Skip to content
2000
Volume 29, Issue 15
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Various phenazine scaffolds are reputed for their significant biological activities. The majority of them can be obtained from natural sources. Other phenazine derivatives, especially benzo[]phenazines, are found to possess immense biological efficacies, including antimicrobial, antifungal, anticancer, antileukemic, antitumor activities, Constant efforts have been made to increase the biological efficacies by using fusing benzo[]phenazine skeleton with the other biologically promising heterocycles. Among many others, benzo[]phenazine annulated with pyran skeleton was found to exhibit a wide range of biological efficacies like antimalarial, anti-plasmodial, anticancer, antiangiogenic, anticancer activities, . These observations motivated us to synthesize some benzo[]pyrano[2,3-]phenazine derivatives under greener conditions by following multicomponent reaction strategies. In this study, we report a facile, straightforward, and environmentally benign high-yielding one-pot four-component reaction protocol for the preparation of a series of 3-amino-2-cyano-1-aryl/alkyl-1-benzo[]pyrano[2,3-c]phenazines from the reactions of 2-hydroxy-1,4-naphthaquinone, -phenylenediamines, malononitrile, and aromatic/aliphatic aldehydes using DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) as an efficient organocatalyst in aqueous ethanol under refluxed conditions. Moreover, under the same optimized reaction conditions, a number of spiro[benzo[]pyrano[2,3-c]phenazine-1,3'-indoline] derivatives were also synthesized in good yields from one-pot four-component reactions of 2-hydroxy-1,4-naphthaquinone, -phenylenediamines, malononitrile, and isatin or substituted isatins.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728334531241014075751
2025-01-02
2025-09-26
Loading full text...

Full text loading...

References

  1. LaursenJ.B. NielsenJ. Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity.Chem. Rev.200410431663168610.1021/cr020473j 15008629
    [Google Scholar]
  2. BakthadossM. VinayagamV. Construction of hybrid polycyclic quinolinobenzo[a]phenazinone architectures using solid-state melt reaction (SSMR).Mol. Divers.20212542447245810.1007/s11030‑020‑10090‑6 32367313
    [Google Scholar]
  3. Huigens IIIR.W. BrummelB.R. TennetiS. GarrisonA.T. XiaoT. Pyrazine and phenazineheterocycles: Platforms for total synthesis and drug discovery.Molecules2022273111210.3390/molecules27031112 35164376
    [Google Scholar]
  4. DehghanP. MohebatR. A highly efficient and green synthesis of pyrimido-fused benzophenazines via microwave-assisted and H3PW12O40@ Nano-ZnO catalyzed a sequential one-pot cyclization in aqueous medium.Polycycl. Aromat. Compd.20204041164117410.1080/10406638.2018.1533874
    [Google Scholar]
  5. GuttenbergerN. BlankenfeldtW. BreinbauerR. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products.Bioorg. Med. Chem.201725226149616610.1016/j.bmc.2017.01.002 28094222
    [Google Scholar]
  6. MishraA. PandeyY.K. TufailF. SinghJ. SinghJ. A convenient and green synthetic approach for benzo[a]pyrano[2,3-c] phenazines via supramolecular catalysis.Catal. Lett.202015061659166810.1007/s10562‑019‑03057‑2
    [Google Scholar]
  7. TaheriM. MohebatR. MosleminM.H. Synthesis of benzo[a]furo[2, 3-c] phenazine derivatives through an efficient, rapid and via microwave irradiation under solvent-free conditions catalyzed by H3PW12O40@Fe3O4-ZnO for high-performance removal of methylene blue.Artif. Cells Nanomed. Biotechnol.202149125026010.1080/21691401.2021.1894163 33703965
    [Google Scholar]
  8. NazeefM. SaquibM. TiwariS.K. YadavV. AnsariS. SagirH. HussainM.K. SiddiquiI.R. Catalyst free, multicomponent green approach to benzo[a]chromeno[2,3-c]phenazines using glycerol as a recyclable and biodegradable promoting medium.ChemistrySelect2020545144471445410.1002/slct.202003732
    [Google Scholar]
  9. ChaudharyA. KhuranaJ.M. Synthetic routes for phenazines: An overview.Res. Chem. Intermed.20184421045108310.1007/s11164‑017‑3152‑8
    [Google Scholar]
  10. ChoudharyA.S. SekarN. Novel 6-(1H-benzo[d]imidazol-2-yl) benzo[a]phenazin-5-ol derivatives with dual emission and large stokes shift synthesis, photophysical properties and computational studies.J. Fluoresc.201525483584810.1007/s10895‑015‑1549‑6 25863947
    [Google Scholar]
  11. KostenkoA.A. BykovaK.A. KucherenkoA.S. KomogortsevA.N. LichitskyB.V. ZlotinS.G. 2-Nitroallyl carbonate-based green bifunctional reagents for catalytic asymmetric annulation reactions.Org. Biomol. Chem.20211981780178610.1039/D0OB02283G 33543186
    [Google Scholar]
  12. KumariP. BhartiR. ParvinT. Synthesis of aminouracil-tethered tri-substituted methanes in water by iodine-catalyzed multicomponent reactions.Mol. Divers.201923120521310.1007/s11030‑018‑9862‑z 30109557
    [Google Scholar]
  13. BanerjeeB. SinghA. SharmaA. PriyaA. KaurM. GuptaV.K. A simple and efficient method for the synthesis of benzo[3,4-a]phenazin-5-ols and benzo[f]pyrido[b]quinoxalin-5-ol derivatives using trisodium citrate as an efficient organo-catalyst at room temperature.Poly.Arom. Comp.202344363747376010.1080/10406638.2023.2238869
    [Google Scholar]
  14. Yazdani-Elah-AbadiA. LashkariM. MohebatR. DABCO-catalyzed five-component domino protocol for the synthesis of novel benzo[a]pyrazolo[4′,3′:5,6]pyrano[2,3-c]phenazines in PEG-400 as an efficient green reaction medium.Org. Prep. Proced. Int.202052426127310.1080/00304948.2020.1765297
    [Google Scholar]
  15. YanJ. LiuW. CaiJ. WangY. LiD. HuaH. CaoH. Advances in phenazines over the past decade: Review of their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies.Mar. Drugs2021191161010.3390/md19110610 34822481
    [Google Scholar]
  16. NikoorazmM. KhanmoradiM. MohammadiM. Guanine‐La complex supported onto SBA‐15: A novel efficient heterogeneous mesoporous nanocatalyst for one‐pot, multi‐component Tandem Knoevenagel condensation–Michael addition–cyclization Reactions.Appl. Organomet. Chem.2020344e550410.1002/aoc.5504
    [Google Scholar]
  17. ShaterianH.R. MoradiF. MohammadniaM. Nano copper (II) oxide catalyzed four-component synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives.C. R. Chim.20121511-121055105910.1016/j.crci.2012.09.012
    [Google Scholar]
  18. NikoorazmM. KhanmoradiM. Application of Cu(II)-guanine complexes anchored on SBA-15 and MCM-41 as efficient nanocatalysts for one-pot, four-component domino synthesis of phenazine derivatives and investigation of their antimicrobial behavior.Catal. Lett.2020150102823284010.1007/s10562‑020‑03185‑0
    [Google Scholar]
  19. EsmaeilpourM. SardarianA.R. FirouzabadiH. Theophylline supported on modified silica-coated magnetite nanoparticles as a novel, efficient, reusable catalyst in green one-pot synthesis of spirooxindoles and phenazines.ChemistrySelect20183329236924810.1002/slct.201801506
    [Google Scholar]
  20. AbolghassemS. MolaeiS. JavanshirS. Preparation of α-chitin-based nanocomposite as an effective biocatalyst for microwave aided domino reaction.Heliyon201957e0203610.1016/j.heliyon.2019.e02036 31334375
    [Google Scholar]
  21. ShaterianH.R. MohammadniaM. Mild basic ionic liquid catalyzed four component synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives.J. Mol. Liq.201317716216610.1016/j.molliq.2012.11.006
    [Google Scholar]
  22. DaraieM. TamoradiT. HeraviM.M. KarmakarB. Ce immobilized 1H-pyrazole-3,5-dicarboxylic acid (PDA) modified CoFe2O4: A potential magnetic nanocomposite catalyst towards the synthesis of diverse benzo[a]pyrano[2,3-c]phenazine derivatives.J. Mol. Struct.2021124513108910.1016/j.molstruc.2021.131089
    [Google Scholar]
  23. Farahnak ZarabiM. NaeimiH. Ultrasound promoted synthesis of benzo[a]pyrano-[2,3-c]phenazines using multisulfonic acid hyperbranched polyglycerol functionalized graphene oxide as a novel and reusable catalyst.Polycycl. Aromat. Compd.20214161299131810.1080/10406638.2019.1672202
    [Google Scholar]
  24. Ghorbani-ChoghamaraniA. MohammadiM. ShiriL. TaheriniaZ. Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions.Res. Chem. Intermed.201945115705572310.1007/s11164‑019‑03930‑0
    [Google Scholar]
  25. NaeimiH. ZarabiM.F. Multisulfonate hyperbranched polyglycerol functionalized graphene oxide as an efficient reusable catalyst for green synthesis of benzo[a]pyrano-[2,3-c]phenazines under solvent-free conditions.RSC Advances20199137400741010.1039/C8RA10180A 35519942
    [Google Scholar]
  26. WangS.L. WuF.Y. ChengC. ZhangG. LiuY.P. JiangB. ShiF. TuS.J. Multicomponent synthesis of poly-substituted benzo[a]pyrano[2,3-c]phenazine derivatives under microwave heating.ACS Comb. Sci.201113213513910.1021/co1000376 21218828
    [Google Scholar]
  27. HasaninejadA. FirooziS. One-pot, sequential four-component synthesis of benzo[c]pyrano[3,2-a]phenazine, bis-benzo[c]pyrano[3,2-a]phenazine and oxospiro benzo[c]pyrano[3,2-a]phenazine derivatives using 1,4-diazabicyclo[2.2.2]octane (DABCO) as an efficient and reusable solid base catalyst.Mol. Divers.201317349951310.1007/s11030‑013‑9446‑x 23665995
    [Google Scholar]
  28. BhartiR. ParvinT. Multicomponent synthesis of diverse pyrano-fused benzophenazines using bifunctional thiourea-based organocatalyst in aqueous medium.Mol. Divers.201620486787610.1007/s11030‑016‑9681‑z 27317166
    [Google Scholar]
  29. AbadiA.Y.E. MaghsoodlouM.T. HeydariR. MohebatR. An efficient four-component domino protocol for the rapid and green synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives using caffeine as a homogeneous catalyst.Res. Chem. Intermed.20164221227123510.1007/s11164‑015‑2083‑5
    [Google Scholar]
  30. Yazdani-Elah-AbadiA. MaghsoodlouM.T. MohebatR. HeydariR. Theophylline as a new and green catalyst for the one-pot synthesis of spiro[benzo[a]pyrano[2,3-c]phenazine] and benzo[a]pyrano[2,3-c]phenazine derivatives under solvent-free conditions.Chin. Chem. Lett.201728244645210.1016/j.cclet.2016.09.016
    [Google Scholar]
  31. BanerjeeB. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles.Ultrason. Sonochem.201735Pt A153510.1016/j.ultsonch.2016.10.010 27771265
    [Google Scholar]
  32. BanerjeeB. Recent developments on organo-bicyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles.Curr. Org. Chem.201822320823310.2174/1385272821666170703123129
    [Google Scholar]
  33. SharmaA. SinghA. PriyaA. KaurM. GuptaV.K. JaitakV. BanerjeeB. Trisodium citrate dihydrate catalyzed one-pot pseudo four-component synthesis of fully functionalized pyridine derivatives.Synth. Commun.202252151614162710.1080/00397911.2022.2101378
    [Google Scholar]
  34. BanerjeeB. KaurM. SharmaA. SinghA. PriyaA. GuptaV.K. JaitakV. Glycine catalyzed one-pot three-component synthesis of structurally diverse 2-amino substituted pyran annulated heterocycles in aqueous ethanol under refluxed conditions.Curr. Green Chem.20229316217310.2174/2213346110666221212152202
    [Google Scholar]
  35. BanerjeeB. Bismuth (III) triflate: An efficient catalyst for the synthesis of diverse biologically relevant heterocycles.ChemistrySelect20172236744675710.1002/slct.201701441
    [Google Scholar]
  36. KaurG. ThakurS. KaundalP. ChandelK. BanerjeeB. p-Dodecylbenzenesulfonicacid: An efficient Brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium.ChemistrySelect2018345129181293610.1002/slct.201802824
    [Google Scholar]
  37. BanerjeeB. BhardwajV. KaurA. KaurG. SinghA. Catalytic applications of saccharin and its derivatives in organic synthesis.Curr. Org. Chem.202023283191320510.2174/1385272823666191121144758
    [Google Scholar]
  38. BrahmachariG. BanerjeeB. Sulfamic acid-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: An overview.Curr. Organocatal.2016329312410.2174/2213337202666150812230830
    [Google Scholar]
  39. LvH. JiaW.Q. SunL.H. YeS. N-heterocyclic carbene catalyzed [4+3] annulation of enals and o-quinone methides: Highly enantioselective synthesis of benzo-ε-lactones.Angew. Chem. Int. Ed.201352338607861010.1002/anie.201303903 23818406
    [Google Scholar]
  40. SalujaP. AggarwalK. KhuranaJ.M. One-pot synthesis of biologically important spiro-2-amino-4H-pyrans, spiroacenaphthylenes, and spirooxindoles using DBU as a green and recyclable catalyst in aqueous medium.Synth. Commun.201343243239324610.1080/00397911.2012.760130
    [Google Scholar]
  41. WangD.C. XieY.M. FanC. YaoS. SongH. Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity.Chin. Chem. Lett.20142571011101310.1016/j.cclet.2014.04.026
    [Google Scholar]
  42. KhuranaJ.M. NandB. SalujaP. DBU: A highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium.Tetrahedron201066305637564110.1016/j.tet.2010.05.082
    [Google Scholar]
  43. ChaniyaraR. ThakrarS. KakadiyaR. MarvaniaB. DetrojaD. VekariyaN. UpadhyayK. ManvarA. ShahA. DBU‐catalyzed multicomponent synthesis: facile access of 4,5,6,9‐tetrahydro‐pyrido[3,2‐c]quinolines.J. Heterocycl. Chem.201451246647410.1002/jhet.1662
    [Google Scholar]
  44. KhuranaJ.M. NandB. SalujaP. 1,8-Diazabicyclo[5.4.0]undec-7-ene: A highly efficient catalyst for one-pot synthesis of substituted tetrahydro-4H-chromenes, tetrahydro[b]pyrans, pyrano[d]pyrimidines, and 4H-pyrans in aqueous medium.J. Heterocycl. Chem.201451361862410.1002/jhet.1507
    [Google Scholar]
  45. IbrahimM.A. El-GoharyN.M. SaidS. Synthesis of heteroannulated chromeno[2,3-b]pyridines: DBU catalyzed reactions of 2-amino-6-methylchromone-3-carboxaldehyde with some heterocyclic enols and enamines.J. Heterocycl. Chem.201653111712010.1002/jhet.2285
    [Google Scholar]
  46. ZhaoG.L. ShiY.L. ShiM. Synthesis of functionalized 2H-1-benzopyrans by DBU-catalyzed reactions of salicylic aldehydes with allenic ketones and esters.Org. Lett.20057204527453010.1021/ol051920v 16178575
    [Google Scholar]
/content/journals/coc/10.2174/0113852728334531241014075751
Loading
/content/journals/coc/10.2174/0113852728334531241014075751
Loading

Data & Media loading...

Supplements

Scanned spectra, including FTIR, 1H-NMR, 13C-NMR, and HRMS of all the synthesized scaffolds, are supplemented with supporting information. Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test