Skip to content
2000
Volume 29, Issue 15
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Selectfluor, bis(tetrafluoroborate)[1-chloromethyl-4-fluoro-1,4-diazoniabicyclo-[2.2.2] octane] is an extraordinarily stable solid with exceptional properties, such as strong solubility and stability in polar solvents, minimal toxicity, excellent thermal stability, and utility as an oxidant. One of the electrophilic fluorinating compounds that is most frequently employed in fluorination reactions is Selectfluor. In this mini-review, we have briefly updated the various applications of Selectfluor in organic synthesis, particularly in C-C, C-heteroatom and heteroatom-heteroatom bond formation reactions from mid-2020 to date. In addition to these, Selectfluor found useful in heterocyclic ring formations, demethylation, deoxygenation and other miscellaneous reactions. The results that have been published thus far show how extraordinarily promising Selectfluor-mediated organic molecule skeleton assembly events can be. Visible light, electrochemical, and nano-based reactions still have a lot of room for growth and application, despite the noteworthy advances in these domains. The compilation is subdivided based on the type of reaction/function of Selectfluor organic transformation.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728341113241011032705
2025-01-01
2025-09-13
Loading full text...

Full text loading...

References

  1. NyffelerP.T. DurónS.G. BurkartM.D. VincentS.P. WongC.H. Selectfluor: Mechanistic insight and applications.Angew. Chem. Int. Ed.200544219221210.1002/anie.200400648 15578736
    [Google Scholar]
  2. StavberS. ZupanaM. SelectfluorTM F-TEDA-BF4 as a versatile mediator or catalyst in organic chemistry.Acta Chim. Slov.2005521326
    [Google Scholar]
  3. BanksR.E. MurtaghV. AnI. MaleczkaR.E. SelectfluorTM F-TEDA-BF4 as a versatile mediator or catalyst in organic chemistry.Encyclopedia of Reagents for Organic Synthesis.Wiley200710.1002/047084289X.rc116.pub2
    [Google Scholar]
  4. StavberS. Recent advances in the application of SelectfluorTMF-TEDA-BF4 as a versatile mediator or catalyst in organic synthesis.Molecules20111686432646410.3390/molecules16086432 25134763
    [Google Scholar]
  5. ZhuS. ChenK. NHC-AuCl/Selectfluor: An efficient catalytic system for π-bond activation.Synlett201728664065310.1055/s‑0036‑1588693
    [Google Scholar]
  6. Aguilar TroyanoF.J. MerkensK. Gómez-SuárezA. Gómez-Suárez. A. Selectfluor® radical dication (TEDA2+•) -A versatile species in modern synthetic organic chemistry.Asian J. Org. Chem.202097992100710.1002/ajoc.202000196
    [Google Scholar]
  7. YangK. SongM. AliA.I.M. MudassirS.M. GeH. Recent advances in the application of Selectfluor as a “fluorinefree” functional reagent in organic synthesis.Chem. Asian J.202015672974110.1002/asia.202000011 32068956
    [Google Scholar]
  8. KongY. SunX. WengJ. Selectfluor as “Fluorine-Free” functional reagent applied to organic synthesis under transition metal-free conditions.Youji Huaxue20204092641265710.6023/cjoc202004005
    [Google Scholar]
  9. VaralaR. SeemaV. AlamM.M. AmanullahM. PrasadB.D. 1,4-Diazabicyclo[2.2.2]octane (DABCO) in organic synthesis and catalysis: A quinquennial report (2019-to date).Curr. Org. Chem.202428171307134510.2174/0113852728313865240528073519
    [Google Scholar]
  10. VaralaR. SeemaV. Recent applications of TEMPO in organic synthesis and catalysis.SynOpen20237340841310.1055/a‑2155‑2950
    [Google Scholar]
  11. VaralaR. SeemaV. AlamM.M. DubasiN. VummadiR.D. Iodoxybenzoic acid (IBX) in organic synthesis: A septennial review.Curr. Org. Synth.202421560766410.2174/0115701794263252230924074035 37861006
    [Google Scholar]
  12. AlamM.M. HussienM. BollikollaH.B. SeemaV. DubasiN. AmanullahM. VaralaR. Applications of phenyliodine(III) diacetate in heterocyclic ring formations: an update from 2015 to date.J. Heterocycl. Chem.20236081326135510.1002/jhet.4627
    [Google Scholar]
  13. AlamM.M. SeemaV. DubasiN. KurraM. VaralaR. Applications of polymethylhydrosiloxane (PMHS) in organic synthesis-covering up to march 2022.Mini Rev. Org. Chem.202320770873410.2174/1570193X20666221021104906
    [Google Scholar]
  14. VittalS. Mujahid AlamM. HussienM. AmanullahM. PisalP.M. RaviV. Applications of phenyliodine(III)diacetate in C-H functionalization and hetero-hetero bond formations: A septennial update.ChemistrySelect202381e20220424010.1002/slct.202204240
    [Google Scholar]
  15. VaralaR. SeemaV. DubasiN. Phenyliodine(III)diacetate (PIDA): Applications in organic synthesis.Organics20224114010.3390/org4010001
    [Google Scholar]
  16. AlamM.M. BollikollaH.B. AmanullahM. HusseinM. VaralaR. Phenyliodine(III)diacetate (PIDA): Applications in rearrangement/migration reactions.Curr. Org. Chem.20232729310710.2174/1385272827666230330105241
    [Google Scholar]
  17. VaralaR. DubasiN. SeemaV. KotraV. Sodium periodate (NaIO4) in organic synthesis.SynOpen20237454855410.1055/a‑2183‑3678
    [Google Scholar]
  18. VaralaR. SeemaV. AlamM.M. AmanullahM. DubasiN. Dess-martin periodinane (DMP) in organic synthesis-A septennial update (2015-till date).Curr. Org. Chem.202327171504153010.2174/0113852728262311231012060626
    [Google Scholar]
  19. AlamM.M. VaralaR. SeemaV. Zinc acetate in organic synthesis and catalysis: A review.Mini Rev. Org. Chem.202421555558710.2174/1570193X20666230507213511
    [Google Scholar]
  20. AlamM.M. VaralaR. SeemaV. A decennial update on the applications of trifluroacetic acid.Mini Rev. Org. Chem.202421445547010.2174/1570193X20666230511121812
    [Google Scholar]
  21. DubasiN. VaralaR. BollikollaH.B. KotraV. Applications of alum (KAl(SO4)2.12H2O) in organic synthesis & catalysis: A quinquennial update (2017-2022).J. Chem. Rev.20235326328010.22034/JCR.2023.390191.1217
    [Google Scholar]
  22. VaralaR. DubasiN. Applications of sulfated tin oxide (STO) in organic synthesis-Update from 2016 to 2021.Heterocycles2022104584385310.3987/REV‑22‑978
    [Google Scholar]
  23. VaralaR. SeemaV. AmanullahM. RamanaiahS. AlamM.M. Recent advances in hypervalent iodine reagents and m-CPBA mediated oxidative transformations.Curr. Org. Chem.202428748950910.2174/0113852728296345240215111730
    [Google Scholar]
  24. VaralaR. DhaddaS. SeemaV. AmanullahM. HusseinM. AlamM.M. Recent advances in metal-mediated oxidations with mCPBA.Transit. Met. Chem.2024810.1007/s11243‑024‑00593‑8
    [Google Scholar]
  25. VaralaR. SeemaV. AmanullahM. AlamM.M. Recent advances in TBHP ‐promoted heterocyclic ring construction via annulation/cyclization.J. Heterocycl. Chem.20246181269129810.1002/jhet.4852
    [Google Scholar]
  26. VaralaR. SeemaV. HusseinM. IsmailM.A. AlamM.M. Metal-free oxidations with m-CPBA: An octennial update.Mini Rev. Org. Chem.20242110.2174/0118756298299464240402045438
    [Google Scholar]
  27. AdapaS. Enugala,R. AM. VaralaR. Synthesis of β‐amino alcohols by regioselective ring opening of epoxides with aromatic amines catalyzed by tin (II) chloride.Lett. Org. Chem.20063318719010.2174/157017806775789930
    [Google Scholar]
  28. HoltE. GarrisonN.G. RowshanpourR. KimJ.J. HenriquezN. LamW. KiameN. WilliamsJ. ZhaoS. DuddingT. LectkaT. C-C Bond activation and demethylenation of epoxides by amine radical dications.J. Org. Chem.202388117597760010.1021/acs.joc.3c00605 37159569
    [Google Scholar]
  29. SubramanyamM. RaoK.P. VaralaR. Basaveswara RaoM.V. Solvent-free alkylation of 1,3-dicarbonyl compounds with benzylic, propargylic and allylic alcohols catalyzed by La (NO3)3·6H2O.Asian J. Chem.20162851155116010.14233/ajchem.2016.19621
    [Google Scholar]
  30. PoorsadeghiS. EndoK. ArimitsuS. Enantioselective fluorination of α-substituted β-diketones using β,β-diaryl serines.Org. Lett.202224142042410.1021/acs.orglett.1c04104 34931846
    [Google Scholar]
  31. EndoK. TomonD. ArimitsuS. Alkali carbonates improve β,β-diaryl serine-catalyzed enantioselective α-fluorination of β-dicarbonyl compounds.J. Org. Chem.202388139037904510.1021/acs.joc.3c00730 37230997
    [Google Scholar]
  32. BonnefoyC. GallegoA. DelobelC. RaynalB. DecourtM. ChefdevilleE. HanquetG. PanossianA. LerouxF.R. ToulgoatF. BillardT. Unlocking the power of acyl fluorides: A comprehensive guide to synthesis and properties.Eur. J. Org. Chem.20242718e20240014210.1002/ejoc.202400142
    [Google Scholar]
  33. MahmoudE.M. MoriS. SumiiY. ShibataN. Elemental sulfur-mediated transformation of carboxylic acids to acyl fluorides by electrophilic fluorinating reagent.Selectfluor. Org. Lett.202325162810281410.1021/acs.orglett.3c00701 37010934
    [Google Scholar]
  34. KomatsudaM. YamaguchiJ. Ring-opening fluorination of carbo/heterocycles and aromatics: Construction of complex and diverse fluorine-containing molecules.Chem. Rec.2023239e20220028110.1002/tcr.202200281 36604947
    [Google Scholar]
  35. PandhurnekarC.P. PandhurnekarH.C. MungoleA.J. ButoliyaS.S. YadaoB.G. A review of recent synthetic strategies and biological activities of isoxazole.J. Heterocycl. Chem.202360453756510.1002/jhet.4586
    [Google Scholar]
  36. KomatsudaM. OhkiH. KondoH.Jr SutoA. YamaguchiJ. Ring-opening fluorination of isoxazoles.Org. Lett.202224173270327410.1021/acs.orglett.2c01149 35471036
    [Google Scholar]
  37. NiwaT. NishibashiK. SatoH. UjiieK. YamashitaK. EgamiH. HamashimaY. Structure dependence in asymmetric deprotonative fluorination and fluorocyclization reactions of allylamine derivatives with linked binaphthyl dicarboxylate phase-transfer catalyst.J. Am. Chem. Soc.202114340165991660910.1021/jacs.1c06783 34590843
    [Google Scholar]
  38. GradlS. ZantopV. GmeinerP. HübnerH. HeinrichM.R. Selectfluor-mediated chlorination and fluorination of arenes: Late-stage functionalization of APIs and its biological effects.ChemMedChem20231815e20230014410.1002/cmdc.202300144 37088715
    [Google Scholar]
  39. WangW. HuoT. ZhaoX. QinQ. LiangY. SongS. LiuG. JiaoN. Nitromethane-enabled fluorination of styrenes and arenes.CCS Chemistry20202656657510.31635/ccschem.020.202000172
    [Google Scholar]
  40. ZhongT. ChenZ. YiJ. LuG. WengJ. Recent progress in the synthesis of sulfonyl fluorides for SuFEx click chemistry.Chin. Chem. Lett.20213292736275010.1016/j.cclet.2021.03.035
    [Google Scholar]
  41. MagreM. CornellaJ. Redox-neutral organometallic elementary steps at bismuth: Catalytic synthesis of aryl sulfonyl fluorides.J. Am. Chem. Soc.202114351214972150210.1021/jacs.1c11463 34914387
    [Google Scholar]
  42. DağalanZ. KoçakR. DaştanA. NişancıB. Selectfluor and TBAX (Cl, Br) mediated oxidative chlorination and bromination of olefins.Org. Lett.202224458261826410.1021/acs.orglett.2c02627 36129307
    [Google Scholar]
  43. Abdul FattahT. SaeedA. AlbericioF. Recent advances towards sulfur (VI) fluoride exchange (SuFEx) click chemistry.J. Fluor. Chem.20182138711210.1016/j.jfluchem.2018.07.008
    [Google Scholar]
  44. ZhongT. PangM.K. ChenZ.D. ZhangB. WengJ. LuG. Copper-free Sandmeyer-type reaction for the synthesis of sulfonyl fluorides.Org. Lett.20202283072307810.1021/acs.orglett.0c00823 32227908
    [Google Scholar]
  45. ZhangW. GuY.C. LinJ.H. XiaoJ.C. Dehydroxylative fluorination of tertiary alcohols.Org. Lett.202022166642664610.1021/acs.orglett.0c02438 32806144
    [Google Scholar]
  46. MadaniA. AnghileriL. HeydenreichM. MöllerH.M. PieberB. Benzylic fluorination induced by a charge-transfer complex with a solvent-dependent selectivity switch.Org. Lett.202224295376538010.1021/acs.orglett.2c02050 35848228
    [Google Scholar]
  47. KeQ. YanG. YuJ. WuX. Recent advances in the direct functionalization of quinoxalin-2(1H)-ones.Org. Biomol. Chem.201917245863588110.1039/C9OB00782B 31157814
    [Google Scholar]
  48. Sonam; Shinde, V.N.; Rangan, K.; Kumar, A. Selectfluor-mediated regioselective C-3 alkoxylation, amination, sulfenylation, and selenylation of quinoxalin-2(1H)-ones.J. Org. Chem.20238842344235710.1021/acs.joc.2c02756 36735722
    [Google Scholar]
  49. PirotaV. BenassiA. DoriaF. Lights on 2,5-diaryl tetrazoles: Applications and limits of a versatile photoclick reaction.Photochem. Photobiol. Sci.202221587989810.1007/s43630‑022‑00173‑8 35188652
    [Google Scholar]
  50. LuH. ChenJ. ZhouW. PengL. YinS.F. KambeN. QiuR. Selectfluor-promoted reactions of aryl methyl ketones with dimethyl sulfoxide to give 2,5-diacylthiophenes and β-acyl allylic methylsulfones.Org. Lett.202325238939410.1021/acs.orglett.2c04101 36607146
    [Google Scholar]
  51. GuoX. SunX. ZhaoY. JiangM. Switchable synthesis of sulfoxides, sulfones and thiosulfonates through Selectfluor-promoted oxidation with H2O as O-source.Synthesis20225481996200410.1055/a‑1701‑6700
    [Google Scholar]
  52. LiX. YangX. ChenP. LiuG. Palladium-catalyzed remote hydro-oxygenation of internal alkenes: An efficient access to primary alcohols.J. Am. Chem. Soc.202214450228772288310.1021/jacs.2c11428 36508607
    [Google Scholar]
  53. WataC. HashimotoT. Organoiodine-catalyzed enantioselective intermolecular oxyamination of alkenes.J. Am. Chem. Soc.202114341745175110.1021/jacs.0c11440 33482057
    [Google Scholar]
  54. CastanheiroT. SuffertJ. DonnardM. GuleaM. Recent advances in the chemistry of organic thiocyanates.Chem. Soc. Rev.201645349450510.1039/C5CS00532A 26658383
    [Google Scholar]
  55. ZhouP. ChenC. LiS. Selectfluor-initiated cyanation of disulfides to thiocyanates.J. Chem. Res.2020447-837638010.1177/1747519820902670
    [Google Scholar]
  56. CapilatoJ.N. LectkaT. Arene amination instead of fluorination: Substitution pattern governs the reactivity of dialkoxybenzenes with Selectfluor.J. Org. Chem.20218685771577710.1021/acs.joc.1c00231 33787260
    [Google Scholar]
  57. JoshiH. PaulD. SathyamoorthiS. Oxidations of alcohols, aldehydes, and diols using NaBr and selectfluor.J. Org. Chem.20238815112401125210.1021/acs.joc.3c01307 37490704
    [Google Scholar]
  58. PatelA.R. PatelG. SrivastavaA. BanerjeeS. A review on traditional and modern methods for the synthesis of aromatic azo compounds.Curr. Org. Chem.202327181611162810.2174/0113852728245448231011103950
    [Google Scholar]
  59. ZhaoY. LiS. CuiJ. WangH. KangX. WangY. TianL. Selectfluor-mediated oxidative dehydrogenation of hydrazines: A process for the synthesis of azo compounds.Synthesis202254235245525210.1055/a‑1899‑5563
    [Google Scholar]
  60. MfuhA.M. LarionovO.V. Heterocyclic N-oxides-An emerging class of therapeutic agents.Curr. Med. Chem.201522242819285710.2174/0929867322666150619104007 26087764
    [Google Scholar]
  61. ÇelikoğluM.H. UçarS. NişancıB. Deoxygenation of N‐heterocyclic N‐oxides with Selectfluor and disulfane.J. Heterocycl. Chem.20246171029103410.1002/jhet.4818
    [Google Scholar]
  62. EbenezerO. ShapiM. TuszynskiJ.A. A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives.Biomedicines2022105112410.3390/biomedicines10051124 35625859
    [Google Scholar]
  63. GuoH. TianL. LiuY. WanJ.P. DMSO as a C1 source for [2+2+1] pyrazole ring construction via metal-free annulation with enaminones and hydrazines.Org. Lett.202224122823310.1021/acs.orglett.1c03879 34908420
    [Google Scholar]
  64. SilvaV. SilvaC. SoaresP. GarridoE.M. BorgesF. GarridoJ. Isothiazolinone biocides: Chemistry, biological, and toxicity profiles.Molecules202025499110.3390/molecules25040991 32102175
    [Google Scholar]
  65. LiuZ. WangY. HuoJ. LiX.J. LiS. SongX. Selectfluor-promoted intramolecular N-S bond formation of α-carbamoyl ketene dithioacetals in the presence of water: Synthesis of multifunctionalized isothiazolones.J. Org. Chem.20218685506551710.1021/acs.joc.0c03036 33797258
    [Google Scholar]
  66. GaonkarS.L. NagarajV.U. NayakS. A review on current synthetic strategies of oxazines.Mini Rev. Org. Chem.2018161435810.2174/1570193X15666180531092843
    [Google Scholar]
  67. KakkarS. NarasimhanB. A comprehensive review on biological activities of oxazole derivatives.BMC Chem.20191311610.1186/s13065‑019‑0531‑9 31384765
    [Google Scholar]
  68. AbazidA.H. HollwedelT.N. NachtsheimB.J. Stereoselective oxidative cyclization of N-allyl benzamides to oxaz(ol)ines.Org. Lett.202123135076508010.1021/acs.orglett.1c01607 34138574
    [Google Scholar]
/content/journals/coc/10.2174/0113852728341113241011032705
Loading
/content/journals/coc/10.2174/0113852728341113241011032705
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test