Skip to content
2000
Volume 29, Issue 15
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Pyridines/Dihydropyridines is a basic 6-membered organic aza-heterocyclic compound that has garnered the attention of many researchers in recent times. These molecules have been reported with a diverse range of pharmacological activities like anti-coagulant, antileishmanial and anti-trypanosomal, antitubercular agents, anti-microbial, antioxidant, HIV-1 protease inhibitors, anti-cancer, cardiovascular disease, This review article focuses on different protocols for the Hantzsch reaction using acid catalysts, metal catalysts, and no catalysts for the synthesis of pyridine derivatives. The structure-activity relationship in relation to other biological activities of various pyridine-containing drugs and their interaction with different targets (receptors) has also been highlighted to provide a good understanding to researchers for future research on pyridines.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728331961240918115757
2024-10-29
2025-10-01
Loading full text...

Full text loading...

References

  1. AltafA.A. ShahzadA. GulZ. RasoolN. BadshahA. LalB. KhanE. A review on the medicinal importance of pyridine derivatives.J. Drug Des. Med. Chem201511110.11648/j.jddmc.20150101.11
    [Google Scholar]
  2. HillM.D. Recent strategies for the synthesis of pyridine derivatives.Chemistry20101640120521206210.1002/chem.20100110020827696
    [Google Scholar]
  3. AllahresaniA. Mohammadpour SanganiM. NasseriM.A. CoFe 2O4 @SiO2‐NH2‐CoIINPs catalyzed Hantzsch reaction as an efficient, reusable catalyst for the facile, green, one‐pot synthesis of novel functionalized 1,4‐dihydropyridine derivatives.Appl. Organomet. Chem.2020349e575910.1002/aoc.5759
    [Google Scholar]
  4. ChatterjeeR. BhuktaS. AngajalaK.K. DandelaR. Copper catalysed oxidative cascade deamination/cyclization of vinyl azide and benzylamine for the synthesis of 2,4,6-triarylpyridines.Org. Biomol. Chem.202321265419542310.1039/D3OB00625E37334911
    [Google Scholar]
  5. DhayalanV. SharmaD. ChatterjeeR. DandelaR. Functionalization of pyridine and quinoline scaffolds by using organometallic Li‐, Mg‐ and Zn‐reagents.Eur. J. Org. Chem.20232630e20230028510.1002/ejoc.202300285
    [Google Scholar]
  6. KumarR.S. IdhayadhullaA. Abdul NasserA.J. SelvinJ. Synthesis and anticoagulant activity of a new series of 1,4-dihydropyridine derivatives.Eur. J. Med. Chem.201146280481010.1016/j.ejmech.2010.12.00621220179
    [Google Scholar]
  7. ReimãoJ.Q. ScottiM.T. TemponeA.G. Anti-leishmanial and anti-trypanosomal activities of 1,4-dihydropyridines: In vitro evaluation and structure–activity relationship study.Bioorg. Med. Chem.201018228044805310.1016/j.bmc.2010.09.01520934347
    [Google Scholar]
  8. KhoshneviszadehM. EdrakiN. JavidniaK. AlborziA. PourabbasB. MardanehJ. MiriR. Synthesis and biological evaluation of some new 1,4-dihydropyridines containing different ester substitute and diethyl carbamoyl group as anti-tubercular agents.Bioorg. Med. Chem.20091741579158610.1016/j.bmc.2008.12.07019162489
    [Google Scholar]
  9. LentzF. HemmerM. ReilingN. HilgerothA. Discovery of novel N- phenyl 1,4-dihydropyridines with a dual mode of antimycobacterial activity.Bioorg. Med. Chem. Lett.201626245896589810.1016/j.bmcl.2016.11.01027866817
    [Google Scholar]
  10. VijeshA.M. IsloorA.M. PeethambarS.K. ShivanandaK.N. ArulmoliT. IsloorN.A. Hantzsch reaction: Synthesis and characterization of some new 1,4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents.Eur. J. Med. Chem.201146115591559710.1016/j.ejmech.2011.09.02621968373
    [Google Scholar]
  11. HilgerothA. LilieH. Structure-activity relationships of first bishydroxymethyl-substituted cage dimeric 4-aryl-1,4-dihydropyridines as HIV-1 protease inhibitors.Eur. J. Med. Chem.200338549549910.1016/S0223‑5234(03)00060‑612767599
    [Google Scholar]
  12. ShekariF. SadeghpourH. JavidniaK. SasoL. NazariF. FiruziO. MiriR. Cytotoxic and multidrug resistance reversal activities of novel 1,4-dihydropyridines against human cancer cells.Eur. J. Pharmacol.201574623324410.1016/j.ejphar.2014.10.05825445037
    [Google Scholar]
  13. ChandraK.S. RameshG. The fourth-generation Calcium channel blocker: Cilnidipine.Indian Heart J.201365669169510.1016/j.ihj.2013.11.00124407539
    [Google Scholar]
  14. IslamM.B. IslamM.I. NathN. EmranT.B. RahmanM.R. SharmaR. MatinM.M. Recent advances in pyridine scaffold: focus on chemistry, synthesis, and antibacterial activities.BioMed Res. Int.202320231996759110.1155/2023/996759137250749
    [Google Scholar]
  15. BohuaZ. Amide derivatives and their medicinal uses.CN Patent 110016011-B2023
  16. YanpingL. ZhuorongL. ZonggenP. XinbeiJ. YixuanW. JianruiL. JialiT. Benzylpiperazine compounds, their preparation methods, and their application in antiviral.CN Patent 110698432-B2023
  17. ShuaiM. BoY. SanqiZ. YimingC. YahaoZ. XinyuW. Preparation method of Ir-OP type catalyst diboric acid/ester compound.CN Patent 113980044-B2023
  18. BouissouT. GottschlingD. HeineN. KeenanL.L.S. RoweM.D. RazaviH. SerkoC.R. SuprenantS. TakahashiH. TurnerM.R. WuX. Pyridine carbonyl derivatives and their therapeutic use as trpc6 inhibitors.JP Patent 7217273-B22023
  19. GangR. XuR. YiZ. ZhaolunN. ZhongZ. A kind of preparation method of n-methyl-2-isopropyl-4-thiazolemethanamine.CN Patent 109485617-B2023
  20. WeiguangY. YuZ. JinyiX. YongmeiH. LiL. HuiL. A one-pot method for synthesizing nicotinamide amide derivatives.CN Patent 110483387-B2023
  21. MingxinC. HaodongG. ZitongW. A direct synthesis method of chiral secondary amine compounds.CN Patent 110862324-B2023
  22. BihaiT. QunyingM. WeiC. YongpanT. ZhuoZ. YonglinY. A kind of 4,7-diarylthieno[2,3-d] pyridazine cyclometal iridium complex and preparation method thereof.CN Patent 111377977-B2023
  23. XingzhongS. PengG. XiaochuangH. ZhanyuanZ. Green synthesis method of active pharmaceutical molecules gc-24 and fugrel acid.CN Patent 111646889-B2023
  24. GuojunS. SihaoX. QiutingL. YaF. YuxinL. A kind of nhpi catalyst grafted by imide bond and its preparation method and application.CN Patent 111790440-B2023
  25. RanY. YuanqiangS. An n-arylpyridinethiazolothiazole-cucurbituril complex and its preparation method and application.CN Patent 114230574-B2023
  26. XiaogangT. ChengfengX. LinlinR. JiayingT. A kind of preparation method of indolecarbazole compound.CN Patent 114394971-B2023
  27. XiaoL. DongC. YushengX. TingtingC. ChaoQ. A kind of synthesis method of quinoline compound intermediate.CN Patent 114524803-B2023
  28. SantoraV.J. ChenM. ChunD. Substituted benzoxazole and benzofuran compounds as Pde7 inhibitors.JP Patent 7213863-B22023
  29. XiaoanW. EnqinL. LuzheQ. Preparation method of a kind of acetyl-CoA carboxylase inhibitor.CN Patent 107629069-B2023
  30. WeiliangZ. BoL. SusuX. A kind of oxazolopyridine quaternary ammonium salt compound, its preparation method and use.CN Patent 107759614-B2023
  31. OtsukaS. HashimotoN. Method for producing (meth)acrylate.JP Patent 7211357-B22023
  32. YangB. WangK. WangZ. WhiteC.D. LuY. YellowO.T. LiX. ZhangY. Tomoharu . AllowancesO.T. Emodin succinyl ester compounds and their preparation and use.JP Patent 7210605-B22023
  33. RohleT. BernatH. HoenelD. BruderF.K. KintrufJ. Method for preparing triaryl organoborates.KR Patent 102489807-B12023
  34. ChenF. JiangM. ChengD. LiuM. HuangH. Micro-reaction system and method for preparing 2-methyl-4-amino-5-aminomethyl pyrimidine.US Patent 11554354-B22023
  35. Hantzsch . Schmitt . Wislicenus . WidmanO. WernerA. BambergerE. Arthur Rudolph Hantzsch (1857-1935) and the synthesis of nitrogen heterocycles.Available from: https://www.thieme.de/statics/dokumente/thieme/final/en/dokumente/tw_chemistry/CFZ-Synform-Hantzsch-NRBio.pdf
  36. KiasatA. NazariS. DavarpanahJ. β-cyclodextrin-polyurethane polymer: A neutral and eco-friendly heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridine and polyhydroquinolien derivatives via Hantzsch reaction under solvent-free conditions.J. Serb. Chem. Soc.201479440140910.2298/JSC130112130K
    [Google Scholar]
  37. SafariJ. AziziF. SadeghiM. Chitosan nanoparticles as a green and renewable catalyst in the synthesis of 1,4-dihydropyridine under solvent-free conditions.New J. Chem.20153931905190910.1039/C4NJ01730G
    [Google Scholar]
  38. DekaminM.G. AzimoshanM. RamezaniL. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions.Green Chem.201315381182010.1039/c3gc36901c
    [Google Scholar]
  39. HajipourA.R. RafieeF. Acidic bronsted ionic liquids.Org. Prep. Proced. Int.201042428536210.1080/00304948.2010.490177
    [Google Scholar]
  40. WangY. ZhiH. LuoJ. A facile and efficient protocol for esterification and acetalization in a PEG1000-D(A)IL/toluene thermoregulated catalyst–media combined systems.J. Mol. Catal. Chem.2013379465210.1016/j.molcata.2013.07.013
    [Google Scholar]
  41. RenY. CaiC. Molecular iodine in ionic liquid: A green catalytic system for esterification and transesterification.Synth. Commun.201040111670167610.1080/00397910903161660
    [Google Scholar]
  42. RenY.M. ShaoJ.J. WuZ.C. XuM.D. PEG1000-based dicationic acidic ionic liquid catalyzed one-pot synthesis of 1, 4-dihydropyridines via the Hantzsch reaction.Org. Prep. Proced. Int.201446654555010.1080/00304948.2014.963455
    [Google Scholar]
  43. KhodjaI.A. GhalemW. DehimatZ.I. BoulcinaR. CarboniB. DebacheA. Solvent-free synthesis of dihydropyridines and acridinediones via a salicylic acid–catalyzed hantzsch multicomponent reaction.Synth. Commun.201444795996710.1080/00397911.2013.838791
    [Google Scholar]
  44. CherkupallyS.R. MekalaR. P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through hantzsch multi-component condensation.Chem. Pharm. Bull. (Tokyo)20085671002100410.1248/cpb.56.100218591819
    [Google Scholar]
  45. Nasr-EsfahaniM. MontazerozohoriM. RaeatikiaR. An efficient Hantzsch synthesis of 1, 4-dihydropyridines using p-toluenesulfonic acid under solvent-free condition.Maejo Int. J. Sci.2014832
    [Google Scholar]
  46. LeeK.Y. MooneyD.J. Alginate: Properties and biomedical applications.Prog. Polym. Sci.201237110612610.1016/j.progpolymsci.2011.06.00322125349
    [Google Scholar]
  47. DekaminM.G. IlkhanizadehS. LatifidoostZ. DaemiH. KarimiZ. BarikaniM. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines.RSC Advances20144100566585666410.1039/C4RA11801D
    [Google Scholar]
  48. RekungeD.S. KhatriC.K. ChaturbhujG.U. Sulfated polyborate: An efficient and reusable catalyst for one pot synthesis of Hantzsch 1,4-dihydropyridines derivatives using ammonium carbonate under solvent free conditions.Tetrahedron Lett.201758121240124410.1016/j.tetlet.2017.02.038
    [Google Scholar]
  49. SharmaM.G. RajaniD.P. PatelH.M. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction.R. Soc. Open Sci.20174617000610.1098/rsos.17000628680664
    [Google Scholar]
  50. SrinivasanV.V. PachamuthuM.P. MaheswariR. Lewis acidic mesoporous Fe-TUD-1 as catalysts for synthesis of Hantzsch 1,4-dihydropyridine derivatives.J. Porous Mater.20152251187119410.1007/s10934‑015‑9995‑8
    [Google Scholar]
  51. GöksuH. Recyclable aluminium oxy-hydroxide supported Pd nanoparticles for selective hydrogenation of nitro compounds via sodium borohydride hydrolysis.New J. Chem.201539118498850410.1039/C5NJ01492A
    [Google Scholar]
  52. DemirciT. ÇelikB. YıldızY. ErişS. ArslanM. SenF. KilbasB. One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst.RSC Advances2016680769487695610.1039/C6RA13142E
    [Google Scholar]
  53. KusampallyU. DhachapallyN. KolaR. KamatalaC.R. Zeolite anchored Zr-ZSM-5 as an eco-friendly, green, and reusable catalyst in Hantzsch synthesis of dihydropyridine derivatives.Mater. Chem. Phys.202024212249710.1016/j.matchemphys.2019.122497
    [Google Scholar]
  54. LiuJ. ChenL. CuiH. ZhangJ. ZhangL. SuC.Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis.Chem. Soc. Rev.201443166011606110.1039/C4CS00094C24871268
    [Google Scholar]
  55. DevarajanN. SureshP. Framework‐copper‐catalyzed C-N cross‐coupling of arylboronic acids with imidazole: Convenient and ligand‐free synthesis of N‐arylimidazoles.ChemCatChem20168182953296010.1002/cctc.201600480
    [Google Scholar]
  56. JiangJ. YaghiO.M. Brønsted acidity in metal-organic frameworks.Chem. Rev.2015115146966699710.1021/acs.chemrev.5b0022126088535
    [Google Scholar]
  57. LinY. KongC. ChenL. Amine-functionalized metal–organic frameworks: Structure, synthesis and applications.RSC Advances2016639325983261410.1039/C6RA01536K
    [Google Scholar]
  58. DevarajanN. SureshP. MIL-101-SO3 H metal–organic framework as a Brønsted acid catalyst in Hantzsch reaction: An efficient and sustainable methodology for one-pot synthesis of 1,4-dihydropyridine.New J. Chem.201943176806681410.1039/C9NJ00990F
    [Google Scholar]
  59. MaddilaS. PagadalaR. RanaS. KankalaS. JonnalagaddaS.B. Mg–V/CO3 hydrotalcite: An efficient and reusable catalyst for one-pot synthesis of multisubstituted pyridines.Res. Chem. Intermed.201541118269827810.1007/s11164‑014‑1890‑4
    [Google Scholar]
  60. AgrwalA. KasanaV. [Fesipmim]Cl as highly efficient and reusable catalyst for solventless synthesis of dihydropyridine derivatives through Hantzsch reaction.J. Chem. Sci.202013216710.1007/s12039‑020‑01770‑9
    [Google Scholar]
  61. BosicaG. DemanueleK. PadrónJ.M. PuertaA. One-pot multicomponent green Hantzsch synthesis of 1,2-dihydropyridine derivatives with antiproliferative activity.Beilstein J. Org. Chem.2020162862286910.3762/bjoc.16.23533299484
    [Google Scholar]
  62. RahmanA. NehemiaP.N. NyambeM.M. An efficient method for the synthesis of dihydropyridine by Hantzsch reaction with Fe/SiO2 nano heterogeneous catalysts.Bull. Chem. React. Eng. Catal.202015361763010.9767/bcrec.15.3.7669.617‑630
    [Google Scholar]
  63. AghajeriM. KiasatA.R. SanaeishoarH. MCM-BP as a novel nanomagnetic reusable basic catalyst for the one pot solvent-free synthesis of dihydropyridine, polyhydroquinoline and polyhydroacridine derivatives via hantzsch multicomponent condensation reaction.Iran. J. Chem. Chem. Eng.202039354810.30492/ijcce.2020.34298
    [Google Scholar]
  64. GhoshA. KavithaC.S. KeriR.S. Fe3O4@cysteine nanocomposite: An efficient and reusable catalyst for the facile, green, one-pot synthesis of 1,4-dihydropyridine via Hantzsch reaction.Chemical Data Collections20213310068810.1016/j.cdc.2021.100688
    [Google Scholar]
  65. SunkaraP. KeshavuluM. PuppalaV. KumarP.V. BasudeM. Hantzsch synthesis of 1, 4-dihydropyridine derivatives over ZnO/ZrO2 catalyst under solvent free condition.Indian J. Chem.20216010551063
    [Google Scholar]
  66. RahimiJ. NiksefatM. HeidariM. NaderiM. AbbasiH. Tajik IjdaniM. MalekiA. Ammonium metavanadate (NH4VO3): A highly efficient and eco-friendly catalyst for one-pot synthesis of pyridines and 1,4-dihydropyridines.Sci. Rep.20221211368710.1038/s41598‑022‑17378‑735953520
    [Google Scholar]
  67. SohalH.S. GoyalA. SharmaR. KhareR. One-pot, multicomponent synthesis of symmetrical Hantzsch 1,4-dihydropyridine derivatives using glycerol as clean and green solvent.Eur. J. Chem.20145117117510.5155/eurjchem.5.1.171‑175.943
    [Google Scholar]
  68. XueL. ChengG. ZhuR. CuiX. Acid-promoted oxidative methylenation of 1,3-dicarbonyl compounds with DMSO: Application to the three-component synthesis of Hantzsch-type pyridines.RSC Advances2017769440094401210.1039/C7RA07442E
    [Google Scholar]
  69. PerliM. GovindarajanR. piperazine derivatives: A review of biological activities.World J. Pharm. Res.2020919420410.20959/wjpr202014‑19021
    [Google Scholar]
  70. AhmadG. RasoolN. RizwanK. ImranI. ZahoorA.F. ZubairM. SadiqA. RashidU. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs.Bioorg. Chem.20199210321610.1016/j.bioorg.2019.10321631491567
    [Google Scholar]
  71. PradhanJ. GoyalA. Synthesis, anticonvulsant activity and QSAR studies of some new pyrazolyl pyridines.Med. Chem. Res.20162581639165610.1007/s00044‑016‑1597‑8
    [Google Scholar]
  72. YadavR.K. KumarR. SinghH. MazumdarA. Salahuddin ChauhanB. AbdullahM.M. Recent insights on synthetic methods and pharmacological potential in relation with structure of benzothiazoles.Med. Chem.202319432536010.2174/157340641866622082011055135993459
    [Google Scholar]
  73. RavulaS. BobbalaR.R. KolliB. Synthesis of novel isoxazole functionalized pyrazolo[3,4‐ b ]pyridine derivatives; Their anticancer activity.J. Heterocycl. Chem.20205762535253810.1002/jhet.3968
    [Google Scholar]
  74. ViradiyaD. MirzaS. ShaikhF. KakadiyaR. RathodA. JainN. RawalR. ShahA. Design and synthesis of 1, 4-dihydropyridine derivatives as anti-cancer agent.Anticancer. Agents Med. Chem.20171771003101310.2174/187152061666616120614325127924733
    [Google Scholar]
  75. WangX. ChenM. LiQ. ZhangJ. RuanX. XieY. XueW. Synthesis and antiviral activities of novel penta-1,4-diene-3-one oxime derivatives bearing a pyridine moiety.Chem. Pap.20177171225123310.1007/s11696‑016‑0116‑1
    [Google Scholar]
  76. LiuM. XuQ. GuoS. ZuoR. HongY. LuoY. LiY. GongP. LiuY. Design, synthesis, and structure-activity relationships of novel imidazo[4,5-c]pyridine derivatives as potent non-nucleoside inhibitors of hepatitis C virus NS5B.Bioorg. Med. Chem.20182692621263110.1016/j.bmc.2018.04.02929681484
    [Google Scholar]
  77. DesaiN.C. PatelB.Y. DaveB.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues.Med. Chem. Res.201726110911910.1007/s00044‑016‑1732‑6
    [Google Scholar]
  78. KhidreR.E. El-GogaryS.R. MostafaM.S. Design, synthesis, and antimicrobial evaluation of some novel pyridine, coumarin, and thiazole derivatives.J. Heterocycl. Chem.20175442511251910.1002/jhet.2854
    [Google Scholar]
  79. AhamedA. ArifI.A. MateenM. Surendra KumarR. IdhayadhullaA. Antimicrobial, anticoagulant, and cytotoxic evaluation of multidrug resistance of new 1,4-dihydropyridine derivatives.Saudi J. Biol. Sci.20182561227123510.1016/j.sjbs.2018.03.00130174527
    [Google Scholar]
  80. MadaiahM. PrashanthM.K. RevanasiddappaH.D. VeereshB. Synthesis and evaluation of novel imidazo[4,5-c]pyridine derivatives as antimycobacterial agents against Mycobacterium tuberculosis.New J. Chem.201640119194920410.1039/C6NJ02069K
    [Google Scholar]
  81. LuX. TangJ. CuiS. WanB. FranzblaucS.G. ZhangT. ZhangX. DingK. Pyrazolo[1,5-a]pyridine-3-carboxamide hybrids: Design, synthesis and evaluation of anti-tubercular activity.Eur. J. Med. Chem.2017125414810.1016/j.ejmech.2016.09.03027654393
    [Google Scholar]
  82. ParsonsM.E. GanellinC.R. Histamine and its receptors.Br. J. Pharmacol.2006147S1S127S13510.1038/sj.bjp.070644016402096
    [Google Scholar]
  83. GobinathM. SubramanianN. AlagarsamyV. NivedhithaS. SolomonV.R. Synthesis of 1-substituted-4-(pyridin-4-yl) [1, 2, 4] triazolo [4, 3-a] quinazolin-5 (4H)-ones as a new class of H1-antihistaminic agents.Trop. J. Pharm. Res.201514227127710.4314/tjpr.v14i2.12
    [Google Scholar]
  84. SajjaY. VulupalaH.R. BantuR. NagarapuL. VasamsettiS.B. KotamrajuS. NanuboluJ.B. Three-component, one-pot synthesis of benzo[6,7]cyclohepta[1,2-b]pyridine derivatives under catalyst free conditions and evaluation of their anti-inflammatory activity.Bioorg. Med. Chem. Lett.201626385886310.1016/j.bmcl.2015.12.07826748696
    [Google Scholar]
  85. SadawarteG. JagatapS. PatilM. JagrutV. RajputJ.D. Synthesis of substituted pyridine based sulphonamides as an antidiabetic agent.Eur. J. Chem.202112327928310.5155/eurjchem.12.3.279‑283.2118
    [Google Scholar]
  86. AdibM. PeytamF. Rahmanian-JaziM. Mohammadi-KhanaposhtanibM. MaherniaS. BijanzadehH.R. JahaniM. ImanparastS. FaramarziM.A. MahdaviM. LarijanigB. Design, synthesis, in vitro α-glucosidase inhibition, molecular modeling, and kinetic study of novel coumarin fused pyridine derivatives as potent antidiabetic agents.New J. Chem.201842172681727810.1039/C8NJ02495B
    [Google Scholar]
  87. PraveenkumarE. GurrapuN. Kumar KolluriP. YerraguntaV. Reddy KunduruB. SubhashiniN.J.P. Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1-aryl-1H-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-β hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitors.Bioorg. Chem.20199010305610.1016/j.bioorg.2019.10305631276952
    [Google Scholar]
  88. AyehunieS. SnellM. ChildM. KlausnerM. A plasmacytoid dendritic cell (CD123+/CD11c−) based assay system to predict contact allergenicity of chemicals.Toxicology20092641-21910.1016/j.tox.2009.07.02119665512
    [Google Scholar]
  89. IbaM.M. NguyenT. FungJ. CYP1A1 induction by pyridine and its metabolites in HepG2 cells.Arch. Biochem. Biophys.2002404232633410.1016/S0003‑9861(02)00332‑612147272
    [Google Scholar]
  90. LewisD.F.V. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes.Arch. Biochem. Biophys.20034091324410.1016/S0003‑9861(02)00349‑112464242
    [Google Scholar]
  91. KatohM. NakajimaM. ShimadaN. YamazakiH. YokoiT. Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: Pediction of in vivo drug-drug interactions.Eur. J. Clin. Pharmacol.20005511-1284385210.1007/s00228005070610805063
    [Google Scholar]
  92. CervantesP.W. CortonJ.C. A gene expression biomarker predicts heat shock factor 1 activation in a gene expression compendium.Chem. Res. Toxicol.20213471721173710.1021/acs.chemrestox.0c0051034170685
    [Google Scholar]
  93. KawaiM. NakamuraH. SakuradaI. ShimokawaH. TanakaH. MatsumizuM. AndoK. HattoriK. OhtaA. NukuiS. OmuraA. KawamuraM. Discovery of novel and orally active NR2B-selective N-methyl-d-aspartate (NMDA) antagonists, pyridinol derivatives with reduced HERG binding affinity.Bioorg. Med. Chem. Lett.200717205533553610.1016/j.bmcl.2007.08.03917768047
    [Google Scholar]
/content/journals/coc/10.2174/0113852728331961240918115757
Loading
/content/journals/coc/10.2174/0113852728331961240918115757
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test