Skip to content
2000
Volume 29, Issue 15
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The field of biocatalysis has blossomed exponentially over the past decades and revolutionized chemical synthesis, providing greener and sustainable methods for preparing numerous organic molecules at bench and industrial scales and in high stereoselective mode for the chiral ones. However, despite the tremendous progress, researchers still have room to contribute significantly to the field, especially in the valorization of agro-industrial waste to boost the circular (bio) economy. This review summarizes the use of lipases, the most versatile biocatalyst, in enantioselective transesterification reactions. The emphasis is on biobased materials involved in lipase-catalyzed enantioselective transesterification, such as agro-industrial waste for lipases production (isolation source and growth), the use of biobased solvents, renewable acyl donors and biobased materials for enzyme immobilization. We also discuss the perspectives of how to connect the high demand for more robust enzymes and the development of cost-effectiveness enantioselective methods, as well as the challenges to achieving a circular economy.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728344263241210111510
2025-01-30
2025-08-14
Loading full text...

Full text loading...

References

  1. SchäfferA. GrohK.J. SigmundG. AzoulayD. BackhausT. BertramM.G. AlmrothC.B. CousinsI.T. FordA.T. GrimaltJ.O. GuidaY. HanssonM.C. JeongY. LohmannR. MichaelsD. MuellerL. MunckeJ. ÖbergG. OrellanaM.A. SanganyadoE. SchäferR.B. SheriffI. SullivanR.C. SuzukiN. VandenbergL.N. VenierM. VlahosP. WagnerM. WangF. WangM. SoehlA. ÅgerstrandM. DiamondM.L. ScheringerM. Conflicts of interest in the assessment of chemicals, waste, and pollution.Environ. Sci. Technol.20235748190661907710.1021/acs.est.3c04213 37943968
    [Google Scholar]
  2. WhitesidesG.M. Reinventing chemistry.Angew. Chem. Int. Ed.201554113196320910.1002/anie.201410884 25682927
    [Google Scholar]
  3. Department of economic and social affairs.2024Available from: https://sdgs.un.org/ [Accessed on: July].
  4. SheldonR.A. Green chemistry and biocatalysis: Engineering a sustainable future.Catal. Today202443111457110.1016/j.cattod.2024.114571
    [Google Scholar]
  5. HoltmannD. HollmannF. BouchautB. Contribution of enzyme catalysis to the achievement of the United Nations’ Sustainable Development Goals.Molecules20232810412510.3390/molecules28104125 37241865
    [Google Scholar]
  6. MiaoT. ChengX. GuoY. ZhangG. ZhangW. Preparation of chiral polymers: Precise chirality transfer from natural species to achiral artificial polymers.Giant20231410016110.1016/j.giant.2023.100161
    [Google Scholar]
  7. CoreyE.J. LáslóK. Enantioselective chemical synthesis: Methods, logic and practice.Academic Press2013334
    [Google Scholar]
  8. ReinJ. ZacateS.B. MaoK. LinS. A tutorial on asymmetric electrocatalysis.Chem. Soc. Rev.202352238106812510.1039/D3CS00511A 37910160
    [Google Scholar]
  9. PramanikM. GuerzoniM.G. RichardsE. MelenR.L. Recent advances in asymmetric catalysis using p‐block elements.Angew. Chem. Int. Ed.2024639e20231646110.1002/anie.202316461 38038149
    [Google Scholar]
  10. RossinoG. RobescuM.S. LicastroE. TedescoC. MartelloI. MaffeiL. VincentiG. BavaroT. CollinaS. Biocatalysis: A smart and green tool for the preparation of chiral drugs.Chirality202234111403141810.1002/chir.23498 35929567
    [Google Scholar]
  11. HanefeldU. HollmannF. PaulC.E. Biocatalysis making waves in organic chemistry.Chem. Soc. Rev.202251259462710.1039/D1CS00100K 34929722
    [Google Scholar]
  12. SheldonR.A. WoodleyJ.M. Role of biocatalysis in sustainable chemistry.Chem. Rev.2018118280183810.1021/acs.chemrev.7b00203 28876904
    [Google Scholar]
  13. BellE.L. FinniganW. FranceS.P. GreenA.P. HayesM.A. HepworthL.J. LovelockS.L. NiikuraH. OsunaS. RomeroE. RyanK.S. TurnerN.J. FlitschS.L. Biocatalysis.Nat. Rev. Methods Primers2021114610.1038/s43586‑021‑00044‑z
    [Google Scholar]
  14. PellisA. CantoneS. EbertC. GardossiL. Evolving biocatalysis to meet bioeconomy challenges and opportunities.N. Biotechnol.201840Pt A15416910.1016/j.nbt.2017.07.005 28743564
    [Google Scholar]
  15. BalaS. GargD. SridharK. InbarajB.S. SinghR. KammaS. TripathiM. SharmaM. Transformation of agro-waste into value-added bioproducts and bioactive compounds: Micro/nano formulations and applications in the agri-food-pharma sector.Bioengineering202310215210.3390/bioengineering10020152 36829646
    [Google Scholar]
  16. MaciasG.P. De JesusM.L.H. HuertaB.B. The production of biomaterials from agro-industrial waste.Fresenius Environ. Bull.20172641284152
    [Google Scholar]
  17. SharmaV. TsaiM.L. NargotraP. ChenC.W. KuoC.H. SunP.P. DongC.D. Agro-industrial food waste as a low-cost substrate for sustainable production of industrial enzymes: A critical review.Catalysts20221211137310.3390/catal12111373
    [Google Scholar]
  18. HoggB.N. SchnepelC. FinniganJ.D. CharnockS.J. HayesM.A. TurnerN.J. The impact of metagenomics on biocatalysis.Angew. Chem. Int. Ed.20246321e20240231610.1002/anie.202402316 38494442
    [Google Scholar]
  19. RojasL.F. ZapataP. TiradoR.L. Agro-industrial waste enzymes: Perspectives in circular economy.Curr. Opin. Green Sustain. Chem.20223410058510.1016/j.cogsc.2021.100585
    [Google Scholar]
  20. EskandariA. LeowT.C. RahmanM.B.A. OslanS.N. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry.Int. Microbiol.2024271597163110.1007/s10123‑024‑00498‑7 38489100
    [Google Scholar]
  21. SpallettaA. JolyN. MartinP. Latest trends in lipase-catalyzed synthesis of ester carbohydrate surfactants: From key parameters to opportunities and future development.Int. J. Mol. Sci.2024257372710.3390/ijms25073727 38612540
    [Google Scholar]
  22. PattiA. SanfilippoC. Stereoselective promiscuous reactions catalyzed by lipases.Int. J. Mol. Sci.2022235267510.3390/ijms23052675 35269815
    [Google Scholar]
  23. DwivedeeB.P. SoniS. SharmaM. BhaumikJ. LahaJ.K. BanerjeeU.C. Promiscuity of lipase-catalyzed reactions for organic synthesis: A recent update.ChemistrySelect2018392441246610.1002/slct.201702954
    [Google Scholar]
  24. YangH. YuH. StolarzewiczI.A. TangW. Enantioselective transformations in the synthesis of therapeutic agents.Chem. Rev.2023123159397944610.1021/acs.chemrev.3c00010 37417731
    [Google Scholar]
  25. BhardwajK.K. GuptaR. Synthesis of chirally pure enantiomers by lipase.J. Oleo Sci.201766101073108410.5650/jos.ess17114 28924089
    [Google Scholar]
  26. de SousaR.R. de CastroR.P.V. AssisN.M. da SilvaA.S.A. FreireD.M.G. LafuenteF.R. LeitãoF.V.S. Technical-economic assessment—the missing piece for increasing the attractiveness of applied biocatalysis in ester syntheses?Catalysts202313222310.3390/catal13020223
    [Google Scholar]
  27. ChenH. MengX. XuX. LiuW. LiS. The molecular basis for lipase stereoselectivity.Appl. Microbiol. Biotechnol.201810283487349510.1007/s00253‑018‑8858‑z 29500755
    [Google Scholar]
  28. SkroboB. RolfesJ.D. DeskaJ. Enzymatic approaches for the preparation of optically active non-centrochiral compounds.Tetrahedron201672101257127510.1016/j.tet.2016.01.026
    [Google Scholar]
  29. FilhoD.G. SilvaA.G. GuidiniC.Z. Lipases: Sources, immobilization methods, and industrial applications.Appl. Microbiol. Biotechnol.2019103187399742310.1007/s00253‑019‑10027‑6 31375880
    [Google Scholar]
  30. NiY. HoltmannD. HollmannF. How green is biocatalysis? To calculate is to know.ChemCatChem20146493094310.1002/cctc.201300976
    [Google Scholar]
  31. NiY. HoltmannD. HollmannF. Environmental management-life cycle assessment-requirements and guidelines, international organisation for standardisation.1st edGeneva, Switzerland200646
    [Google Scholar]
  32. BeckerM. LützS. RosenthalK. Environmental assessment of enzyme production and purification.Molecules202126357310.3390/molecules26030573 33499126
    [Google Scholar]
  33. HobuschM. KırtelO. MeramoS. SukumaraS. WelnerH.D. A life cycle assessment of early-stage enzyme manufacturing simulations from sustainable feedstocks.Bioresour. Technol.202440013065310.1016/j.biortech.2024.130653 38575094
    [Google Scholar]
  34. ChandraP. Enespa SinghR. Arora,P.K. Microbial lipases and their industrial applications: A comprehensive review.Microb. Cell Fact.202019116910.1186/s12934‑020‑01428‑8 32847584
    [Google Scholar]
  35. QiuJ. HanR. WangC. Microbial halophilic lipases: A review.J. Basic Microbiol.202161759460210.1002/jobm.202100107 34096085
    [Google Scholar]
  36. IsmailA.R. KashtohH. BaekK.H. Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications.Int. J. Biol. Macromol.202118712714210.1016/j.ijbiomac.2021.07.101 34298046
    [Google Scholar]
  37. GeoffryK. AchurR.N. Screening and production of lipase from fungal organisms.Biocatal. Agric. Biotechnol.20181424125310.1016/j.bcab.2018.03.009
    [Google Scholar]
  38. DingL.N. LiM. WangW.J. CaoJ. WangZ. ZhuK.M. YangY.H. LiY.L. TanX.L. Advances in plant GDSL lipases: From sequences to functional mechanisms.Acta Physiol. Plant.201941915110.1007/s11738‑019‑2944‑4
    [Google Scholar]
  39. SundaramahalingamM.A. AmruthaC. SivashamuganP. RajeshbanuJ. An encapsulated report on enzyme-assisted transesterification with an allusion to lipase.3 Biotech20211148110.1007/s13205‑021‑03003‑3
    [Google Scholar]
  40. SalihuA. AlamM.Z. AbdulKarimM.I. SallehH.M. Lipase production: An insight in the utilization of renewable agricultural residues.Resour. Conserv. Recycling201258364410.1016/j.resconrec.2011.10.007
    [Google Scholar]
  41. SantosM.R. HirataD.B. AngelottiJ.A.F. Lipase: Source of aquisition, way of production, and recente applications.Catal. Res.202222110.21926/cr.2202013
    [Google Scholar]
  42. BorrelliG. TronoD. Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications.Int. J. Mol. Sci.2015169207742084010.3390/ijms160920774 26340621
    [Google Scholar]
  43. GuerrandD. Lipases industrial applications: Focus on food and agroindustries.OCL Oilseeds Fats Crops Lipids2017244D40310.1051/ocl/2017031
    [Google Scholar]
  44. MendesA.A. OliveiraP.C. de CastroH.F. Properties and biotechnological applications of porcine pancreatic lipase.J. Mol. Catal., B Enzym.20127811913410.1016/j.molcatb.2012.03.004
    [Google Scholar]
  45. SalgadoC.A. dos SantosC.I.A. VanettiM.C.D. Microbial lipases: Propitious biocatalysts for the food industry.Food Biosci.20224510150910.1016/j.fbio.2021.101509
    [Google Scholar]
  46. SinghB. JanaA.K. Agri-residues and agro-industrial waste substrates bioconversion by fungal cultures to biocatalyst lipase for green chemistry: A review.J. Environ. Manage.202334811921910.1016/j.jenvman.2023.119219 37852078
    [Google Scholar]
  47. AliS. KhanS.A. HamayunM. LeeI.J. The recent advances in the utility of microbial lipases: A review.Microorganisms202311251010.3390/microorganisms11020510 36838475
    [Google Scholar]
  48. LongZ.D. XuJ.H. PanJ. Significant improvement of Serratia marcescens lipase fermentation, by optimizing medium, induction, and oxygen supply.Appl. Biochem. Biotechnol.2007142214815710.1007/s12010‑007‑0023‑6 18025576
    [Google Scholar]
  49. BenjaminS. PandeyA. Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation.Braz. Arch. Biol. Technol.200144221322110.1590/S1516‑89132001000200016
    [Google Scholar]
  50. KumarA. VermaV. DubeyV.K. SrivastavaA. GargS.K. SinghV.P. AroraP.K. Industrial applications of fungal lipases: A review.Front. Microbiol.202314114253610.3389/fmicb.2023.1142536 37187537
    [Google Scholar]
  51. MahfoudhiA. BenmabroukS. FendriA. SayariA. Fungal lipases as biocatalysts: A promising platform in several industrial biotechnology applications.Biotechnol. Bioeng.2022119123370339210.1002/bit.28245 36137755
    [Google Scholar]
  52. VakhluJ. KourA. Yeast lipases: Enzyme purification, biochemical properties and gene cloning.Electron. J. Biotechnol.200691698510.2225/vol9‑issue1‑fulltext‑9
    [Google Scholar]
  53. KnobA. IzidoroS.C. LacerdaL.T. RodriguesA. de LimaV.A. A novel lipolytic yeast Meyerozyma guilliermondii: Efficient and low-cost production of acid and promising feed lipase using cheese whey.Biocatal. Agric. Biotechnol.20202410156510.1016/j.bcab.2020.101565
    [Google Scholar]
  54. KarbalaeiM. RezaeeS.A. FarsianiH. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins.J. Cell. Physiol.202023595867588110.1002/jcp.29583 32057111
    [Google Scholar]
  55. CostaT.M. HermannK.L. RomanG.M. ValleR.C.S.C. TavaresL.B.B. Lipase production by Aspergillus niger grown in different agro-industrial wastes by solid-state fermentation.Braz. J. Chem. Eng.201734241942710.1590/0104‑6632.20170342s20150477
    [Google Scholar]
  56. CoradiG.V. da VisitaçãoV.L. de LimaE.A. SaitoL.Y.T. PalmieriD.A. TakitaM.A. NetoO.P. de LimaV.M.G. Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum.Ann. Microbiol.201363253354010.1007/s13213‑012‑0500‑1
    [Google Scholar]
  57. SethiB.K. NandaP.K. SahooS. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10.Braz. J. Microbiol.201647114314910.1016/j.bjm.2015.11.026 26887237
    [Google Scholar]
  58. CollaL.M. FicanhaA.M.M. RizzardiJ. BertolinT.E. ReinehrC.O. CostaJ.A.V. Production and characterization of lipases by two new isolates of Aspergillus through solid-state and submerged fermentation.BioMed Res. Int.201520151910.1155/2015/725959 26180809
    [Google Scholar]
  59. SzymczakT. CybulskaJ. PodleśnyM. FrącM. Various perspectives on microbial lipase production using agri-food waste and renewable products.Agriculture202111654010.3390/agriculture11060540
    [Google Scholar]
  60. CapanogluE. NemliE. BarberanT.F. Novel approaches in the valorization of agricultural wastes and their applications.J. Agric. Food Chem.202270236787680410.1021/acs.jafc.1c07104 35195402
    [Google Scholar]
  61. PutriD.N. KhootamaA. PerdaniM.S. UtamiT.S. HermansyahH. Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste.Energy Rep.2020633133510.1016/j.egyr.2019.08.064
    [Google Scholar]
  62. VenkatesagowdaB. PonugupatyE. BarbosaA.M. DekkerR.F.H. Solid-state fermentation of coconut kernel-cake as substrate for the production of lipases by the coconut kernel-associated fungus Lasiodiplodia theobromae VBE-1.Ann. Microbiol.201565112914210.1007/s13213‑014‑0844‑9
    [Google Scholar]
  63. CarvalhoA.S.S. SalesJ.C.S. NascimentoF.V. RibeiroB.D. SouzaC.E.C. LemesA.C. CoelhoM.A.Z. Lipase production by Yarrowia lipolytica in solid-state fermentation using amazon fruit by-products and soybean meal as substrate.Catalysts202313228910.3390/catal13020289
    [Google Scholar]
  64. GraminhaE.B.N. GonçalvesA.Z.L. PirotaR.D.P.B. BalsalobreM.A.A. Da SilvaR. GomesE. Enzyme production by solid-state fermentation: Application to animal nutrition.Anim. Feed Sci. Technol.20081441-212210.1016/j.anifeedsci.2007.09.029
    [Google Scholar]
  65. AminM. BhattiH.N. Effect of physicochemical parameters on lipase production by Penicillium fellutanum using canola seed oil cake as substrate.Int. J. Agric. Biol.20141611812410.5555/20143078757
    [Google Scholar]
  66. CollaL.M. RizzardiJ. PintoM.H. ReinehrC.O. BertolinT.E. CostaJ.A.V. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses.Bioresour. Technol.2010101218308831410.1016/j.biortech.2010.05.086 20580228
    [Google Scholar]
  67. KanmaniP. AravindJ. KumaresanK. An insight into microbial lipases and their environmental facet.Int. J. Environ. Sci. Technol.20151231147116210.1007/s13762‑014‑0605‑0
    [Google Scholar]
  68. SalihuA. AlamZ. AbdulKarim, M.I.; Salleh, H.M. Suitability of using palm oil mill effluent as a medium for lipase production.Afr. J. Biotechnol.2011102044205210.5897/AJB10.1701
    [Google Scholar]
  69. BrozzoliV. CrognaleS. SampedroI. FedericiF. D’AnnibaleA. PetruccioliM. Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor.Bioresour. Technol.2009100133395340210.1016/j.biortech.2009.02.022 19303284
    [Google Scholar]
  70. ZhouX. GaoQ. FengW. PanK. Immobilization of Yarrowia lipolytica lipase on bamboo charcoal to resolve (R,S)‐phenylethanol in organic medium.Chem. Eng. Technol.20133671249125410.1002/ceat.201200672
    [Google Scholar]
  71. CuiC. XieR. TaoY. ZengQ. ChenB. Improving performance of Yarrowia lipolytica lipase Lip2-catalyzed kinetic resolution of (R,S)-1-phenylethanol by solvent engineering.Biocatal. Biotransform.2015331384310.3109/10242422.2015.1018190
    [Google Scholar]
  72. GuieysseD. SandovalG. FaureL. NicaudJ.M. MonsanP. MartyA. New efficient lipase from Yarrowia lipolytica for the resolution of 2-bromo-arylacetic acid esters. Tetr.Asym.200415223539354310.1016/j.tetasy.2004.09.008
    [Google Scholar]
  73. CancinoM. BauchartP. SandovalG. NicaudJ.M. AndréI. DossatV. MartyA. A variant of Yarrowia lipolytica lipase with improved activity and enantioselectivity for resolution of 2-bromo-arylacetic acid esters.Tetrahedron Asymmetry200819131608161210.1016/j.tetasy.2008.06.009
    [Google Scholar]
  74. LiuY. GuoC. SunX.T. LiuC.Z. Improved performance of Yarrowia lipolytica lipase-catalyzed kinetic resolution of (R,S)-2-octanol by an integrated strategy of interfacial activation, bioimprinting and immobilization.Bioresour. Technol.201314241541910.1016/j.biortech.2013.05.045 23748089
    [Google Scholar]
  75. LiuY. GuoC. LiuC.Z. Development of a mixed solvent system for the efficient resolution of (R,S)-2-octanol catalyzed by magnetite-immobilized lipase.J. Mol. Catal., B Enzym.2014101232710.1016/j.molcatb.2013.12.011
    [Google Scholar]
  76. LiuY. GuoC. LiuC.Z. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.Chirality201527319920410.1002/chir.22411 25482205
    [Google Scholar]
  77. SilveiraE.A. TardioliP.W. FarinasC.S. Valorization of palm oil industrial waste as feedstock for lipase production.Appl. Biochem. Biotechnol.2016179455857110.1007/s12010‑016‑2013‑z 26892007
    [Google Scholar]
  78. ShuklaP. Synthetic biology perspectives of microbial enzymes and their innovative applications.Indian J. Microbiol.201959440140910.1007/s12088‑019‑00819‑9 31762501
    [Google Scholar]
  79. KateA. SahuL.K. PandeyJ. MishraM. SharmaP.K. Green catalysis for chemical transformation: The need for the sustainable development.Curr. Res. Green Sust. Chem.2022510024810.1016/j.crgsc.2021.100248
    [Google Scholar]
  80. AlcántaraA.R. de MaríaD.P. LittlechildJ.A. SchürmannM. SheldonR.A. WohlgemuthR. Biocatalysis as key to sustainable industrial chemistry.ChemSusChem2022159e20210270910.1002/cssc.202102709 35238475
    [Google Scholar]
  81. MieleM. PillariV. PaceV. AlcántaraA.R. de GonzaloG. Application of biobased solvents in asymmetric catalysis.Molecules20222719670110.3390/molecules27196701 36235236
    [Google Scholar]
  82. CorrêaA. PaixãoM. SchwabR. Application of bio-based solvents in catalysis.Curr. Org. Synth.201512667569510.2174/157017941206150828102108
    [Google Scholar]
  83. WintertonN. The green solvent: A critical perspective.Clean Technol. Environ. Policy20212392499252210.1007/s10098‑021‑02188‑8 34608382
    [Google Scholar]
  84. GuY. JérômeF. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry.Chem. Soc. Rev.201342249550957010.1039/c3cs60241a 24056753
    [Google Scholar]
  85. HoyosP. QuezadaM.A. SinisterraJ.V. AlcántaraA.R. Optimised dynamic kinetic resolution of benzoin by a chemoenzymatic approach in 2-MeTHF.J. Mol. Catal., B Enzym.2011721-2202410.1016/j.molcatb.2011.04.018
    [Google Scholar]
  86. BelafriekhA. SecundoF. SerraS. DjeghabaZ. Enantioselective enzymatic resolution of racemic alcohols by lipases in green organic solvents.Tetrahedron Asymmetry201728347347810.1016/j.tetasy.2017.02.004
    [Google Scholar]
  87. HoangH.N. NagashimaY. MoriS. KagechikaH. MatsudaT. CO2-expanded bio-based liquids as novel solvents for enantioselective biocatalysis.Tetrahedron201773202984298910.1016/j.tet.2017.04.024
    [Google Scholar]
  88. HoangH.N. FernandezG.E. YamadaS. MoriS. KagechikaH. GonzalezM.Y. MatsudaT. Modulating biocatalytic activity toward sterically bulky substrates in CO2-expanded biobased liquids by tuning the physicochemical properties.ACS Sustain. Chem.& Eng.2017511110511105910.1021/acssuschemeng.7b03018
    [Google Scholar]
  89. OtsuM. SuzukiY. KoesoemaA.A. HoangH.N. TamuraM. MatsudaT. CO2-expanded liquids as solvents to enhance activity of Pseudozyma antarctica lipase B towards ortho-substituted 1-phenylethanols.Tetrahedron Lett.2020614215242410.1016/j.tetlet.2020.152424
    [Google Scholar]
  90. WolfsonA. DlugyC. ShotlandY. Glycerol as a green solvent for high product yields and selectivities.Environ. Chem. Lett.200752677110.1007/s10311‑006‑0080‑z
    [Google Scholar]
  91. KapoorM. GuptaM.N. Obtaining monoglycerides by esterification of glycerol with palmitic acid using some high activity preparations of Candida antarctica lipase B.Process Biochem.201247350350810.1016/j.procbio.2011.12.009
    [Google Scholar]
  92. TudoracheM. ProtesescuL. ComanS. ParvulescuV.I. Efficient bio-conversion of glycerol to glycerol carbonate catalyzed by lipase extracted from Aspergillus niger.Green Chem.201214247848210.1039/c2gc16294f
    [Google Scholar]
  93. LanjekarK. RathodV.K. Utilization of glycerol for the production of glycerol carbonate through greener route.J. Environ. Chem. Eng.2013141231123610.1016/j.jece.2013.09.015
    [Google Scholar]
  94. TudoracheM. NegoiA. TudoraB. ParvulescuV.I. Environmental-friendly strategy for biocatalytic conversion of waste glycerol to glycerol carbonate.Appl. Catal. B201414627427810.1016/j.apcatb.2013.02.049
    [Google Scholar]
  95. OdanethA.A. KavadiaM.R. YadavM.G. ArvindM.L. Production of glyceryl monostearate by immobilized Candida antarctica B lipase in organic media.J. Appl. Biotechnol. Bioeng.2017239610210.15406/jabb.2017.02.00031
    [Google Scholar]
  96. LimaP.J.M. da SilvaR.M. NetoC.A.C.G. e SilvaG.N.C. SouzaJ.E.S. NunesY.L. dos SantosS.J.C. An overview on the conversion of glycerol to value‐added industrial products via chemical and biochemical routes.Biotechnol. Appl. Biochem.20226962794281810.1002/bab.2098 33481298
    [Google Scholar]
  97. BrittoP.J. KulkarniR.M. VeluturlaS. NarulaA. Application of Steapsin lipase for bioconversion of glycerol acetates from glycerol.Biocatal. Agric. Biotechnol.20234810264110.1016/j.bcab.2023.102641
    [Google Scholar]
  98. DurandE. LecomteJ. VilleneuveP. Deep eutectic solvents: Synthesis, application, and focus on lipase‐catalyzed reactions.Eur. J. Lipid Sci. Technol.2013115437938510.1002/ejlt.201200416
    [Google Scholar]
  99. GuajardoN. de MaríaD.P. AhumadaK. SchreblerR.A. TagleR.R. CrespoF.A. CarlesiC. Water as cosolvent: Nonviscous deep eutectic solvents for efficient lipase‐catalyzed esterifications.ChemCatChem2017981393139610.1002/cctc.201601575
    [Google Scholar]
  100. NianB. CaoC. LiuY. Activation and stabilization of Candida antarctica lipase B in choline chloride-glycerol-water binary system via tailoring the hydrogen-bonding interaction.Int. J. Biol. Macromol.20191361086109510.1016/j.ijbiomac.2019.06.150 31233790
    [Google Scholar]
  101. PätzoldM. SiebenhallerS. KaraS. LieseA. SyldatkC. HoltmannD. Deep eutectic solvents as efficient solvents in biocatalysis.Trends Biotechnol.201937994395910.1016/j.tibtech.2019.03.007 31000203
    [Google Scholar]
  102. SunS. LvY. WangG. Enhanced surfactant production using glycerol-based deep eutectic solvent as a novel reaction medium for enzymatic glycerolysis of soybean oil.Ind. Crops Prod.202015111247010.1016/j.indcrop.2020.112470
    [Google Scholar]
  103. TanJ.N. DouY. Deep eutectic solvents for biocatalytic transformations: Focused lipase-catalyzed organic reactions.Appl. Microbiol. Biotechnol.202010441481149610.1007/s00253‑019‑10342‑y 31907576
    [Google Scholar]
  104. PanićM. RadovićM. MarosI. TušekJ.A. BubaloC.M. RedovnikovićR.I. Development of environmentally friendly lipase-catalysed kinetic resolution of (R,S)-1-phenylethyl acetate using aqueous natural deep eutectic solvents.Process Biochem.20211021910.1016/j.procbio.2020.12.001
    [Google Scholar]
  105. RashidS.N. HayyanA. HayyanM. HashimM.A. ElgharbawyA.A.M. SaniF.S. BasirunW.J. LeeV.S. AliasY. MohammedA.K. MirghaniM.E.S. ZulkifliM.Y. RagehM. Ternary glycerol-based deep eutectic solvents: Physicochemical properties and enzymatic activity.Chem. Eng. Res. Des.2021169778510.1016/j.cherd.2021.02.032
    [Google Scholar]
  106. OuG. HeB. YuanY. Lipases are soluble and active in glycerol carbonate as a novel biosolvent.Enzyme Microb. Technol.201149216717010.1016/j.enzmictec.2011.04.011 22112404
    [Google Scholar]
  107. OuG. HeB. YuanY. Design of biosolvents through hydroxyl functionalization of compounds with high dielectric constant.Appl. Biochem. Biotechnol.201216661472147910.1007/s12010‑012‑9541‑y 22246733
    [Google Scholar]
  108. WuX.M. SunW. XinJ.Y. XiaC.G. Lipase-catalysed kinetic resolution of secondary alcohols with improved enantioselectivity in propylene carbonate.World J. Microbiol. Biotechnol.200824112421242410.1007/s11274‑008‑9762‑y
    [Google Scholar]
  109. PyoS.H. PerssonP. LundmarkS. KaulH.R. Solvent-free lipase-mediated synthesis of six-membered cyclic carbonates from trimethylolpropane and dialkyl carbonates.Green Chem.201113497698210.1039/c0gc00783h
    [Google Scholar]
  110. ZhouY. JinQ. GaoZ. GuoH. ZhangH. ZhouX. Asymmetric organic carbonate synthesis catalyzed by an enzyme with dimethyl carbonate: A fruitful sustainable alliance.RSC Advances20144147013701810.1039/c3ra43698e
    [Google Scholar]
  111. PyoS.H. ParkJ.H. ChangT.S. KaulH.R. Dimethyl carbonate as a green chemical.Curr. Opin. Green Sustain. Chem.20175616610.1016/j.cogsc.2017.03.012
    [Google Scholar]
  112. FioraniG. PerosaA. SelvaM. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables.Green Chem.201820228832210.1039/C7GC02118F
    [Google Scholar]
  113. VicinanzaS. MombelliL. AnnunziataF. DonzellaS. ContenteM.L. BorsariC. ContiP. MeroniG. MolinariF. MartinoP.A. PintoA. TamboriniL. Chemo-enzymatic flow synthesis of nature-inspired phenolic carbonates and carbamates as antiradical and antimicrobial agents.Sustain. Chem. Pharm.20243910154210.1016/j.scp.2024.101542
    [Google Scholar]
  114. JessopP.G. JessopD.A. FuD. PhanL. Solvatochromic parameters for solvents of interest in green chemistry.Green Chem.20121451245125910.1039/c2gc16670d
    [Google Scholar]
  115. WangY. DaiM. LuoG. FanJ. ClarkJ.H. ZhangS. Preparation and application of green sustainable solvent cyrene.Chemistry2023542322234610.3390/chemistry5040154
    [Google Scholar]
  116. LanctôtA.G. AttardT.M. SherwoodJ. McElroyC.R. HuntA.J. Synthesis of cholesterol-reducing sterol esters by enzymatic catalysis in bio-based solvents or solvent-free.RSC Advances2016654487534875610.1039/C6RA10275A
    [Google Scholar]
  117. IemhoffA. SherwoodJ. McElroyC.R. HuntA.J. Towards sustainable kinetic resolution, a combination of bio-catalysis, flow chemistry and bio-based solvents.Green Chem.201820113614010.1039/C7GC03177G
    [Google Scholar]
  118. GuajardoN. de MaríaD.P. Assessing biocatalysis using dihydrolevoglucosenone (Cyrene™) as versatile bio-based (co)solvent.Mol. Catal.202048511081310.1016/j.mcat.2020.110813
    [Google Scholar]
  119. ParavidinoM. HanefeldU. Enzymatic acylation: Assessing the greenness of different acyl donors.Green Chem.201113102651265710.1039/c1gc15576h
    [Google Scholar]
  120. BenamaraN.E. KhelassiM.M. LakoudS.G. ZouiouecheA.L. RiantO. Enantioselective enzymatic synthesis of (R)‐phenyl alkyl esters and their analogue amides using fatty acids as green acyl donors.ChemistrySelect2021648139411394610.1002/slct.202103831
    [Google Scholar]
  121. PoterałaM. BorowieckiP. From waste to value—direct utilization of α-angelica lactone as a nonconventional irreversible acylating agent in a chromatography-free lipase-catalyzed KR approach toward sec-alcohols.ACS Sustain. Chem.& Eng.2021930102761029010.1021/acssuschemeng.1c02845
    [Google Scholar]
  122. KondavetiL. AzemiA.T.F. BishtK.S. Lipase-catalyzed solvent-free kinetic resolution of substituted racemic ε-caprolactones. Tetr.Asym.200213212913510.1016/S0957‑4166(02)00064‑2
    [Google Scholar]
  123. UhmK.N. LeeS.J. KimH. KangH-Y. LeeY. Enantioselective resolution of methyl 2-chloromandelate by Candida antarctica lipase A in a solvent-free transesterification reaction.J. Mol. Catal., B Enzym.2007451-2343810.1016/j.molcatb.2006.10.006
    [Google Scholar]
  124. XiongJ. WuJ. XuG. YangL. Kinetic study of lipase catalyzed asymmetric transesterification of mandelonitrile in solvent-free system.Chem. Eng. J.20081381-325826310.1016/j.cej.2007.05.034
    [Google Scholar]
  125. MamaghaniM. MahmoodiN.O. MoghissehA.A. PourmohamadL. Synthesis and kinetic resolution of furyl substituted secondary carbinols by porcine pancreatic lipase under solvent free conditions.J. Indian Chem. Soc.20085223824310.1007/BF03246113
    [Google Scholar]
  126. WangS.Z. WuJ.P. XuG. YangL.R. Kinetic modelling of lipase-catalyzed remote resolution of citalopram intermediate in solvent-free system.Biochem. Eng. J.200945211311910.1016/j.bej.2009.03.003
    [Google Scholar]
  127. MajumderA.B. SinghB. DuttaD. SadhukhanS. GuptaM.N. Lipase catalyzed synthesis of benzyl acetate in solvent-free medium using vinyl acetate as acyl donor.Bioorg. Med. Chem. Lett.200616154041404410.1016/j.bmcl.2006.05.006 16714111
    [Google Scholar]
  128. RichardG. NottK. NicksF. PaquotM. BleckerC. FauconnierM.L. Use of lipases for the kinetic resolution of lactic acid esters in heptane or in a solvent free system.J. Mol. Catal., B Enzym.20139728929610.1016/j.molcatb.2013.08.015
    [Google Scholar]
  129. ZhangK. PanZ. DiaoZ. LiangS. HanS. ZhengS. LinY. Kinetic resolution of sec-alcohols catalysed by Candida antarctica lipase B displaying Pichia pastoris whole-cell biocatalyst.Enzyme Microb. Technol.201811081310.1016/j.enzmictec.2017.11.005 29310860
    [Google Scholar]
  130. RodriguesR.C. OrtízV.J.J. dos SantosJ.C.S. MurciaB.Á. AlcantaraA.R. BarbosaO. OrtizC. LafuenteF.R. Immobilization of lipases on hydrophobic supports: Immobilization mechanism, advantages, problems, and solutions.Biotechnol. Adv.201937574677010.1016/j.biotechadv.2019.04.003 30974154
    [Google Scholar]
  131. OrtizC. FerreiraM.L. BarbosaO. dos SantosJ.C.S. RodriguesR.C. MurciaB.Á. BriandL.E. LafuenteF.R. Novozym 435: The “perfect” lipase immobilized biocatalyst?Catal. Sci. Technol.20199102380242010.1039/C9CY00415G
    [Google Scholar]
  132. AlnochR.C. dos SantosA.L. de AlmeidaM.J. KriegerN. MateoC. Recent trends in biomaterials for immobilization of lipases for application in non-conventional media.Catalysts202010669710.3390/catal10060697
    [Google Scholar]
  133. KrajewskaB. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review.Enzyme Microb. Technol.2004352-312613910.1016/j.enzmictec.2003.12.013
    [Google Scholar]
  134. RafieeF. RezaeeM. Different strategies for the lipase immobilization on the chitosan based supports and their applications.Int. J. Biol. Macromol.202117917019510.1016/j.ijbiomac.2021.02.198 33667561
    [Google Scholar]
  135. BaiY. JingZ. MaR. WanX. LiuJ. HuangW. A critical review of enzymes immobilized on chitosan composites: Characterization and applications.Bioprocess Biosyst. Eng.202346111539156710.1007/s00449‑023‑02914‑0 37540309
    [Google Scholar]
  136. SpelmezanC.G. BenczeL.C. KatonaG. IrimieF.D. PaizsC. ToșaM.I. Efficient and stable magnetic chitosan-lipase B from Candida antarctica bioconjugates in the enzymatic kinetic resolution of racemic heteroarylethanols.Molecules202025235010.3390/molecules25020350 31952168
    [Google Scholar]
  137. FonsecaS.T. de OliveiraU.M.F. de OliveiraM.C.F. de LemosT.L.G. da SilvaM.R. RiosN.S. GonçalvesL.R.B. de MattosM.C. Immobilization of Amano lipase AK from Pseudomonas fluorescens on different types of chitosan-containing supports: Use in the kinetic resolution of rac-indanol.Bioprocess Biosyst. Eng.202144478579210.1007/s00449‑020‑02487‑2 33389170
    [Google Scholar]
  138. dos SantosL.A. AlnochR.C. SoaresG.A. MitchellD.A. KriegerN. Immobilization of Pseudomonas fluorescens lipase on chitosan crosslinked with polyaldehyde starch for kinetic resolution of sec-alcohols.Process Biochem.202212223824710.1016/j.procbio.2022.10.014
    [Google Scholar]
  139. ZhangS. ShangW. YangX. ZhangX. HuangY. ZhangS. ChenJ. Immobilization of lipase with alginate hydrogel beads and the lipasecatalyzed kinetic resolution of α‐phenyl ethanol.J. Appl. Polym. Sci.20141318app.40178
    [Google Scholar]
  140. FerreiraI.M. NishimuraR.H.V. SouzaA.B.A. ClososkiG.C. YoshiokaS.A. PortoA.L.M. Highly enantioselective acylation of chlorohydrins using Amano AK lipase from P. fluorescens immobilized on silk fibroin-alginate spheres.Tetrahedron Lett.201455365062506510.1016/j.tetlet.2014.07.032
    [Google Scholar]
  141. KogaH. KitaokaT. IsogaiA. Paper-immobilized enzyme as a green microstructured catalyst.J. Mater. Chem.20122223115911159710.1039/c2jm30759f
    [Google Scholar]
  142. de SouzaS.P. JuniorI.I. SilvaG.M.A. MirandaL.S.M. SantiagoM.F. LamL.Y.F. DawoodA. BornscheuerU.T. de SouzaR.O.M.A. Cellulose as an efficient matrix for lipase and transaminase immobilization.RSC Advances2016686665667110.1039/C5RA24976G
    [Google Scholar]
  143. SpelmezanC-G. KatonaG. BenczeL.C. PaizsC. ToşaM.I. A robust and efficient lipase based nanobiocatalyst for phenothiazinyl-ethanol resolution.React. Chem. Eng.2023851109111610.1039/D2RE00515H
    [Google Scholar]
  144. De SouzaT.C. De FonsecaT.S. Da CostaJ.A. RochaM.V.P. De MattosM.C. LafuenteF.R. GonçalvesL.R.B. Dos SantosJ.C.S. Cashew apple bagasse as a support for the immobilization of lipase B from Candida antarctica: Application to the chemoenzymatic production of (R)-indanol.J. Mol. Catal., B Enzym.2016130586910.1016/j.molcatb.2016.05.007
    [Google Scholar]
  145. MittersteinerM. LinshalmB.L. VieiraA.P.F. BrondaniP.B. ScharfD.R. de JesusP.C. Convenient enzymatic resolution of (R,S)‐2‐methylbutyric acid catalyzed by immobilized lipases.Chirality201830110611110.1002/chir.22779
    [Google Scholar]
  146. de SouzaT.C. FonsecaS.T. SilvaS.J. LimaP.J.M. NetoC.A.C.G. MonteiroR.R.C. RochaM.V.P. de MattosM.C. dos SantosJ.C.S. GonçalvesL.R.B. Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate.Bioprocess Biosyst. Eng.202043122253226810.1007/s00449‑020‑02411‑8 32725440
    [Google Scholar]
  147. BulloG.T. MarascaN. AlmeidaF.L.C. ForteM.B.S. Lipases: Market study and potential applications of immobilized derivatives.Biofuels Bioprod. Biorefin.20241851676168910.1002/bbb.2607
    [Google Scholar]
  148. dos SantosL.N. PernaR.F. VieiraA.C. de AlmeidaA.F. FerreiraN.R. Trends in the use of lipases: A systematic review and bibliometric analysis.Foods20231216305810.3390/foods12163058 37628057
    [Google Scholar]
  149. AdetunjiA.I. OlaniranA.O. Production strategies and biotechnological relevance of microbial lipases: A review.Braz. J. Microbiol.20215231257126910.1007/s42770‑021‑00503‑5 33904151
    [Google Scholar]
  150. SheldonR.A. BassoA. BradyD. New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy.Chem. Soc. Rev.202150105850586210.1039/D1CS00015B 34027942
    [Google Scholar]
  151. IsmailA.R. BaekK.H. Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects.Int. J. Biol. Macromol.20201631624163910.1016/j.ijbiomac.2020.09.021 32916199
    [Google Scholar]
/content/journals/coc/10.2174/0113852728344263241210111510
Loading
/content/journals/coc/10.2174/0113852728344263241210111510
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test