainyanB.A. Divergent reactivity of divinylsilanes toward sulfonamides in different oxidative systems.Org. Biomol. Chem.202017347927793710.1039/D0RA07469A
    [Google Scholar]
  107. VillarA. HövelmannC.H. NiegerM. MuñizK. First osmium-catalysed ketamination of alkenes.Chem. Commun. (Camb.)2005263304330610.1039/b505278p 15983655
    [Google Scholar]
  108. SoutoJ.A. GonzálezY. IglesiasA. ZianD. LishchynskyiA. MuñizK. Iodine(III)-promoted intermolecular diamination of alkenes.Chem. Asian J.2012751103111110.1002/asia.201101025 22383364
    [Google Scholar]
  109. SoutoJ.A. ZianD. MuñizK. Iodine(III)-mediated intermolecular allylic amination under metal-free conditions.J. Am. Chem. Soc.2012134177242724510.1021/ja3013193 22506727
    [Google Scholar]
  110. SoutoJ.A. MartínezC. VelillaI. MuñizK. Defined hypervalent iodine(III) reagents incorporating transferable nitrogen groups: Nucleophilic amination through electrophilic activation.Angew. Chem. Int. Ed.20135241324132810.1002/anie.201206420 23208818
    [Google Scholar]
  111. KlochkovaA. BubyrevA. Dar’inD. BakulinaO. KrasavinM. SokolovV. Straightforward route to γ-Sultams via novel tandem SN/Michael addition.Synthesis2021531795180410.1055/a‑1343‑9451
    [Google Scholar]
/content/journals/coc/10.2174/0113852728348072250113115434
Loading
/content/journals/coc/10.2174/0113852728348072250113115434
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test