CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders) - Volume 24, Issue 10, 2025
Volume 24, Issue 10, 2025
-
-
Molecular Interplay of ISG15/ISGylation in Neuropathologies
ISG15 is a 15 kDa ubiquitin-like protein that covalently associates with its target proteins by a sequential enzymatic process known as ISGylation. Research on protein ISGylation has increased in recent years, and some studies have suggested that ISG15 is involved in neuroprotection and neurodegeneration mechanisms. This review outlines the current state of research on the implications of ISG15/ISGylation in other neuropathies such as malignant tumors, ataxia telangiectasia, ischemia, depression, and neurodegenerative diseases such as Alzheimer’s, Parkinson’s diseases, multiple sclerosis, and amyotrophic lateral sclerosis. Based on the studies reported to date, ISG15/ISGylation promotes the progression of brain tumors such as glioblastoma. Moreover, ISG15/ISGylation seems to play a dual role in neuropathies, demonstrating a neuroprotective effect when there is acute brain damage, but ISG15/ISGylation is associated with reduced neuroprotection when there is chronic damage, such as in neurodegenerative diseases.
-
-
-
Cell-Free DNA, a Noninvasive Biomarker for Prediction and Detection of Neurodegenerative Diseases, New Insights, and Perspectives
Neurodegenerative diseases pose serious threats to public health worldwide. Biomarkers for neurodegenerative disorders are essential to enhance the diagnostic process in clinical settings and to aid in the creation and assessment of effective disease-modifying treatments. In recent times, affordable and readily available blood-based biomarkers identifying the same neurodegenerative disease pathologies have been created, potentially transforming the diagnostic approach for these disorders worldwide. Emerging relevant biomarkers for α-synuclein pathology in Parkinson's disease include blood-based indicators of overall neurodegeneration and glial activation. Cell-free DNA (cfDNA), an encouraging non-invasive biomarker commonly utilized in oncology and pregnancy, has demonstrated significant potential in clinical uses for diagnosing neurodegenerative disorders. In this section, we explore the latest cfDNA studies related to neurodegenerative disorders. Moreover, we present a perspective on the possible role of cfDNA as a diagnostic, therapeutic, and prognostic indicator for neurodegenerative disorders. This review provides a summary of the most recent progress in biomarkers for neurodegenerative disorders such as Alzheimer’s, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and traumatic brain injury.
-
-
-
Neuroprotective Effect of Sitagliptin beyond the Incretin Effect: A Narrative Review
Authors: Ali Mohammad Pourbagher-Shahri and Fatemeh ForouzanfarSitagliptin is a dipeptidyl peptidase-IV inhibitor approved for treating type 2 diabetes mellitus. It increases the active form of incretin Glucagon-like Peptide-1 (GLP-1). The GLP-1 peptide prevents damage to neurons due to its anti-inflammatory and anti-apoptotic activities. This article summarizes the studies assessing the neuroprotective properties of sitagliptin, especially through the GLP-1 pathway. The outcomes of experimental research indicate that sitagliptin has a decreasing effect on inflammation response. Sitagliptin decreases proinflammatory factors, such as Glial Fibrillary Acidic Protein (GFAP), Nuclear factor kappa B (NF-κB), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6). It also decreases glutamate levels, the primary excitatory neurotransmitter. Furthermore, sitagliptin shows antioxidative and antiapoptotic effects. Lastly, sitagliptin may provide a novel agent for the management of neurological disease.
-
-
-
Flavonoids in Brain Ischemia-Reperfusion and their Effect on Kinases as Signaling Pathway Activity
Authors: Esra Gulsum Danis, Rasim Mogulkoc and Abdulkerim Kasim BaltaciBrain ischemia-reperfusion injury (CIRI) refers to brain ischemia that leads to cellular dysfunction and cell death after a certain period, and ischemic damage is rescued by providing blood supply and reperfusion. And then, reperfusion includes components such as ion imbalance, mitochondrial dysfunction, oxidative stress, neuroinflammation, Ca2+ overload, and apoptosis, which do not cause tissue damage. Autophagy also occurs in CIRI due to oxygen deficiency, and autophagy has been shown to protect cells from ischemic injury. Flavonoids are a class of essential and diversified secondary plant metabolites found in different concentrations in leaves, flowers, roots, and fruits. Various studies have shown that flavonoids have healing qualifications such as anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial. We aim to determine how flavonoids may affect signaling pathways and kinases in rats with CIRI. The results show that the activity of JAK2/STAT3, NF-κB, RhoA/ROCK, JNK-p38, and cAMKII signaling pathways increases under CIRI, and the PI3K/Akt/mTOR signaling pathway is suppressed. Studies using various flavonoids (kaempferol, chrysin, naringin, naringenin, quercetin, wogonin) have shown a neuroprotective effect by reversing the situation in signaling pathways during CIRI damage.
-
-
-
Valproate Exposure as an In vitro Model for Studying Morpho-Molecular Features of ASD: A Systematic Review
IntroductionAutism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic and environmental basis. It frequently causes social and communication deficits, as well as repetitive behaviours. Valproic acid (VPA) has been shown to induce autistic-like features in animal models when administered during critical development periods. However, not much is known about its effect on cells to replicate ASD characteristics in vitro.
ObjectiveThis review explores in vitro VPA models to elucidate the molecular and morphological characteristics of ASD, emphasizing their potential and proposing directions for future research.
MethodsPubMed, SciELO, Embase, Web of Science, and Scopus databases were searched, and 11 studies were included after screening.
ResultsThe studies explored VPA's effects on various cell cultures, including human neural cell lines, primary adult neurons, and primary embryonic neurons. VPA was found to be neurotoxic in a dose- and time-dependent manner, with greater toxicity in immature and undifferentiated cells. In vitro, VPA can influence gene expression, increase oxidative stress, disrupt neurogenesis and synaptogenesis, affect the GABAergic system, and alter critical signaling pathways for brain development and cell differentiation, such as Wnt/β-catenin.
ConclusionIn vitro models provide valuable insights into the morpho-molecular alterations induced by VPA and their connection to ASD. These findings highlight the need for further research into VPA's cellular effects to deepen our understanding of its role in ASD pathology.
-
-
-
Early Detection of Glioma: Investigating Inflammatory Markers (CRP), Kidney, and Liver Function
IntroductionGlioma, a global concern, a rare but aggressive brain cancer, poses a unique challenge for health scientists. The diagnosis solely depends on Magnetic resonance imaging (MRI) and computed tomography (CT) scans, which are effective but may lead to misinterpretation.
ObjectiveThe present study explores outcomes and develops effective strategies for early detection of glioma. The study also focuses on exploring a comprehensive panel of blood biochemical parameters in this challenging landscape.
MethodsA retrospective study included all adults above 18 years (n=78) diagnosed with Glioma and admitted to King Abdullah Medical City, Mecca. Routine blood biochemistry of whole blood was performed, showing Glioma either IDH mutant or Wild type detected via standard protocol.
ResultsDemographic variations categorized by age, gender, nationality, Glioma types, and subtypes, revealing a predominant occurrence in the 51-60 age range. Among gliomas, 33.3% were IDH Mutant, while the remaining 66.7% were Wild type, with Glioblastoma (wild type) being the most prevalent at 64.1%. Creatinine levels (0.60 ± 0.17 mg/dL, p<0.2) and urea levels (4.14 ± 1.55 mg/dL, p<0.05) were lower in females, while alkaline phosphatase (74.90 ± 25.17 uL, p<0.3) and total bilirubin (0.38 ± 0.20 mg/dL, p<0.01) also showed significant differences. Neutrophils were significantly lower in females (4.51 ± 2.31 uL, p<0.01), with elevated lymphocytes (7.46 ± 3.14 uL) and CRP (4.65 ± 7.98 mg/dL, p<0.001). The mutant type had lower levels of ALP (78.46 ± 29.08 uL), AST (22.30 ± 11.06 uL), ALT (30.06 ± 19.22 uL), and GGT (66.15 ± 40.76 uL) compared to the wild type (ALP: 86.98 ± 30.33 uL, AST: 29.98 ± 15.10 uL, ALT: 36.32 ± 20.94 uL, GGT: 83.44 ± 45.91 uL). GGT showed significant variation (p<0.01), with higher neutrophil levels in the wild type (5.69 ± 4.12 uL) compared to the mutant (3.82 ± 2.28 uL). Lymphocytes (4.84 ± 22.94 uL) and CRP (4.29 ± 6.87 mg/dL) were significantly higher (p<0.001) in the wild type.
DiscussionAltered KFL and LFT in Mutant and wild-form Glioma depend upon the gender of patients. Combining these biochemical parameters with existing imaging modalities such as MRI and CT could potentiate the diagnostic accuracy of Glioma, offering a more comprehensive approach to patient care.
ConclusionThe insightful, findings do not replace the crucial role of imaging techniques but could complement them in a multi-model diagnostic approach particularly with altered KFT and LFT in Mutant and wild-form Glioma.
-
Volumes & issues
-
Volume 24 (2025)
-
Volume 23 (2024)
-
Volume 22 (2023)
-
Volume 21 (2022)
-
Volume 20 (2021)
-
Volume 19 (2020)
-
Volume 18 (2019)
-
Volume 17 (2018)
-
Volume 16 (2017)
-
Volume 15 (2016)
-
Volume 14 (2015)
-
Volume 13 (2014)
-
Volume 12 (2013)
-
Volume 11 (2012)
-
Volume 10 (2011)
-
Volume 9 (2010)
-
Volume 8 (2009)
-
Volume 7 (2008)
-
Volume 6 (2007)
-
Volume 5 (2006)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
A Retrospective, Multi-Center Cohort Study Evaluating the Severity- Related Effects of Cerebrolysin Treatment on Clinical Outcomes in Traumatic Brain Injury
Authors: Dafin F. Muresanu, Alexandru V. Ciurea, Radu M. Gorgan, Eva Gheorghita, Stefan I. Florian, Horatiu Stan, Alin Blaga, Nicolai Ianovici, Stefan M. Iencean, Dana Turliuc, Horia B. Davidescu, Cornel Mihalache, Felix M. Brehar, Anca . S. Mihaescu, Dinu C. Mardare, Aurelian Anghelescu, Carmen Chiparus, Magdalena Lapadat, Viorel Pruna, Dumitru Mohan, Constantin Costea, Daniel Costea, Claudiu Palade, Narcisa Bucur, Jesus Figueroa and Anton Alvarez
-
-
-
- More Less